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TF-SEQUENTIAL AND ZX-FRECHET-URYSOHN SPACES

Abstract. Notions of Z-Fréchet-Urysohn and ZX-sequential spaces
are studied by letting ideals Z, K of subsets of natural numbers
to play measurable role in the well-established concepts of Fréchet-
Urysohn and sequential spaces. Relation among those spaces in new
and old setting have been established by introducing Z*-quotient
maps and Z*-covering maps.
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1. Introduction. In 1973, J. R. Boone and F. Siwiec [1]| introduced
the concept of sequentially quotient maps, which are the convergent se-
quence analogs of the bi-quotient maps of Michael [18|. The notions of
sequential spaces and sequentially open subsets of a space were intro-
duced by Franklin [8]. In [17], the notions of statistically Fréchet-Urysohn
and statistically sequential spaces have been defined and studied in detail
in [25]. Statistical convergence introduced by H. Fast [6] is an extension of
the concept of convergence of sequence of real numbers. During last four
decades, many mathematicians explored and generalized that concepts in
various directions ([3], [13], [17], [22], etc.). Two interesting generaliza-
tions of statistical convergence are Z and Z*-convergence [12]. After a
long time, in the year 2011, M. Macaj and M. Sleziak introduced the con-
cept of Z®-convergence, as a generalization of Z*-convergence. In 2022,
C. Choudhury and S. Debnath [2] defined the notions of Z*-supremum,
Z*-infimum, Z%*-limit superior and Z*-limit inferior and studied their rela-
tions. Recently, the concept of Z*-convergence of sequences of bi-complex
numbers was introduced and explored its properties [11|. Several proper-
ties of Z®-convergence of functions have been studied in [4], [20], [21].
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Here are some basic definitions and findings provided as a ready refer-
ences that will be used in the sequel.

An ideal Z on an arbitrary set X is a family Z < 2% that is closed
under finite unions and taking subsets [14]. An ideal Z is called trivial if
Z =@ or X in Z. A non-trivial ideal Z < 2% is called admissible if it
contains all the singleton sets [14]. The class of all finite subsets of N is
an admissible ideal on N, denoted by Fin.

Various examples of non-trivial admissible ideals are given in [12]. Sup-
pose Z, K are ideals on N. A sequence (z,) in a topological space X is
said to be Z-convergent to [ in X if for any open set U containing [,
{n e N:x, ¢ U} € Z|[15]. A sequence (z,)neny in X is said to be Z*-
convergent to [ € X if there exists a set M € F(Z), such that the sequence
(Yn)nen defined by vy, = z,, n € M, and y, = [, n € N\M is Fin-
convergent to [. In addition, Z*-convergence is defined by replacing Fin
by an arbitrary ideal K on N.

Let us recall the notion of sequential spaces. A subset C of a topological
space X 1is called sequentially closed if no sequence in C' converges to a
point in X\C. A topological space X is said to be sequential if each
sequentially closed subset of X is closed [8]. Every first countable space is
a sequential space. Suppose X, Y are topological spacesand f: X — Y is
an onto map; f is called a quotient map provided a subset U is open in Y
if and only if f~(U) is open in X, and f is called a sequentially quotient
map provided a subset U is sequentially open in Y if and only if f~1(U) is
sequentially open in X [1]. f is said to be sequence-covering if whenever
(y;) is a sequence in Y converging to some point [ in Y, there exists a
sequence (;) of points z; € f~1(y;) for all i € N and p € f~1(I), such that
(x,) converges to p [1]. Every sequence-covering mapping is sequentially
quotient. A topological space X is said to be Fréchet-Urysohn if for each
subset C' of X and z € C, there exists a sequence in C' converging to x [8].
Every Fréchet-Urysohn space is sequential, but the reverse implication
may not hold [8].

Before entering into the main discussion, let us take a look at some of
the ones that will be followed throughout the article:

e A sequence is a mapping whose domain is a cofinal subset of N.
Let x = (z,,)ner be a sequence in a topological space X and M be a
cofinal subset of L. Then call (x,)nenr a subsequence of x = (x,,)per-

e Nonthin subsets of natural numbers were introduced by J. A. Fridy
[9] in terms of natural density [10]. Inspired by the notion of nonthin
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sets, Z-nonthin subsets of natural numbers are defined in [23]. A
sequence (x,)nea in X is said to be Z-thin if A € Z, otherwise it is
called Z-nonthin, where A < N and Z is an ideal on N [23].

e For M « N, Z|yy = {An M;A e T} is an ideal on M [16]. Z| is
nontrivial if M ¢ Z.

e 7, K stand for nontrivial admissible ideal on N, unless otherwise
stated.

e all mappings are onto.

2. Main Results. In this section, the notion of Z¥-sequential space is
introduced, and we show that Z®-sequential space may not be sequential.

Definition 1. The Z"-closure of a subset C' of a topological space X is

_ 7K
denoted by o= {x € X: there exists an Z-nonthin sequence (Z,)neca in
X, such that (Z|4)*-converges to x}.

Theorem 1. Let K < Z. For any subset C of a topological space X,
—7K _ _
Ccl c C, where C' is the closure of C'. Furthermore, if X is first
_ __ 7K
countable, C' = c

Proof. Let z € UI’C. Then there exists an Z-nonthin sequence (z,)neca
in C, which (Z|4)*-converges to z. Therefore, there exists M € F(Z|4),
such that the sequence (y,)nea given by y, = x, if n € M and y, = x
if n € A\M is K-convergent to z. For any open set U containing =z,
{neA:y,eU} e F(K|a). Since K = Z, theset {n€ A: y, e U} € F(Z|a)
and, so, {n € A: x, € U} € F(Z|a). Therefore, there is p € A, such that
pef{ne A:x,eU}. Then z, € C AU and, hence, z € C. Suppose X is
first countable and x € C. Then there exists a sequence (z,,) in C, such
that (x,) is convergent to x. Since Z and K are admissible ideals on N,

7K
(z,) is K-convergent and, so, (z,,) Z®-converges to x. Thus, = € c. ]

Definition 2. A subset C of a topological space X is called I"-closed if
—7K

c =C.

Theorem 2. For any subset H of a topological space X, the following
are equivalent:

(a) H is T®-open.

(b) for any T-nonthin sequence (1, )ner, in X with (2, )ner, (Z|1)*-converges
toxe H {neL:x,€ H} ¢ K.



106 S. Roy, M. Singha

(c) for any Z-nonthin sequence (ZTy)ner, in X with (T,)nerl,
(Z|1)*-converges tox e H, |[{ne L: x, € H}| = w.

Proof. (a) = (b) Suppose H is Z®-open and (z,,)ncr, is an Z-nonthin
sequence in X, such that (z,)ner (Z|1)*-converges to x € H. If possible,
let M ={ne L:x, € H € K. Then M # L and, so, X # H. Let
p € X\H. Define a sequence (y,)ner in X given by y, = p, n € M, and
Yn = Tn, n & L\M. Clearly, (y)ner (Z|1)*-converges to z. Since X\H is
T closed and (i, )ner, is a sequence in X\H, x € X\ H, which leads to a
contradiction. Hence, {n€ L: z, € H} ¢ K.

(b) = (c) It is obvious, as the ideal Z is an admissible ideal on N.

(¢) = (a) Suppose X\H is not Z"-closed in X. Then there exists an
Z-nonthin sequence (,)ner, in X\H, such that (x,)ner (Z|1)*-converges
to some point x € H. So, {n € L: x, € H} is an empty set, which leads to
a contradiction. Hence, H is Z%-open in X. []

Definition 3. A topological space is said to be I*-sequential if every
T’ -closed set is closed.

Suppose C' is an Z*-closed subset of a topological space X. If (x,)
is a sequence in C, such that (z,) converges to z € X, then (x,) K|y-
converges to x. Since C' is Z"-closed, x € C. Thus, C is sequentially
closed. If X is a sequential space, then C' is closed. So, every sequential
space is Z"-sequential. But the converse may not be true.

Theorem 3. Every sequential space is T®-sequential.

Example 1. Suppose Z is an ideal on N and K is a maximal ideal on
N. Consider the space Y (K) defined in |26, Example 2.7| as follows:
Take the set Y = N U {0}, o0 ¢ N. A topology on Y consists of each {n}
and sets G containing oo of the form G = {ow} u (N\A), where A € K.
Denote the set Y equipped with this topology by >!(K). Suppose G is
an Z"-open subset of >(K). Let us assume that «o € G. Consider the
sequence (n), which Z*-converges to co in }(K). By Theorem 2, it follows
that {n € N:n e G} ¢ K. Therefore, G\{oo} ¢ K. Since K is a maximal
ideal of N, N\G € K. Therefore, G = {0} u (N\(N\G)) is open in > (K).
Hence, Y.(K) is an Z®-sequential space. Moreover, Y.(K) is a Hausdorff
space, but not a k-space |26, Example 2.9]. Again, since every sequential
space is a k-space [19], > (K) is not a sequential space.

Definition 4. Let X and Y be topological spaces. A function f: X — Y
is said to be I*-continuous if for every Z-nonthin sequence (x;)p in'Y,
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which is (Z|p)*-convergent to x, (f(x;))icp (Z|p)*-converges to f(z).

Theorem 4. Let X andY be topological spaces. A function f: X — Y
is T®-continuous if and only if f~1(B) is I"-closed for every T"-closed
subset B of Y.

Proof. Suppose f is an Z*-continuous function and B is an Z%-closed
<

subset of Y. Let x € f~1(B) . Then there is an Z-nonthin sequence
(2)ner in f7Y(B), which (Z|;)*-converges to z € X. So (f(2,))ner
(Z]1,)*-converges to f(z). Since B is Z®-closed, r € f~1(B).

Conversely, for every Z®-closed subset B of Y, f~}(B) is an Z"-closed
subset of X. Suppose f is not Z*-continuous. Then there is an Z-nonthin
sequence (T, )nens in X, which (Z|y;)*-converges to z € X, but (f(2,))nenr
does not (Z|)*-converge to f(x). For all T € F(Z|u), such that the se-
quence (Yn)nenr given by y, = f(z,), n€ T and y,, = f(z), n € M\T does
not K-converge to f(x). Therefore, there exists an open set U containing
f(z), such that {ne M:y, ¢ U} ¢ K|y As{ne M: f(x,) ¢ U} > {ne
M:y,¢ U}, P={neM: f(x,) ¢ U} ¢ K|y. Again, Y\U is Z"-closed
in Y, because Y\U is closed in Y. So f~1(Y\U) is Z®-closed in X. Since

P
(2)nep (Z|p)*-converges to =, x € f‘l(Y\U)Z = fY(Y\U). Therefore,

f(z) e Y\U, which is a contradiction. []

Corollary 1. Suppose Y and Z are topological spaces. The following
are equivalent for a function ¢: Y — Z:

(a)

¢ is I"-continuous.
(b) ¢~ 1(F) is I"-closed for every T"-closed subset F of Z.
o (G

) is Z"-open for every I"-open subset G of Z.

(c) o7

3. IF-quotient map and Z"-covering map. In this section,
the notion of Z*-quotient map is introduced, which is an extension of
T*-continuous map. Also, the concept of Z®-covering map is defined and
relation between Z*-quotient map and Z*-covering map are studied. Sup-
pose (T, )ner, is any Z-nonthin sequence in a topological space X. (Z,)ner
is said to be Z-eventually constant at x if {n € L: x, # x} € Z|; [24]. Ev-
ery eventually constant sequence is Z-eventually constant. But the reverse
implication may not hold [24].

Definition 5. A function f: X — Y is said to be T*-presequential if for
any Z-nonthin sequence (Yp)nens in' Y with (yn)nenr (Z|ar)*-converges to y
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and (Yn)nerr non Z-eventually constant at y, O{f *(y,): n € M,y, # vy}
is not I"-closed.

Definition 6. A mapping ¢: X — Y is said to be T*-quotient provided
that a set G is I"-closed (Z*-open) in Y if and only if ¢~ (G) is Z"-closed
(resp. Z"-open) in X.

Theorem 5. Suppose Z, K are ideals on N and ¢: X — Y is I-
continuous function. Then the following are equivalent:

(a) ¢ is I®-presequential.

(b) For each non I*-closed subset C' of Y, ¢~1(C) is non I*-closed
subset of X.

(¢) For each non I%-open subset G of Y, ¢~ Y(G) is non I"-open subset
of X.

Proof. The condition (b) and (c) are equivalent by considering comple-
ment.

For (b) = (a), let @ = (@)iemr be any Z-nonthin sequence in Y,
such that (a;)ierr (Z]ar)*-converges to € and is non Z-eventually constant
at & I L = {i e M: a; # &}, € is not equal to any (a;)ier. Again,
U{o H): 1€ M and o; # &} = ¢~ (Im a\{£}). Since Im a\{{} of Y is
not Z%-closed, U{¢p1(a;): i€ M and «; # £} is not Z*-closed.

(a) = (b) Suppose ¢ is T"-presequential and Z"*-continuous. Let C'
be a non Z"*-closed subset of Y. Then there exists an Z-nonthin sequence
a = (ay)ien in C, which is (Z|y)* converging to some point £ in Y\C.
Therefore, ¢ is not equal to any «;. Since ¢ is Z®-presequential, then
the set G = ¢~ '(Im «) is not Z*-closed. Thus there exists a sequence
(Vi)ier in G with L < M, such that ¢(vy;) = «; for all i € L. So, (7i)ier
(Z|1)*-converges to a point n in X\G. Since ¢ is Z®-continuous, so the
sequence (a)er, (Z]1)*-converges to ¢(n) = £, 1 ¢ 6-1(C). As (0x)ier i
in G, (ay)icr, is in ¢71(C). Therefore, ¢~1(C) is not an Z"-closed subset
in X.[]

Corollary 2. A mapping is Z"-quotient if and only if it is both I"-
continuous and I -presequential.

Definition 7. A mapping ¢: X — Y is said to be I"-covering if for
every Z-nonthin sequence (B;)icys in' Y that (Z|y)*-converges to 8 inY,
there exists an Z-nonthin sequence (o )icpr wWith o; € ¢~1(5;), fori € M
and o € ¢~ (), such that (o;)icar (Z|ar)*-converges to a.
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Suppose ¢: X — Y is an I"-covering mapping. If G is a non Z*-
closed subset of Y, then there exists an Z-nonthin sequence (y,)ner in Y,
such that (y,)ner (Z|1)*-converges to some point say y, y ¢ G. As ¢ is
T’-covering, there exists an Z-nonthin sequence (%n)ner, of points
T, € ¢ Ny, for all n € L and z € ¢ '(y), such that (,)ner
(Z|)*-converges to z. But z ¢ ¢ 1(G). Therefore, ¢~(G) is not
T*-closed.

So if ¢ is an Z"-continuous Z®-covering mapping, ¢ satisfies condi-
tion (b) of Theorem 5 and, so, ¢ is ZX-presequential. Therefore, ¢ is
Tr-quotient.

Theorem 6. Every I"-continuous I*-covering mapping is T*-quotient.
Theorem 7. A one-to-one I"-quotient mapping is I"-covering.

Proof. Suppose ¢: X — Y is an one-to-one Z*-quotient mapping. Let
(B;)iens be an Z-nonthin sequence in Y, which (Z|,,)*-converges to a point
B €Y. Without loss of generality, let us assume that (3;);cps consists of
distinct points. Let a; = ¢~1(3;) and a = ¢~1(3). If possible, let (a;)icar
be not (Z|y;)*-convergent to a. For any set P € F(Z|), consider a se-
quence (7;)ienr given by v; = a4, i@ € P, and v; = «, ¢ € M\P is not
IC|pr-convergent to . Then there exists an open set W' containing «, such
that the set L = {i € M: ~; ¢ W} ¢ K|y. Thus the sequence (7;)er, is
not in W. For each i € L\P, ¢(v;) = i, which shows that (¢(;))icr
(Z|1)*-converges to 3. Since ¢ is Z®-quotient, ¢ is Z*-presequential.
Then U{¢p~(3;): i€ K and 3; # B} is not Z"-closed. So, there exists an
Z-nonthin sequence (z;)ier in U{¢~(3;): i € K and §; # (8}, which (Z|7)"-
converges to some point [ in X. There is a set A € F(Z|r), such that
the sequence (u;)er is given by u; = z;, i € Aand u; = [, i € T\A
K|r-converges to [. Again, since ¢ is Z"-continuous, then (é(u;))ier
(Z|7)*-converges to ¢(I). For each i € A, ¢(u;) = Bi, and (B:)ica, (Z|4)*-
converges to 3. Therefore, ¢(I1) = fand | = ¢$~1(3) = a. As W is an open
set containing v = I, {i € T: u; € W} ¢ K|r. So, {i € L: o; € W} ¢ KL,
which leads to a contradiction. Hence, (a)icar (Z|ar)*-converges to a. []

Corollary 3. A one-to-one I"-continuous mapping is I®-quotient if and
only if the mapping is Z"-covering.

Theorem 8. For an I"-continuous mapping h: X — Y, the following
are equivalent:

(a) h is an I"-quotient map.
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(b) for each Z-nonthin sequence (yy,)ner, in Y, which (Z|1,)*-converges to
B say, there exists an Z-nonthin sequence («;)ier Wwith
Qm, € h™Y(yy,), such that (a;)icr (Z|r)*-converges to a € h™1(p),
where T = {m; < ms < ...} and {n; < ny < ...} are Z-nonthin
subsets of L.

(c) for each 3 in the T"-closure of a subset D of Y, there exists a point
a € h™1(f), such that « is in the Z®-closure of h=}(D).

Proof. (a) = (b) Suppose (yn)ner is an Z-nonthin sequence in Y,
such that (y,)ner (Z|1)*-converges to 5. Without loss of generality, let
yn # f for each n € L. So, {y,: n € L} is not Z’-closed. As h is
Tr-presequential, U{h~!(y,): n € L} is not Z"-closed. Again, since h
is Z%-continuous, U{h~(y,): n € L} u h™(B) is T®-closed. Therefore,
there exists an Z-nonthin sequence (v, )nens in U{h ' (y,): n € L} that
(Z|ar)*-converges to some point o € h=1(3). For each n € L, h™'(y,) is
T’-closed. Therefore, for each n € L there is at most an Z-thin subse-
quence (o, )nenr; Of (Qin)nerr, which belong to h=1(y,). So, there exists
an Z-nonthin set P = {n; < ny < ... < n, < ...} < L, such that
T={ie M: a;€h(y,)} ¢ Z. Thus, there exists an Z-nonthin sequence
(a)ier with ay,, € Bl (y,,), T = {m; < my < ...}, such that (a;)er
(Z|7)*-converges to a € h=1(3).

(b) = (c) Let 8 € D™, Without loss of generality, let § ¢ D.

There exists an Z-nonthin sequence (Y, )ner in D, such that (v, )ner (Z|1)*-
converges to 5. Then there is an Z-nonthin sequence (z,)neprr in X, such

that z,,, € h™*(yn,), where M = {m; < my < ... < myp < ...} and
{ng <mg < ... <mp < ...} © L and (,)nemr (Z|ar)®-converges to
a € h™1(f). Since x,, € h~1(D), for each n € M, so « is in the Z*-closure
of h~1(D).

(c) = (a) Suppose h is not an Z"-presequential mapping. Then there
exists a non Z"-closed subset D of Y, such that h=1(D) is Z"-closed
in X. Suppose 3 is a point in the Z"-closure of D and 8 ¢ D. Then
h=Y(B) ¢ h~1(D). Since h=1(D) is Z®-closed, there does not exist a point

7K
a € h™(3), such that o € h—l(D)Z . Hence, h is Z"-presequential. []

Example 2. Let Z = K = P(2N) u Fin, P(2N) be the power set of 2N,
and Fin be the class of all finite subsets of N. Consider I = [0,1] with the
usual topology and for each aw € I, S, = {xn,,: n € N} and S/, = S, u{z,}.
A topology 7 on S/, consists of each {z,,} and sets U containing z, equals
to {Tan:n = no} U {x,}, for some ny € N. Suppose X is a topological
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sum of a collection {/, 5! : a e I}. Let Y = (®S,) @ I be the space with
a topology 7 that consists of each {z,,} and sets U containing « of the
form {z4n: n = m} U G, where G is an open set containing « in I and
m € N. Consider the map f: X — Y defined by f(z) = z,if x = x4, € Sa
and f(z) =a,if x =z, 0or z e l.

Suppose S = (Yn)nenmr is an Z-nonthin sequence in Y that (Z|y)*-
converges to y. Soy e I. Let S5y =5 n S, and Sy = S nI. Since S is an
Z-nonthin sequence, either Sy or Sy must be Z-nonthin. Again, S; and S
are Z%-convergent in X with its image being an Z-nonthin subsequence of
S. Hence, f is an Z®-quotient map. Now, suppose (p,) is a sequence in [
converging to « in I. A sequence S = (z,) in Y is defined by z, = x4,
if n e AN+ 1 and z, = p,, if n ¢ AN + 1. Therefore, (z,) converges to «
inY, so (z,) Z"-converges to a. Let S; = Sn S, and Sy = S n I. Then
S; and S, are Z-nonthin sequences in X. Thus S; (Z|1)*-converges to x,
and Sy (Z|7)*-converges to a, where L = 4N + 1, T = N\4N + 1. Since
X is Hausdorff, so, corresponding to S, there is no Z-nonthin sequence in
X, whose image is S. Hence, f is not an Z"-covering map.

Theorem 9. I"-quotient mappings are hereditarily I"*-quotient.

Proof. Let f: X —Y is an Z"-quotient map and D is a subspace of Y.
Consider g= f|¢-1(py and the restriction map g: f~'(D)— D. Clearly, g is
an Z"-continuous map. Consider an Z-nonthin sequence (Yn)ner in D, such
that (yn)ner (Z|1)*-converges to y in D. Since f is Z"-quotient map, there
exists an Z-nonthin sequence (zy)per With &, € f~(ys,) € f~1(D), such
that (2, )ner (Z|7)*-converges to x € f~(y) € f~Y(D), where T = {m, <
my < ...} and {n; < ny < ...} are Z-nonthin subset of L. Therefore, g is
an Z*-quotient map. []

Example 3. Consider the space X = [1,w;] with the order topology,
where w; is the first uncountable ordinal and the space Y = {0, 1} with
topology {, {0}, Y}. A function f: X — Y is defined by f([1,w;)) = {0}
and f(w;) = 1. Then f is a continuous quotient map. Again, no Z-nonthin
sequence in X\{w;} Z"-converges to w;. This implies that [1,w;) is Z%-
closed in X. Therefore, the set f~1({0}) = [1,w;) is Z®-closed in X. But
the set {0} is not Z"-closed in Y. Hence, f is not an Z®-quotient map.

Example 4. Consider the space X = [1,w;] with the discrete topol-
ogy and the space Y = [1,w;] with order topology. Let f: X — Y be
the identity map. Then f is continuous but not a quotient map. Sup-
pose (Z)ner is an Z-nonthin sequence in Y, which (Z|;)*-converges to
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x € Y. Then there exists M € F(Z|.), such that the sequence (yy)ner
given by y, = x,, n € M, and y, = z, if n € L\M K-converges to x.
There exists an open set Uy containing z, vy, ¢ Uy for each y, # z, so
{nel: y, # 2} = {ne L:y, ¢ Uy} € K. Therefore, {n € L:y, ¢
{z}} € K and thus (z,)ner (Z|1)*-converges to x in X. Hence, f is an
T*-quotient map.

Theorem 10.

(a) Suppose f: X — Y is an T®-continuous quotient map and X is an
TX-sequential space. ThenY is an T*-sequential space and the map
f is TF-quotient.

(b) If f: X — Y is I"-quotient and Y is T®-sequential, then f is quo-
tient.

Proof. (a) Let G be an Z"-open set in Y. Suppose (T,)ner is an
Z-nonthin sequence in X, which (Z|)*-converges to x in f~1(G). Since f
is ZF-continuous, (f(x,))ner (Z|1)*-converges to f(z) in G. Again, since
G is T"-open, from Theorem 2 it follows that [{n € L: f(z,) € G}| = w.
Thus |[{n € L: 2, € f~1(G)}| = w. Therefore, f~1(G) is Z"-open in X.
Now, let H < Y and f~'(H) be Z"-open in X. As X is Z"-sequential,
f~Y(H) is open in X. Again, since f is a quotient map, H is open in Y.
Therefore, H is Z%-open in Y. Hence, f is an Z®-quotient map.

(b) Suppose U < Y and f~1(U) is open in X. Then f~1(U) is Z®-open
in X. Since f is Z"-quotient, U is Z"-open in Y. Again, since Y is
T*-sequential, U is open in Y. Hence, f is a quotient map. []

Corollary 4. Let X and Y be topological spaces. Suppose g: X — Y is
a continuous function and X is an I"-sequential space. Then g is quotient
if and only if g is T®-quotient and Y is an I"-sequential space.

4. T*-Fréchet-Urysohn space.

Definition 8. A topological space X is said to be I*-Fréchet-Urysohn
if for each A < X and each x € cl(A), there exists an Z-nonthin sequence
(2)ner in A (Z|1)*-converging to the point z.

Every Fréchet-Urysohn space [8] is Z*-Fréchet-Urysohn. The dis-
joint topological sum of any family of Z*-Fréchet-Urysohn spaces is an
I’ -Fréchet-Urysohn space. Consider a nonempty subspace G of an
T*-Fréchet-Urysohn space X and z € clg(D), where D < G. Then
cla(D) = G n clx(D) and, so, v € clx(D). Since X is an Z*-Fréchet-
Urysohn space, there exists an Z-nonthin sequence (Z,)per, in D
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(Z|1)*-converging to the point z. Therefore, subspace of an Z*-Fréchet-
Urysohn space is an Z®-Fréchet-Urysohn space.

Theorem 11. Every Z*-Fréchet-Urysohn space is an T®-sequential space.

Proof. Suppose U is an Z%-open subset of an Z"-Fréchet-Urysohn space
X. Let [ € (X\U). Then there exists an Z-nonthin sequence (z,)ner, in
X\U (Z|r)*-converges to I. Since X\U is Z®-closed, | € X\U. Therefore,
X\U is a closed set. Hence, X is an Z"-sequential space. []

Corollary 5. Every Fréchet-Urysohn space is I"-Fréchet-Urysohn and
every I%-Fréchet-Urysohn space is I -sequential.

Example 5 is an Z*-Fréchet-Urysohn space, which is sequential but
not Fréchet-Urysohn.

Example 5. Consider the space X = {0} u SXi, X; = { U {1 Z—g, ;

Z.erl,%—i—lﬂ,. 3. Then X; n X} = &, forz;ék AtopologyTonX
consists of each {1 1} and for an element x of the form , sets are given
by {3}o{s+ 4.1+ g} for k=% +1,... and sets containing

0 are obtained from X by removing a ﬁnite nurnber of X;’s and a finite
number of points in all of the remaining X;’s that have the form % + jl
(|5], Example 1.6.19). Consider the ideals Z = K = {A: A n A,; are finite
for all but finitely many i }, where N = SIAi and each A; is infinite and
Ain A =@, i # . Z

Let Ac X and a € A. Ifaz%—l—l.,thenaeA. Ifaz%,thenthere
exists an infinite subset Y; of X;, such that Y; ¢ A. Consider a sequence
() in A, where x,, = % + ﬁ, (k,) is an increasing sequence of natural
numbers. Therefore, (x,) Z*-converges to a. If a = 0, then there exists
an increasing sequence C' = (¢,,) of natural numbers, such that 'éJC}/Z' c A
and each Y; is an infinite subset of X For each i € C', consider az sequence
(z;) in A, defined by x; = + + ZQH -, j € A;, and ([;;) is an increasing
sequence of natural numbers. Then (:L‘j) T*-converges to 0. Hence, X is
an Z*-Fréchet-Urysohn space. Moreover, from Example 1.6.19 in [5], X
is sequential but not Fréchet-Urysohn.

Example 6. Let S = (a,)nen be a sequence of distinct elements. Con-
sider the space X = S u {a}, a ¢ S. A topology 7 on X consists of each
{a,} and sets U containing « of the form U = {a} U {a,: n € L}, where

N\L € K.
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Let Ac X andae A. Ifae S, then a € A. Then, taking the constant
sequence (a), space becomes Z"-Fréchet-Urysohn. If a = o and a ¢ A,
then A is a subset of S. Assume that A is a K-thin subsequence of S. Then
X\A = U is an open neighborhood of & = a. But ae A and An U = ¢,
which leads to a contradiction. Therefore, A is a K-nonthin subsequence
of S. So, A K-converges to a and, then, A Z*-converges to a. Therefore,
X is TF-Fréchet-Urysohn. Again, by Theorem 11, X is Z®-sequential. It is
obvious that a € S. Let (a,)ner be a subsequence of S. Consider a K-thin
subsequence (a,)ner, Of (an)ner. Let U = X\{a,: n € Ly1}. Then U is an
open neighborhood of a. Therefore, (a,),er, does not converge to a. So,
no subsequence of S converges to a. Hence, X is not a Fréchet-Urysohn
space.

Nowhere tall ideal plays an important role in the following theorem.
An ideal Z on a non-empty set X is nowhere tall if for any set A ¢ 7,
there exists B < A, such that Z|p is the collection of all finite subsets of
B (|7], Definition 2.25).

Theorem 12. ZX-Fréchet-Urysohn space is Fréchet-Urysohn provided
K < Z and K is a nowhere tall ideal on N.

Proof. Let X be an Z®-Fréchet-Urysohn space, A = X and a € A. There
exists an Z-nonthin sequence (,,)ner, which (Z|;)*-converges to a. Then
thereis a set M € F(Z|), such that the sequence (y,,)ner given by v, = x,,
ne M, and y, = a, n € L\M K|, -converges to a. Since K < Z and
M¢TZ, M¢K. As K is a nowhere tall ideal, there exists a subset M; of
M, such that Z|y, is the collection of all finite subsets of M;. Therefore,
the sequence (x,)nen, converges to a and, so, X is a Fréchet-Urysohn
space. []

Example 7. For each 7 € N, consider a sequence of distinct elements
Si = {xz;;: j e N}. Let S = {a;: i € N} be a sequence of distinct elements.
Consider the space X = u{S;:1e Nfu S u{a}, a¢ U{S;:ieN}uS.
A topology 7 on X consists of each {z;;} and sets containing a; of the
form {a;} U {z;;: j e T}, N\T € K for each i € N, and sets containing «
of the form {a} u{a;: ie L} U {{x;;: jeT}:ie L} for each i € N, where
N\L € K and N\T € K.

Consider an Z"-closed subset Y of X. Let pe Y. If pe ;8151-, {p} is

an open set. As p € Y,peY. If p = a, consider the subsequence Y n S
of S. Since a € Y, Y n S is a K-nonthin subsequence and, so, ¥ n .S
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7K
TI*-converges to . Therefore, p € A g [ p € S, there exists i € N,
such that a;, = p. Consider the subsequence Y n S;, of S;,. Since pe Y,
Y nS;, is a K-nonthin subsequence of S;,. Therefore Y n S;, Z%-converges

to a;,. So, p = a;, € oy, Hence, Y is a closed subset of X. Hence,
X is an Z"-sequential space.

It is obvious that X is Hausdorff and v € X\(S U {a}). Let E = (y,)ner be
a sequence in X\ (S U {a}), which (Z|)*-converge to a. If for each i € N,
E; = En S; is a K-thin sequence of S;, then take U = {a} U .S U {S;\E;:

i € N}. Then U is an open set containing o and U n F = ¢, which leads
to a contradiction. Therefore, there exists iy € N, such that £ n §;, is a
K-nonthin subsequence of S;,. So E'n S, Z%-converges to a;, # . Again,
by assumption E n S;, Z®-converges to «, which leads to a contradiction
as X is Hausdorff. Therefore, no sequence in X\(S u {a}) Z*-converges
to a. Hence, X is not an Z*-Fréchet-Urysohn space.

Theorem 13. A topological space X is hereditarily T"-sequential if and
only if the space is T®-Fréchet-Urysohn.

Proof. Suppose G « X and x € G. Without loss of generality, let x ¢ G.
Then G is not a closed set in X. Let Y = G u {z}. Therefore, G is not
closed in Y. AsY is an ZX-sequential space, G is not an Z"-closed set in Y.
There exists an Z-nonthin sequence (x,)ncz, in G, which (Z|1)*-converges
to . Hence, X is an Z"-Fréchet-Urysohn space. Conversely let X be
an Z*-Fréchet-Urysohn space. Again, subspace of an Z®-Fréchet-Urysohn
space is Z"-Fréchet-Urysohn and every Z®-Fréchet-Urysohn space is Z"-
sequential. Therefore, the space X is hereditarily Z"-sequential. []

A mapping f: X — Y is said to be pseudo-open if for each p € Y and
each neighbourhood O of f~!(p) in X, p € int(f(O)) [5].

Theorem 14. Let X, Y be topological spaces and let Y be an I'-
Fréchet-Urysohn space. Then each T"-covering mapping f from X onto
Y is pseudo-open.

Proof. Suppose f is not a pseudo-open map. Then there exists a point
z €Y and an open subset O of X, such that f~1(2) = O and z is not an
interior point of f(0O). So, z € Y\f(O). As Y is an Z*-Fréchet-Urysohn
space, there exists an Z-nonthin sequence (z,)ner, in Y\ f(O), such that
(2n)ner (Z|L)*-converges to z. Also, since f is an Z*-covering mapping,
there exists an Z-nonthin sequence (o) ez with a; € f~1(z;), for all i € L

and a € f~1(z2), such that (a;)ier, (Z|1)*-converges to a.. Therefore, a € O
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and {i € L: a; ¢ O} € K|r. Then there exists t € L, such that «; € O and,
so, z; € f(O), which leads to a contradiction. Hence, f is a pseudo-open
map. []

Theorem 15. Suppose f: X — Y is a quotient map, where X is an I"-
Fréchet-Urysohn space. Then Y is an I*-Fréchet-Urysohn space if and
only if f is pseudo open.

Proof. Let G = Y and p € G. If possible, let f~1(p) n f~1(G) = &.
Then f~'(p) €« X\f~(G) = O (say). As f is pseudo-open, then p €
intf(O). Again, intf(O) < intf(X\fHG)) = int(Y\G) = Y\G. Thus
p € Y\G, which leads to a contradiction. Therefore, there exists a point
q e fYp) n fHG). Since X is an Z®-Fréchet-Urysohn, there exists
an Z-nonthin sequence (,)ner, in f71(G) (Z|1)*-converging to the point
q. Therefore, there exists an Z-nonthin sequence (f(x,))ner in G, which
(Z|1)"*-converging to f(q) = p. Hence, Y is an Z"-Fréchet-Urysohn space.

Conversely let Y be an Z®-Fréchet-Urysohn space. Suppose p € Y and
O is an open neighbourhood of f~!(p). Let us assume that p ¢ intf(O).
Then p € Y\ f(O). Since Y is an Z®-Fréchet-Urysohn space, there exists an
Z-nonthin sequence S = (Y, )ner, in Y\ f(O) (Z|1)*-converging to p. Again,
since f is a quotient map, f~1(S) = f~1(S) = f~X(S)u f~1(p). Since O is
an open neighborhood of f~1(p) and O n f74(S) = &, f~1(p)n f1(S) =
& and so f71(S) is closed. Therefore, X\f™'(S) = f~1(Y\S) is open.
Since f is quotient, Y'\:S is open, which leads to a contradiction. Hence
peintf(O) and so f is pseudo open. []

The article is concluded with the diagram (Figure 1), which shows in-
terrelations among Fréchet-Urysohn, Z®-Fréchet-Urysohn, sequential, and
T*-sequential spaces.

Example 6
Fréchet-Urysohn =7— 7" Fréchet-Urysohn

Corollary 5
Example 2.2 in [8] Il Theorem 1 l[ Example T

weorem 3 -
Sequential —r— TI*-Sequential

Ex aﬂ"lp]c.‘ 1

Figure 1: Relation among Fréchet-Urysohn, T%-Fréchet-Urysohn, sequen-
tial, and Z%-sequential spaces
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