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Abstract. In this article, we introduce the HK-Sobolev space
H K?’u(G) over a Gelfand pair within the framework of a sec-
ond countable hypergroup, employing the Fourier transform on the
hypergroup. We discuss Kuelbs-Steadman space KSP in Hyper-
group and prove that K.SP(G) is a Banach algebra under a suitable
convolution. Additionally, we also address the dominated conver-
gence theorem in the KSP space over the hypergroup. Several
Sobolev embedding-type results are discussed in the HK-Sobolev
space H K? n(G). Finally, we explore Rellich-Kondrashov theorem
within this specific context.
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1. Introduction. Sobolev spaces are a highly helpful tool in the
theory of partial differential equations and have been subject of multiple
research. While the concept of weak derivative is used to define Sobolev
spaces, there exists an analogous concept for a class of Sobolev spaces
that is associated with the Fourier transform. Moreover, Sobolev spaces
are also defined on some classical spaces and algebraic structures like
Riemannian manifolds [20], [21], locally compact group [16], [17], com-
pact group [29], metric measure space [19]|, Heisenberg group [4], Bessel
hypergroup, Laguerre hypergroup and the dual of the Laguerre hyper-
group [1], [2], [3], etc. A.Behzadan and M. Holst define Sobolev space in [5]
by using the Fourier Transform on R", which is represented by H*(R™).
Gorka et al. generalised this space on Hausdorff locally compact Abelian
group in [16], [17]. In [18], the authors study Sobolev space on Locally
compact group and discuss an analog of the Rellich compactness theorem

(©) Petrozavodsk State University, 2025

[G) ev-rc |


http://creativecommons.org/licenses/by/4.0/

On HK-Sobolev space over hypergroup Gelfand pair 121

in that context. In [29], the authors discuss Sobolev spaces on a compact
group using the Fourier transform on compact groups. An Abelian group
G can potentially be determined by the Gelfand pair (G, {e}). Mensah
in [31] uses the spherical Fourier transformation of type J to investigate
the Sobolev space H gﬁ(G, E), where G is a locally compact Hausdorff
space and F is a complex Banach space.

Henstock-Kurzweil integral (HK integral), in short, is a kind of non-
absolute integrals. One can see [13], [14], [15] and references therein for
details of this integral. Recently, several function spaces have been con-
structed with HK-integrable functions. See [13], [22], [25], [26], [27] for
several spaces of HK-integrable functions. Sobolev-like spaces of HK-
integrable functions are called HK-Sobolev spaces and have been recently
introduced on R™ (see [23]). H.M. Srivastava et al. discussed HK Sobolev
spaces of the Newton-type in [35]. Hypergroups are a generalization of
locally compact groups. In [33], [34], we present the study of variable
Lebesgue space on locally compact group.

In this work, we continue our study of HK-Sobolev spaces and general-
ize the theory of HK-Sobolev spaces for hypergroup Gelfand pair in order
to construct the Bessel potential like HK Sobolev space employing Fourier
transform on Hypergroup and define an analog of the Rellich-Kondrachov
theorem within this specific context. Now, we provide an overview and
preliminary information on hypergroups and the harmonic analysis of hy-
pergroup Gelfand pairs. For this, we cite [9].

We organize the subsequent sections of this paper in the following
manner. In the Section 2, we recall several definitions and results that are
used in the main part. In Section 3, we introduce Kuelbs-Steadman spaces
K S?(G) on a second countable Hypergroup and establish Plancherel-type
theorem on this space. We also show that K SP(G) space is complete un-
der a convolution defined in this section. The next section discusses the
HK-Sobolev space on hypergroup Gelfand pair HK ? ’U(G) with the help
of Fourier transform on the hypergroup. Here we also establish several
embedding results on HK g ’n(G). In the last section, we prove Rellich-

Kondrachov-type theorem on H KCO‘ ’h(G) by defining dominated conver-
gence theorem on KSP(G).

2. Preliminaries. Throughout this article, we use the following
notation and conventions:

e [a,b] represents an interval of R.

e For a function space A, its dual space is denoted by A.
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e G represents a locally compact Hausdorff space.

e The set of all complex-valued Radon measures on G is denoted by
M(G), while C(G) represents the space of all complex-valued con-
tinuous functions on G.

e The subset of 9(G) consisting of bounded measures is denoted by
M, (G).

e The support of a measure € M(G) is written as supp p.

e The collection of all compact subsets of G is denoted by €(G).

e The point measure at t € G is indicated by J;.

A Hausdorff space G that is locally compact is said to be a hypergroup
if there are a convolution = : M, (G) x NM(G) — M,(G), an involution
t — t~ on G, and an element e (called the identity element), such that
the following conditions holds:

(i) (My(G),+, =) is a complex Banach algebra.

(ii) for all non-negative measures p,v € M,(G), p = v is also a non-
negative measure and from 9%, (G) x M, (G) into M, (G) there exists
a continuous mapping (i, V) — = v.

(iii) For every pair of values t, s € G, the probability measure J; * d5 has
a compact support.

(iv) The mapping (¢, s) — supp (u*v) from G x G to €(QG) is continuous.

(V) e %0y = 0y = Oy = 0, for all t € G.

(vi) The mapping ¢ — ¢t~ is a homeomorphism on G, such that (&;=d5)~ =
= 05 # 0- for all t,s € G, where (§; * d5) " (f) = (0, * 6,)(£7) and
£~ (t) = £(¢7) for all continuous function £ on G.

The set M(G) is endowed with the cone topology and the set €(G) is
endowed with the Michael topology. For more details of hypergroups, one
can see [6], [9], [12], [24].

A closed non-empty subset H of a hypergroup G is called a subhyper-
group of G if t~ € H and supp(d; = d5) = H for all t € H.

For a hypergroup G and a compact subhypergroup K of G, the double
coset of ¢ with respect to K is defined as

KtK = {ky «t = ky: ki, ko e K} = U supp (0x, * ¢ * O, ),

kl,kQGK

where t * s = supp(d; = d;) for all ;s € G.
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Let £ be a function in the space C(G). We can express f(¢ = s) as
(0,%04)(f) or as the integral of £(¢) with respect to the measure d(d,*6,)(t)
over the space G. The operation = is defined for g and v in M(G) as
follows:

pv(f) = £(t = s)du(t)du(s), £ € C(G).
Il

If the equation f(ky=t=ky) = £(¢) holds for every t € G and ky, k2 € K, then
the function £ € C'(G) is K-bi-invariant. Let C.(G) denote the collection
of all continuous functions on G that have compact support. On the other
hand, C%(G) refers to the subset of C.(G) that consists of K-bi-invariant
functions.

Let us assume that the hypergroup G possesses a left Haar measure,
whereas K possesses a normalized Haar measure. Let £ € G. We may
define £%(¢) as the integral of f(kj =t = k) over K x K, where k; and k
are integration variables, i.e.,

fh(t) = Jff(kl * 1% k’Q)dk’ldk’g
KK

A measure u € MM(G) is called K-bi-invariant if p* = p, where
pi(£) = u(£%), £ € C.(G). Let us define

M(G) = {pe M(G) : p is K-bi-invariant and suppy is compact} .

Consider the hypergroup G and the compact subhypergroup K. A hy-
pergroup Gelfand pair is defined as the pair (G, K) for which the space

(MM(G), ) exhibits commutativity. Let G¥ denote the collection of all
bounded continuous functions ¥ : G — C that satisfies following condi-
tions:
(i) ¥ is K-bi-invariant;
(ii) ¥(e) = 1 and 9(t~) = U(t), where the later states that the complex
conjugate of ¥(t) is equal to ¥(t7);
(iii) fﬁ(t # kxs)dk = 9(t)J(s) holds for all ¢ and s in G.

K

The set G¥ is defined as the dual of the hypergroup G [9]. The space
G is a locally compact Hausdorfl space equipped with the topology of
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uniform convergence on compact sets. If the topological space G satisfies

the second axiom of countability, then the dual space G is likewise second
countable (see [7]).

Let (G,K) be a hypergroup Gelfand pair. The Fourier transform of
f € C}(G) is defined by

2(9) — f I VE (L)t

The following gives the inverse Fourier transform:

Hh )¢

(1) = £) = [ 20E)dn(0)

where 7 is the Plancherel measure on G (see [11]).

If G is a locally compact group and K is a compact subhypergroup
of G, such that (G, K) is a Gelfand pair, the double coset space G//K
is an example of a commutative hypergroup. Every double coset forms a
partition of G. The double coset space G//K is equipped with a local
topology via the quotient topology with respect to the associated equiv-
alence relation (see [6]). Defined by pi(t) = KxK, t € G, the natural
mapping px : G — G//K is an open surjective continuous mapping. FO/I\'
f € C*(G), one can define £ on G//K by f(KtK) = £f(t) forall t e G. f
and f are in Cb(CT/—/T{) and T = £, as the authors of [9] have demonstrated.
Additionally, T = £4 for £ e L*(G).

Recall that a family F of complex-valued functions on a set S is con-
sidered uniformly bounded if, for every t € S and every f € F, there exists
a real number M, such that |£(¢)| < M. Further, a collection F of contin-
uous functions from a topological space X to a metric space (Y, d) is said

to be equicontinuous at ty in X, if for every positive number €, there is a
neighborhood 4 of ¢y, such that

d(9(t),V(ty)) < €

for all t € 4 and for all ¥ € F.

3. KSP space over hypergroup. It is known that the space of
Henstock-Kurzweil integrable functions, HK ([a,b]), is a barreled space
(see [36, Chapter 7]). The major drawback of the set of Henstock-Kurzweil
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integrable functions is that it is not a Banach space by nature. Gill and
Zachary [13] introduced a Henstock-Kurzweil integrable function space
of Banach space-type called Kuelbs-Steadman space. We denote Kuelbs-
Steadman space as K SP. Importantly, K.SP contains LP space as a contin-
uously dense subset, also contains Henstock-Kurzweil integrable functions.
One can see Banach algebra on HK integrable function spaces H K (|a, b])
is not possible. To see this, let M ([a,b]) denote the corresponding mea-
sure algebra of all complex Borel measures on [a, b]. Convolution of two
measures 4 and v on [a,b] < R is given by:

(o) = | wlde) | wldg)ate + o)
[a,b] [a,b]
where A is a subset of [a,b] and 14 is the indicator function of A. The
involution ¢ — ¢~ on [a,b] is defined by f~(t) = f(b—t), such that

(f7)~(t) = f(¢t) for all t € [a,b].
Let P; be the unit point mass at ¢. If £ is a Borel function on [a, b]
and t, s € [a, b], then the translation of f is defined as:

b
£(t+ ) = £,(s) = £ dept*

where Py, Py denotes the unit point mass at t,s. We denote BV ([a,b])
to be the set of all functions of bounded variation on [a,b], with con-
volution operators and bounded variation norm. It is well known that
BV ([a,b]) < L([a,b]) [30]. Moreover, HK ([a,b])nBV ([a,b])< L([a,b])<
< HK([a,b]). The multiplication on H K ([a,b]) can be defined as the fol-
lowing convolution.

For any pair of Borel functions £, g € H K([a,b]), the convolution f =g
defined as

b
(f=g)(t th*s dm(s), (1)

for which the function s — £(s)g(s~'t) is Haar integrable. Here m is the
Haar measure on H K ([a,b]).

Theorem 1. (37, Prop 11.(a)| If f € HK([a,b]) and g € BV ([a,b]), then
f « g exists on R and

m(f «g(t)) < [[£][[inf[g] + Vg],
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t
where || - || is Alexiewicz norm defined by | f| = sup {‘ ff‘ ra<t< b}.

a

sin(t) (sin(t) + cos(t))
If =1 = T
1) = 0 gl = O

f € HK([a,b]) and g € HK([a,b]) but f g ¢ HK([a,b]). From this

example we conclude the following remark:

are two functions in R, then

Remark 1. Iff,ge HK([a,b]), then it is possible that f«g ¢ HK ([a,b]).

Proposition. [37, Prop. 13| Let £ € HK([a,b]) and g € BV ([a,b]).

Then fxg exists on |a, b] and |fxg| <||f||g| L, where |- | and |- |, represent

Alexiewicz norm and Lebesgue norm, respectively. The equation (1) can
b

be written as st(t)g(s)dm(s), so that f+g may be regarded as a limit of

linear combinations of translates of £, but |[fxg| < ||£]-|gl| V £,g5 € HK(R).
So, HK([a,b]) is not a normed algebra with respect to convolution =
defined by (1).

Remark 2. Banach algebra for Henstock-Kurzweil integrable function
space is not possible.

The completeness properties of K SP motivated us to extent K.SP on
a hypergroup. Let G be a hypergroup, which is second countable, and p
be the unique Haar measure on G. Since G is second countable, it has
a countable basis, say B = {B;}. Assume that y; is the characteristic
function on B;. Note that y; € LP(G) n L*(G) for 1 < p < o0. Let F;()

on L'(G) be defined by F;(f) = fxi(t)f(t)du(t). It is easy to see that

F;() is bounded on LP(G), |F;|| < 1, and if Fi(f) = 0, then £ = 0. So,
{F;} is fundamental on LP(G) Whenever k=1,2,... and 1 < p < oo. Let
0

{t;} be a non negative real sequence, such that Z t; = 1. Define a Haar
i=1

measure du = [thXz Yxi(s )]du(t)d,u(s) on G x G. With the help of

this, we can construet a Hilbert-type space of Kuelbs-Steadman spaces as
follows.
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Let us define an inner product (-) on L'(G) by

(t,g) = f £(t)g(s) dp

GxG

DY U ano)]| [ Oatelants)|

This completion of L'(G) with the inner product above is called K S*(G).
A relationship of K5?(G) and L?(G) can be seen in the following theorem,
whose proof is analogous to [13, Theorem 3.25]:

Theorem 2. The space L*(G), 1 < p < 0, is dense in the space KS*(G).

We will construct the norm of KSP(G) with the help of LP(G) as
follows. Let £ € LP(G) and define

: (Zt

) du(t)

P\ »
), when 1 < p < o0,

[£] 50
sup [ § xi(0)£(t) du(t)], when p = o0.
izl |G
It is easy to check that | - |xsr(@) is a norm in LP(G). Kuelbs-Steadman

space on G, represented by KS?(G), is the completion of LP(G) with
respect to the aforementioned norm. One can see [13], [25], [27] and ref-
erences therein for details of Kuelbs-Steadman spaces.

Theorem 3. (Holder-type inequality for KSP space).
1 1
Let 1 < p,q < oo, such that —+ — = 1. If f € KS?(G) and g e K5(G),
P g
then £g € KS'(G) and |£g] ks < [£]xsr - |g]wse-
Proof. To prove the inequality, we use the generalized form of arithmetic-
geometric mean inequality: if A, B > 0, and 0 < 6 < 1, then
ABY <A+ (1 —-0)B. (2)

If |[£|ksrq) = 0 or |g|ksua) = 0, then £fg = 0 a.e. and the inequality
is obvious. So, we consider neither |f| gsr(q) = 0 nor ||g| xs«q) = 0. Now,
if we replace f by £/|f|xsr and g by g/|g| ks and assume ||f||xgr(q) = 1
and |g|xsi) = 1, we need to show that ||fg| g < 1.
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Setting A = |£(¢)|?, B = |g(t)|? and 0 = 1/p, so that 1 — 0 = 1/q, we
get

£(t)g(t)] < %f(tnp ¥ $|g<t>|q. (3)

Now, using inequality (3),

0

Ifglxsr = Z

Z fxr + 2 lg(Ol")du(e).

From this conclude that |fg| ks < 1, and this completes the proof. []

Theorem 4. If u(G) < o0 and 1 < p < q, then KS%(G) — KS?(G),
where — represents continuous embeddmg.

Proof. Since 2+ 4L — = 1, using Theorem 3 for |£|P and identity function

q q
sz(t
q p 0
fu 5
=1

0

£l xsr(@) < Z

xr(t)f(t)g(t)du(t)‘ <

1, we have

oe]

”f”Ksp Z ti

i=1

(3

i=1

Q0
2 f £ dp

fle dp

a—-p

oy

This implies

Q=

Wl ) en

a—=p

= HfHKSq(G) ((G)) ra.

4a—p

Thus, ||f|xsrc) < C|f]|ksea), where C = (u(G)) @ is constant. This
completes the proof. []

Next, to prove that K S? is a Banach algebra, we define the convolution
of two function f,g e KS?(G) as

oe]

£eg(t) = Dt it (s)gls 1) duco) (1

i=1 el
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where y; denotes the characteristic function on the countable basis B; of
0

G and t; is sequence of real numbers, such that Z t; = 1.

i=1
Theorem 5. KSP(G) is a Banach algebra with respect to the convolu-
tion (4).

Proof. For f,g e KS?(G), using the Fubini theorem [36, p. 87|, we have

0| P
£+ Elfsnic) = 23| | xilE +)(6) dutt)
=1
G
0 0 p
=Xl (Xt [ stelets nut) aute
=1 el =1 G
0 p © 4
<ot [t duts)| Dt [l ducs)
=1 'a i=1 &
0 p 0 p
=Yt J Xi£(s) dp(s)| Yt fxig(z) d(6, # 6,)(2)] .
=1 G =1 G
This implies [£ « gum @ < 5o 191 ony i-en £ * glxsia) <

|1l xsr(c) |8] ksr(a)- Hence, KSP( ) is Banach algebra. O

Theorem 6. For a Gelfand pair (G, K) in the context of hypergroups,
there exists a single unique positive measure w on G, such that

ztzfxz ()t :z

=1 =
for any £ € KS'(G) n KS?*(G).
Proof. The proof is analogous to that of [9, Theorem 3.11]. []

2

()

4. HK-Sobolev spaces on Gelfand pair over Hypergroup. In
this Section, we define HK-Sobolev space on Gelfand pair over a Hyper-
group. Let us consider a second countable hypergroup G and Gelfand

pair (G,K). We define a collection KS%%G) with respect to the Haar
measure on G as follows:

KS**(G)={f: G - C: fe KS*(G),f is K-bi-invariant}.
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Now, let us define
KSQ(@) = {f: G:->C:fe KSQ((/}\”)(WI.’C the measure m on (/ﬁ)}

Note that Theorem 6 claims that the Fourier transform can be used to
create an isometric isomorphism from KS%%(G) to KS?*(G¥).

Definition 1. Consider a hypergroup Gelfand pair (G,K) and let ( :

G? — R* be a measurable function, and o« > 0. The HK-Sobolev space
over hypergroup Gelfand pair, denoted by HK?’E(G), is defined as the set
of all functions f € KS%%(G), such that

e 0]
2t
i=1

2

(0)2)" &()E(W0)dn (9)

< O

Y

G

where ; is the characteristic function on the countable basis {Bh} of GE.
We define the norm in H K Y(G) as follows:
2y 3
).

Theorem 7. For a hypergroup Gelfand pair (G,K), the space
(HK?’”(G), | - )) is a complete normed space.

0

i=1

(1+¢(W)*)" &2 (9)dm(v)

Gt

HHK?’ ‘(G

Proof. Let us define the mapping £ — (1+¢(-)2)*£(-) from HK?’h(G) to
K S?(Gf). Then one can easily check that it is an isometric isomorphism.

Since K S?*(G!) is complete, therefore, HK?’h(G) is a Banach space. []

Next, we investigate several embedding results on H K 2‘ ’h(G).

Theorem 8. Assume that (G,K) is a Gelfand pair hypergroup. So,
HK?’h(G) is embedded in KS*%(G) in the continuous sense.

Proof. If f € HK?’”, then using the Theorem 6 we have

[ortme] -2 [soro

oe]

£l 525y = th

i=1
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2

1+C ) &(0)f ( ydm (V)| = HfHHKCO"”(G)'

0¢]

<2t

G
Hence, HK?’“(G) is continuously embedded in KS%%G). [
Theorem 9. For a hyrpergroup Gelfand pair (G, K), HK?’U(G) is con-
tinuously embedded into HK?’“(G) whenever a > 3 > 0.
Proof. Clearly, (1 + ((9)?) > 1, so, if a > 3, then

(1+¢(0)*)* = (1 +¢()*)°

and, consequently, ”f”HKg’“ > HfHHKé?,h. O

1 1
Lemma 1. Let 1 <p<2and-+ - =1; then
b q

(i) Iff € KSP(G), then £ € KSU(G) and |£] 50a) < |£]xsv(a)-

(i) If £ ¢ KSUG), then f € KSP(G), f = £ € KSIG), and
|£llxsae) < If]xse@)-
Proof.

(i) Suppose £ € C.(G). We have, by using the similar approach as
in [11, Proposition 3.3, this:
q) o

(5 uoivome)-(5 |

| 5:K<ﬂ>fh<@>dﬁ<é>

G//K

Q)é
p)p
N

) < £l ks,

where i and 51 K represent the characteristic function on the count-
able basis {B //K} and {B;//K} of G//K and G//K, respectively.

Hence, ”f”KSq ”thqu(G) |£]lse(c)-

"h>

f £(9)E(0)du(0) a7 (D)

=<Z@

=1

Jun

J &k (KK)dm(KiK))

(S

i=1

| st
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(ii) 1t £ € C.(G), then £ € C.(@), T € CH(Q) and T € C, (G//K) So,
% and T are in Cy(G//K). It is shown in [11] that it Now, we

have
1
q } q

s = { 2
J & wk (K1K)dm (KK) q) !

fxz (2 (1) du(t)
i

=1

/\/\

k£ (KtK)dm(KtK) q) !

—
f"f
I—h)e<

= [flxsac/m) < Ifllxsn @)

_ (§t i €112 (0) (D) p)’l’

G//K
© P % R
= Zti J) = HfHKSp(é) (see [9]).
i=1

Thus, [£]ks«c) < [£]xsr(@)-

V)dm(

The proof is completed. []

Theorem 10. Consider a hypergroup Gelfand pair (G,K). Let § >
2 1 1
b and let q be such that —+ = = 1. If (14 ¢*)7!
o P q

>a>0andp=

€ KSﬁ(QAu), then HKg’u(G) is continuously embedded in KS%(G).

so it implies that 1 < p < 2 and

2
Proof. Since f > a >0 and p = 8 ,
g+«

ap
8= Let £fe HK*. Then

2—p
ng 9)dm ()

00]

th &IEW) P dr (V)
=1 Gh

£1

o]
fesnny = 241
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= f DP(L+ COPR)P(L + C(9))° dn(9)

(el

{@t SEPQ+ @) dn (o))
S s} )

SIS

9 _
As g + Tp = 1, we use Theorem 3 and we get

ya
2

”fHKSp Gh) {(Zt |§z 1 +< ) )adﬁ(ﬁ)f)
< (Sule+ e a5 ) 7 L

That implies

a ap
2] 450Gy < €0 rgeene - 11+ ) Egs where § = T

Now, by Lemma 1 we have ||f||xss < |£]xs». Therefore, we get
[£licse < [Elksr < Il gpees - 11+ )l

This implies that H K "(G) is continuously embedded in K.S*%(G). ]

Theorem 11. Consider a hypergroup Gelfand pair (G, K). If G¥ is uni-
formly bounded, (1 + ((-)?)™® e KS?*(G%) for some a > 0, and

fe HK?’U(G), then f is bounded and there exists a constant C' > 0
that depends on « and (, such that

[l xse@) < Cltl presa):

Proof. Using the definition of inverse Fourier transformation, we have

t)athﬁ‘(t)f(ﬁ)dw(ﬁ :;161;]19 U ) dr (0 ‘
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This implies that

'inf(t)du(t‘ sup [9(1) {i

DeGH

ng —Z;z;zdw(ﬁ)‘}

1
2)2

1+C )) drm ()

)}
= sup [DO)][£] o1 [ (1 + CO*) " es2ey
JeGh

Gi
L f@- (14 ¢(0)2) ™ dn(v)

due to Hélder-type inequality for KS? space, Theorem 3. As G! is uni-
formly bounded, we get

sup sup |[9(t)| < oo.
t€G yeGh

Hence,

sup
i>1

J £(t) du(t )'<sup sup [9(1)| (1 + ¢(9)*) " goz@ | El ot (qy < -
teG ﬂGGu ¢

Taking C' = supyeg supy.g [V(O[(1 + ((9)*) 7| g2(@), We obtain the re-
quired result. []

Theorem 12. Assume that (G,K) is a hypergroup Gelfand pair and G!

is equicontinuous. Let (1 + ((-)?)™% € KSZ(GH) then £ € HK G) =t
is continuous.

Proof. Let us consider an arbitrary element ¢, € G. Since G is equicon-
tinuous, so for any € > 0 there exist a neighbourhood U of ¢4, such that

|9(t) — V¥(to)| < € for all ¥ € Giandallte G. Let f e HK® i then, using
Theorem 3,

£ —fto|—H (020 dn(0) — [ 0t >f<ﬁ>dw<z9>]

(el
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J £3() dw(ﬁ)‘

[+ coprawima + o inw)

Eitz
9)(1 +C(9)*) " dm ()

< [ 10) = dGa0) - B0)] dn(w) < € Y

(L+¢(0)°)G()E(0) dr ()

5] )

So, |£(t) — £(to)| < e HfHHK?,n(G)H(l +C(0)*) 7 Ks2(@n- Lhis implies that
f is continuous. []

(S

i=1

Gt

5. Rellich-Kondrashov-type theorem on HK/ "*(G). In the con-
text of Sobolev spaces, the Rellich-Kondrashov theorem is a compact
embedding theorem. It is named after two mathematicians: Vladimir
losifovich Kondrashov, a Russian mathematician, and Franz Rellich, an
Austrian-German mathematician. Kondrashov expanded the theorem to
include LP spaces, whereas Rellich was the first to establish the theorem
for L? (see 28], [32]). In this section, we establish Rellich-Kondrashov-
type theorem on the HK-Sobolev space over hypergroup H K, ? ’U(G). To
prove the main theorem (Theorem 18) of this section, we begin the section
with the following theorem.

Theorem 13. For a Hypergroup Gelfand pair (G, K), if f € HKg’h(G)
and s € G, then

2

Xi(t) (£(t=s) —£(t)) dz| <

9eGE

) ’ HfHHK?’”(Gy

where y; denotes the characteristic function on the countable basis { B;}

of G.
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Proof. Let us define f,(t) = £(t = s7) for a fixed s € G. Then

£.(9) = (z?(t‘)f(t x57)dt =

Y(s™ =t7)f(t)dt = (changing variable from t — t x s7)

Y(s™ =t)f(t7)dt = (changing variable from ¢t — ¢7)

A, Q— ¢

= (0= f)(s7) = (f*9)(s7) =E(W)I(s).

Next, using Theorem 6, we have

H(s™)—1) 2
<z oy

eGH

> ’ HfHHKg’”(G)'

The proof is completed. []

Theorem 14. Consider a hypergroup Gelfand pair (G,K). If £ €
HK?’”(G), then there exists § € C%(G), such that

(W(s7) - 1)

I£f+60—f|xszq) < sup | sup —————= | - ||f]l,; et
@ sesupp(6) 196(?” (1 + C(ﬁ)2)a HKC (&)
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Proof. Since G is a locally compact Hausdorff space, it is also a Tychonoff
space. This means that there exists a function § in C%(G), such that

6(e) # 0,0 >0, and f@(t)d,ut = 1. We have

[\
N——
NI

(W(s7) = 1) > :
< sup ( sup ———— | - | €|, et (using Theorem 13).
sesupp(8) \ yeGh (]- + C(ﬁ)?)a HE(G)

The proof is completed. []

Theorem 15. (Reverse Fatou’s lemma for HK integrable func-
tion).Let G be a hypergroup with a Haar measure pu and (f,,) be a se-
quence of p—measurable complex-valued functions on G. If there exists
g € KSP(G), such that |f,| < |g| p—almost everywhere for all n € N, then

lim supan dp < Jlim sup fp, dpu.
G G

n—0o0 n—0o0

Proof. To prove the theorem, apply the linearity of HK-integral and Fa-
tou’s lemma (see [13, Therorem 3.13]) to the sequence g — f,, of HK inte-
grable functions. []

Now, to prove the Theorem 17, we need Dominated Convergence Theo-
rem for Kuelbs-Steadman spaces. Next theorem is about DCT on KS?(G).



138 P. Saha, H. Kalita, B. Hazarika

Theorem 16. Let G be a hypergroup with a Haar measure pu,
1 < p < w0 be a real number, and (f,) be a sequence of y—measurable
complex-valued functions that converges to a u—measurable function f.
Suppose that there exist a function g € KSP(G), such that |f,| < |g]
p—almost everywhere for all n € N. Then all f, as well as £ are in

K SP(G) and the sequence (f,) converges to f and lim | f,du = Jf dp.
n—o0

G G
Also,

lim an — fHKSp(G) = 0.
n—aoo

Proof. Since |f,| < |g|, £ is the pointwise limit of the sequence (£,,),
by linearity and monotonicity of HK integral, f is also dominated by g.
Therefore, f, as well as £ are in KS?(G).
Now, | —£,| < |f]| + |£,] < 2|g| for all n, and since f,, converges to £,
we have
limsup | — £,| = 0.

n—0o0

By the linearity and monotonicity of HK integral, we have

deu—ffndu‘ = J(f—fn)du < flf—fnl dp.
G G G G

By reverse Fatou’s lemma for HK integrable function, we have

limsupff—fn]d,u<Jlimsup|f—fn\du=0. (6)
G G

n—o0 n—o0

This it implies that
lim J|f —f,| du=0. (7)
n—0o0
G

Therefore,

G
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Moreover,

p

J Xz f _f>d:u

lim (£, — £[fgnq) = hmZt
0
Z fx, hm f,—f|dp=0 [|by (7).

SO, 7}1_I)IOIO an — f”KSP(G) = 0. O]

Theorem 17. Assume that G is a compact hypergroup and (G, K) is a
1 1

Gelfand pair. Let 1 < p, p’ < o0, such that —+— = 1, if (f,,) is a sequence
p D

in KSP%G) that converges weakly to a function £. Then the sequence
(f, * 0) converges strongly to f + 0 € KSP"%(G) for every 0 € C%(G).

Proof. Since (f,) converges weakly to £, by [8, Proposition 3.5], 3 a
positive M € R, so that |f|xsr(q) < M, Hf||KSp y < M. Now

thJXzfn 5 *t S| 2
=1 =1 G
infn(S) ds )p . (Zt, |X,~9(s ds\p )

G
= anHKSP(G) ‘HQHKSP'(G) < MHQHKSP'(G)

As G is compact, the constant function t — M| 0] x5y ) is HK-integrable
and then from Theorem 16 we have

fn*0(t) = an(s)e(s_ #t)ds =5 Jf(s)@(s‘ wt)ds = £ 0(t).

G G

| frx 0(2) Xi(8) fu(8)0(s™ xt) ds| <

1
7/

2 t; infn(s)ﬁ(s «t)ds — Z t; fx,;f(s)@(s «1)ds
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o)
=1

in(fn C£)(s)0(s + £) ds

sZti
< (f}t [t )as ) ~ (it [RGR

(Using Holder inequality, Theorem 3))

~

/

p)pll

0 p
< 18,2l Bt [ @ 532 ) < 23101

i=1

e

Again, by Theorem 16, we have
Tim ([ fo %6 = £ %0 g0 () = 0.

Thus, the proof is concluded. []

The following is the Rellich-Kondrashov-type theorem associated with
the function space HK?’E(G).

Theorem 18. Let G be a compact hypergroup and (G, K) be a hyper-
group Gelfand pair. Assume that § > a >0, p =

2
o 5 fa’ and p' be such
that — + — = 1. If (1 + (2)~' € KS%(G¥) and

p p

) [¥(s) — 1 B
& (ZL;% L+ <<19>2>%‘) 0

then, for every 1 < ¢ < p/,
HEZHG) © KS™4(G),

where % represents compact embedding.

Proof. We have already proved above in the Theorem 10 that H K?’h(G)
is continuously embedded in KS?"%(G). Since G is compact and ¢ < p/,
by Theorem 4 we have K.S”-%G) is continuously embedded in K S%%(G).
All this indicates that H K ¥ is continuously embedded in KS? %(G).

Now, suppose that {f,} is a bounded sequence in HK*%(G); then
{f,} is a bounded sequence in K SP"#(G). So, 3 a positive real number £,
such that £, gr (@) < k-
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Since for all h e KSP%(G), we have

[Ens W< Enlggr [Plese < KA ksr-

Thus, {f,} is weakly bounded and this implies that there exist a subse-
quence {a,} that converges weakly to a € KS? (G). Let € > 0 be arbitrary
and 7 € C}(G) be such that |a *n — algs> < €.

Now, using Theorem 14 and Theorem 17, we get

lan — a|ks> < [an — an *n|xs2 + |an *n —a*n|xs + |a*n —al|gs

< sup [sup =L ) e s +
NS up up—g © Ay, o, b an*n—a*r] KS2 €
o B 15 ¢ (0)2) i

<2+ |la, *n—a*n|kse-
Since € is arbitrary, |a, — a|xs2 < ||an *n — a * n||gs2. Thus,

lim |a, — al|gsz = lim ||a, *n — a * n||gs2 = 0.
n—oo n—a0

Therefore, {a,} converges to a in KS%**(G). Since ¢ > 2 KS%%G) em-
bedded in K.S*% G); hence {a,} converges to a in KS%%G). This leads
to the conclusion. []
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