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ON FUNCTIONAL INEQUALITIES FOR
THE PSI FUNCTION

Abstract. Motivated by the works of Bougotta and Mercer, the
authors in this paper study the monotonicity of the function
z — P(1 + bx)* /(1 4 ax)®, and establish several inequalities in-
volving the psi function.
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1. Introduction. For Re, x > 0, we define the classical gamma
function T'(x) and the psi function ¥(x) by

o0

['(z) = Je‘ttx_l dt, ¥(z) =

0

respectively. The psi function plays a significant role in various areas of
mathematics, including number theory, special functions, and mathemat-
ical physics. It satisfies recurrence and reflection formulas, and it is used
in the study of harmonic numbers and asymptotic expansions.

The recurrence relations of I' and ¢ are

D(1+0) = oD(@), bz +1) =+ ()

Note that
(1) = -y and (1/2) = —2log2 — 7,

where v is the Fuler-Mascheroni constant. Throughout this paper, we
denote by ¢ = 1.461632144968362 . . . the only positive root of the equation
¥(z) =0 (see Eq. 6.3.19, [1]).

Due to the significance of the gamma function I'; the psi function or
digamma v and polygamma functions /™, n € N and their wide range of
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applications, numerous researchers have explored these functions exten-
sively, deriving various two-sided inequalities and precise estimations. For
example, the following remarkable inequalities involving these functions:

<x+§)1S<%<exp[(l—s)¢<x+sgl>], 0<s<l1l,2>0,

Ty _ In(r +y) —(r+y)
r+y  (Inz+@)(ny +Y(y))’

1 1 1
ln<x+§>—E<w(:v)<ln(:v+67)—5, x>0,

x,y =0,

L+ 22 (2) <2 (2) + ™' (y), 22 =2+,
appeared in [17], [4], [16], [3], respectively.
For further details, including inequalities, estimations, and applica-
tions of the gamma, psi, and polygamma functions, readers are referred
to [4] — [8], [10] — [14], [20], [23] — [25] and the references therein.

In 2006, Alsina and Tomas [2] proved the following interesting inequal-
ity involving the gamma function:
1 T(1+a)"
Y 01, n=12,..., 1
n! = T'(1+ nx) e [0.1] (1)
by using a geometrical method. Motivated by their result, J. Séndor [26]
extended the inequality (1) as follows:

1 _ T+

< ; 0,1}, a = 1.
Fl+a) " T'(1+ax) vel0.1] a

In [19], Mercer obtained the following inequalities:

I'(1+z)* T(1+y)"

1
I'(1 + ax) = I'(1+ ay)’ ae(0,1),

(1 + z)® - (1 +y)*
F'l+az)  T(1+ay)
with 0 <z <y,1+ax >0, and 1 +ay > 0. In 2006, Bougotta [13| proved

the monotonicity property of z — I'(1 + bx)*/T'(1 + ax)®, by using the
same method Séndor [26]. The inequalities of Sandor [26] and Mercer [19]

a € R\(0,1),
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follow from the inequality (2.4) of [21]|. For the related inequalities of the
gamma function, we refer the reader to [22].

Our first result is the counterpart of the above results and reads as
follows.

Theorem 1. For a,b > 1, the function

(1 + bx)*

f(x)zm

is increasing for a > b and decreasing for a < b in (¢ — 1, 00), respectively.
In particular, for 1 < b < a

»(1 + bx) a (1 + ax) b
(¢(1 +h(e— 1))) > (¢(1 +ale— 1))) !
and the reverse inequality holds for 1 < a < b.

Theorem 2. The function g(x)=1/1(cosh(x)) is decreasing and convex
from (¢y,00) onto (1/1(cosh(cy)),0), where ¢; = arccosh(c) =0.92728.. ..
In particular,

2¢p(r)y(s)
(VL) +5) +4/(r = 1)(s —1))/2)

for all r, s € (¢, 0); equality holds for r = s.

<Y(r) + Y(s),

2. Preliminaries and proofs. The items of the following lemma
will be used in our proofs; they can be found in [4], [14], [6], [15], [28],
respectively.

Lemma 1. For x > 0 we have

1 1
1) logz — - logz — —
) logz - <(x) <logx 5o

, 11
<w<1’)<5+—

1
9) =
)m x?’

T o2
3) @'(x) < — 20/ (x),

X

4) ('(x))* +¥"(x) > 0,

5) 2¢'(z) + x¢"(z) < é
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Lemma 2. The function

o) = Y’ (cosh(z)) sinh(z)
T = co(@p
is decreasing in x € (¢q,00).
Proof. Letting r = cosh(z),
VP TY0)
= "5mp

get

f'x) =

(r)
_ 207 = DY) + () (rg'(r) + (2 = 1) 9"(r))
3(r)
_ (=D ()2 + o) + () ()
¥3(r)
_ =Y = 297(r))(2 + () + 1y (r)'(r) _ i)
3 (r) WA(r)

Clearly 13(r) is positive because r > c. In order to show that f; is negative
or, equivalently,

(r = 1/r)(1/r =2¢"(r)) (2 + (7)) < =ro(r)¢/(r),

it is enough to prove that

S 20 < '), ®)

and

(r=1/r)(2 +9(r)) > ri(r). (3)
The inequality (2) is valid and follows from Lemma 1 2). Also, the in-
equality (3) is equivalent to

filr) =2(r* = 1) = (1) > 0. (4)
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The function f; is convex on (0, 00), because

fr) = 4= 00) = 4 (5 - 200)
12 1

> 4d——4+-+5>0
ror o

by Lemma 1 3) & 2), and f; attains its minimum value 0.19997 at
r ~ 0.70407. Hence the validity of inequality (4) follows immediately.
This completes the proof of Lemma 2. []

Proof of Theorem 1. Let

g(x) =log f(x) = alog(v(1 + bx)) — blog(¥ (1 + ax)).

Differentiating g with respect to x, we get

"M+ (1
o) - (0D PO an))
(1 +bx)  Y(1+ ax)
It is easy to see that the function v'(z)/1(z) is positive and decreasing
for z € (¢,00). This implies that ¢'(z) for x > ¢ — 1 is positive (negative)
when 1 < b < a(1 <a <b). The proof follows from this observation. []

Proof of Theorem 2. Differentiating g with respect to x, we get
Y’ (cosh(x)) sinh(z)
U(cosh(z))®
which is negative and increasing, hence ¢ is convex. This implies that
1 1 1 1
5 * )>
2\tp(cosh(z)) ~ (cosh(y))/ ~ (cosh(z +y)/2)
+/(cosh(z) + 1)(cosh(y) + 1) 4/(cosh(x) — 1)(cosh(y) — 1)
=1/ + :
2 2
Setting r = cosh(z) and s = cosh(y), we complete the proof. []

For the formulation of the following result, we denote z/ = /1 — 22,
z € (0,1). The functional inequality of the following corollary is reminis-
cent of Theorem 5.12 of [9].

g(zx) =~

Corollary. The following inequality:

B(r) +%(s) <2¢( 2—)

1+rs+r's
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holds for r,s € (0,1), with equality for r = s.
Proof. Let h = ¢(1/cosh(z)) for z > 0. We get

tanh(x)
cosh(z)

h'(x) = —¢'(1/ cosh(x)) = —tanh(z)h ().

Letting u = 1/ cosh(z), one has
hi(x) = o' (' (u) + uy’(u)),

which is positive, because v’ < 0. By Lemma 1 2) & 3),

1 1 1
/ " /
P(u) +u’(u) < a—i—@—F’u(a—Qw(u))

< 1+ L +1-2 (1+ 1)
— JE— — u_ R
u o u? u 2u?
1 1

= +—2+1—2——
U U U
1

Thus, h; is increasing, and also tanh(x) is increasing. Clearly, b’ is de-
creasing and negative, hence h is concave in x > 0. This implies
¥(1/ cosh(x)) + ¢ (1/ cosh(y))

¥(1/cosh((x + y)/2)) > 5 )

The desired inequality follows if we let = 1/ cosh(z), s = 1/ cosh(y) and
use the identity cosh®((z +y)/2) = (1 + zy + 2'y/)/(2zy). O

For convenience, we use the notation R; = (0, c0).

Lemma 3. [21, Thm 2.1] Let f: R, — R, be a differentiable, log-
convex function, and let a > 1. Then g(x) = (f(x))*/f(ax) decreases in
its domain. In particular, if 0 < x <y, then the following inequalities

(Fw) _ ()

flay) — flaz)
hold. If 0 < a < 1, then the function g is an increasing function on R,
and inequalities are reversed.

< (f(0))+

Corollary. For k > 1 and ¢ < x < y, the following inequality holds:

U(@)\* _ v(ka)
(w@)) S Oy
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Proof. Let ¢g;(z) = log(1/¢(z)). Differentiating ¢g; twice with respect to
x, we get, by Lemma 1:

V(@) = ¢"(@)i(z) (@) + ¢(x)
(x)? (x)?

which implies that g; is convex. Now the rest of proof follows easily from
Lemma 3. []

Theorem 3. The function f(r) = artanh(¢)(tanh(x))) is strictly in-
creasing and concave from (c, ) onto (I, m), where

g9/ (x) = > 0,

f(c) = artanh(¢(tanh(c))) = —0.9934... =]

and
f(0) = —artanh(y) = —0.6582... =

In particular,
r+s U(r) + ¥(s)

1) w(1+rs+r’s’>>1+¢ +\/1_ )2\/1_¢(5)2
for all ;s € (0,1), where ' = \/1 —7r2and s’ =+/1 — s2,
1+ ¢ (tanh(r)) 1 — (tanh(s))
I~ ¢(tanh(r)) T + d(tanh(s))

.+ /(tanh(c))sech?(c)
7O = T Wt (@)
Proof. Differentiating f with respect to x, we get

2) (r=9) r, s € (¢, ), where

= 0.8807... =

) = /' (tanh(z))sech? (z) _ F(z)
1 — (¢(tanh(2)))*  G(x)

We see that f’ is positive and decreasing, because

, Y (tanh(x)) Y’ (tanh(x)) tanh(z)
F) = cosh(z)! 2 cosh(x)?

1 L anh(z)) ) — Y’ (x) tanh(z)
<cosh(a:)4 (tanh(x) 24/ (tanh( >)> 2 cosh(x)?

) COSth (tani<w> - <tan;<:r> ' ztaniu)?)) ) 2%55@
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B 1 ( 1 1 >_2w@nmm@)<a

~ cosh(z)* \ tanh(z) - tanh(x)? cosh(x)?

by Lemma 1 2) & 3). Clearly, G(x) is increasing, hence f is concave. The
concavity of the function implies

f<x;y>>f@ﬂ;fwx

which gives

" (tanh (%M)) - tanh (artanh(¢(tanh(m))) —2F artanh(i/}(tanh(y)))> .

Write r = tanh(z), s = tanh(y), R = ¢(r), S = 9¥(s), and

u = artanh(¢(tanh(z))), v = artanh(¢(tanh(y))).

We get 1) by using

T+y tanh(x + y) r+s
1+\/1—tanh2(x+y) trsaTs
u+v R+ S
h = .
tanh (“3) = 1 7o+ g

The derivative f’(z) tends to a when x tends to ¢. By the Mean Value
Theorem, we get f(r) — f(s) < a(r — s). This is equivalent to

1 1 + ¢(tanh(r)) 1 1 + ¢ (tanh(s))
Ek%(1_¢@mmu»>_Ek%(1_¢@mm@»)<a“_3%
hence 2) follows, and this completes the proof. []

Lemma 4. [18, Thm 1.7] Let f: Ry — R, be a differentiable function,
and for ¢y # 0 define

We have the following:

1) if h(z) = log(f(e*)) is a convex function, then g(x) is monotone
increasing for co,x € (0,1) or ¢,z € (1,0) or ¢ < 0,z > 1, and
monotone decreasing for ¢y € (0,1),z > 1 or co > 1, x € (0,1) or
o <0, 2€(0,1),
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2) if h(x) is a concave function, then g(x) is monotone increasing for

€ (0,1),z >1orca>1,z€ (0,1) orcg <0, x € (0,1) and

monotone decreasing for ¢, x € (0,1) or cg > 1, x > 1 or c3 < 0,
x> 1.

Lemma 5. [11, Lemma 2.1] Let us consider the function f: (a,0) — R,
where a > 0. If the function g, defined by

o) = 1D

T

is increasing on (a,0), then for the function h, defined by h(z) = f(z?),
we have the following Griinbaum-type inequality:

L+ h(z) = h(z) + h(y), ()

where z,y > a and 2?2 = 2% + y%. If the function ¢ is decreasing, then
inequality (5) is reversed.

Theorem 4. The following inequalities hold for r, s € (¢, 0):
1) ¥(\/rs) = A/0(r)Y(s), equality holds with r = s,

2) () <(r), ke (0,1),

3) ()t < ("), k>1,

)r+3+¢U+s)>r+s
U(s)+sy(r) — rs

Proof. Let f(z) = log(v(e*)), x > t = 0.379554, where ¢ is the solution

of the equation €' = c. Differentiating f with respect to x, we get, by
Lemma 1 5) & 2),

e (1 (") (W' () + ey (¢7)) — e (7))

4

r, s>

f'(x) =

R
_ () (W () + /e = 207(e7)) — e (e7))
W (ev)?

gl (v ) o (3 5))

e (1,1 2 e L, "0
Y (er)? \er 22 B Y (er)? \er 22 '
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Hence, f is concave; this implies

log((e)) + log(¢(e))
2

< log(1(e")/2)).

If we let 7 = e” and s = €Y, we get (1).
For 2), since log(1(e”)) is concave by part 1), then, by Lemma 4 2), the
function (z*) /1 (x)* is monotone increasing for k € (0,1). This implies

Y(@®) vt Yl
b(x)? ()t ()t

and part (2) follows. The proof of part 3) is similar.
For the proof of part 4), let

fo(z) = %, T >c.

>< ><

Differentiating f; with respect x and using Lemma 1 1) & 2) and the
inequality log(1 + ) < z(2+ 2)/(2(1 + x)),x > 0, [27], we get

Y(x)r +x — 2 () - 2% + 2z — 4xlog(z) + 3

/ —
> 202 +2r —2(2> — 1) + 3 _ 2z 45 0.
2 2t

Now the proof of part 4) follows from Lemma 5. []
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