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EXPANSIVE MAPPINGS ENDOWED WITH A DIRECTED
GRAPH IN DISLOCATED METRIC SPACE AND SOME

NEW FIXED-POINT RESULTS

Abstract. In this paper, we introduce the concept of𝐺𝑟-expansive
and 𝜃-𝐺𝑟-expansive mapping and derive some new fixed-point re-
sults endowed with a directed graph considering such mappings in a
complete dislocated metric space. A coupled fixed-point theorem is
also established by applying 𝐺𝑟-expansive condition. Examples are
provided in support of the derived results. The solution to a Fred-
holm integral equation is also formulated to show the applicability
of the results.
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1. Introduction. In recent years, applications of fixed-point theory
has gained importance in the study of nonlinear analysis with different
remarkable outcomes. After the foundation of the metric fixed-point the-
ory by Banach [1] in 1922, researchers have developed and generalized
several fixed-point theorems leading to notable advancements and diverse
practical applications in various fields. An interesting extension of Banach
contraction principle was given by Edelstein in [5]. In [2], Bhaskar et. al.
derived a fixed-point theorem for mixed monotone mapping in a metric
space with partial order with an application to periodic boundary-value
problem. In 2024, Puvar et. al. [17] used generalized Γ-𝐶𝐹 simulation
function to obtain a common fixed-point theorem in 𝐺-metric space.

In 1984, Wang et al. [20] studied expansive mappings and presented
fixed-point results for such mappings within the framework of complete
metric space. After that, many researchers have significantly extended and
improved fixed-point theorems concerning expansive mappings. In 2000,
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Hitzler and Seda [10] introduced the concept of dislocated metric space,
where the self-distance need not be zero. Since then, dislocated metric
spaces have played a vital role in topology, logic programming, electronics
engineering, and different other branches. Considering expansive map-
ping in dislocated metric space, some fixed-point results were discussed
by Rahman et. al. [19]. Fixed-point results for 𝐹 -expanding mappings
in complete 𝐺-metric space was depicted in the work of Górnicki [7]. In
2024, Das et. al. [4] established some new fixed-point results for expan-
sive type mappings in dislocated quasi-metric space with application to
integral equation.

In 2006, Espinola et al. [6] introduced a graph-theoretical framework
for fixed-point theorems in R-trees. In 2007, Jachymski [11] developed
the concept of Banach 𝐺-contraction mappings and proved some fixed-
point results. In [3], Bojor defined the notion of 𝐺-Reich type mappings
with application in fixed-point theory. In [13], Kamran et. al. derived
fixed-point theorems in generalized metric space endowed with graphs.
Onsod et. al. introduced 𝜃-𝐺 contraction mappings in [16] to derive
results in metric space endowed with a graph. In 2022, Mebarki et. al.
[14] applied coupled fixed-point result in 𝑏-metric space endowed with a
directed graph to differential equation with infinite delay. In 2024, Rafique
et. al. [18] discussed fuzzy multi-valued 𝐹 -contractive mappings with a
directed graph in a parametric metric space.

Motivated by these works, in this paper we present the idea of 𝐺𝑟-
expansive mapping and derive some new fixed-point results endowed with
a directed graph in the context of a complete dislocated metric space. A
coupled fixed-point theorem is also established using 𝐺𝑟-expansive map-
ping. We provide suitable examples, along with applications that empha-
size the significance and practical impact of the derived results.

2. Preliminaries. Hitzler et al. [10] introduced the idea of dislocated
metric space in the following way.

Definition 1. [10] Let 𝑋 be a nonempty set and 𝑑 : 𝑋 ˆ𝑋 ÝÑ r0,8q
be a distance function satisfying the following conditions:

p𝑖q 𝑑p𝑥, 𝑦q “ 0 ùñ 𝑥 “ 𝑦 @𝑥, 𝑦 P 𝑋,
p𝑖𝑖q 𝑑p𝑥, 𝑦q “ 𝑑p𝑦, 𝑥q @𝑥, 𝑦 P 𝑋,
p𝑖𝑖𝑖q 𝑑p𝑥, 𝑦q 6 𝑑p𝑥, 𝑧q ` 𝑑p𝑧, 𝑦q @𝑥, 𝑦, 𝑧 P 𝑋.

Then 𝑑 is called a dislocated metric (𝑑-metric) on 𝑋 and p𝑋, 𝑑q is called
a dislocated metric space (𝑑-metric space).
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Example 1. Let 𝑋 “ R and 𝑑 : 𝑋 ˆ𝑋 ÝÑ r0,8q be defined by

𝑑p𝑥, 𝑦q “ max t|𝑥|, |𝑦|u @ 𝑥,𝑦 P 𝑋.

Then p𝑋, 𝑑q is a 𝑑-metric space.

Definition 2. [10] A sequence t𝑥𝑛u in a 𝑑-metric space p𝑋, 𝑑q is called
a Cauchy sequence if for every 𝜖 ą 0, there is 𝑛0 P N, such that

𝑑p𝑥𝑚, 𝑥𝑛q ă 𝜖 @ 𝑚,𝑛 > 𝑛0.

t𝑥𝑛u is said to be convergent to a limit 𝑥 if

lim
𝑛Ñ8

𝑑p𝑥𝑛, 𝑥q “ lim
𝑛Ñ8

𝑑p𝑥, 𝑥𝑛q “ 0.

p𝑋, 𝑑q is called complete if every Cauchy sequence in 𝑋 is convergent with
respect to 𝑑.

Lemma 1. [10] Limits in 𝑑-metric spaces are unique.

Lemma 2. [15] If 𝑥 is a limit of some sequence t𝑥𝑛u in a 𝑑-metric space
p𝑋, q, then 𝑑p𝑥, q “ 0.

Let p𝑋,q be a 𝑑-metric space and let ∆ represent the diagonal of the
cartesian product 𝑋ˆ𝑋. We take the directed graph 𝐺 “ p𝑉 p𝐺q, 𝐸p𝐺qq,
where the vertex set 𝑉 p𝐺q corresponds to 𝑋 and the edge set 𝐸p𝐺q in-
cludes all the loops, i.e., ∆ Ď 𝐸p𝐺q. Furthermore, 𝐺 can be regarded as a
weighted graph by giving each edge a weight corresponding to the distance
between its vertices. We denote Ψ “ t𝐺 : 𝐺 is a directed graph with
𝑉 p𝐺q “ 𝑋 and ∆ Ď 𝐸p𝐺qu.

In 2007, Jachymski [11] generalized the Banach contraction principle
on a complete metric space endowed with a graph. He introduced the
notion of Banach 𝐺-contraction as follows:

Definition 3. [11] Let p𝑋, 𝑑q be a metric space endowed with the di-
rected graph 𝐺 “ p𝑉 p𝐺q, 𝐸p𝐺qq. A mapping 𝑇 : 𝑋 ÝÑ 𝑋 is a Banach
𝐺-contraction (or simply 𝐺-contraction) if it satisfies the following condi-
tions:

a) 𝑇 is edge-preserving, i.e., p𝑥, 𝑦q P 𝐸p𝐺q ùñ p𝑇𝑥, 𝑇𝑦q P 𝐸p𝐺q
@ 𝑥, 𝑦 P 𝑋.

b) 𝑇 decreases weights of edges of 𝐺, i.e., there exists a 𝜆 P p0,1q such
that

𝑑p𝑇𝑥, 𝑇𝑦q 6 𝜆𝑑p𝑥, 𝑦q @ 𝑥, 𝑦 P 𝑋.
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Definition 4. [11] Let p𝑋, 𝑑q be a complete metric space and 𝐺 be a
directed graph. A self-mapping 𝑇 : 𝑋 ÝÑ 𝑋 is said to be 𝐺-continuous
if for each sequence t𝑥𝑛u in 𝑋 with 𝑥𝑛 ÝÑ 𝑥 in 𝑋 and p𝑥𝑛, 𝑥𝑛`1q P 𝐸p𝐺q
for each 𝑛 P N, we have 𝑇𝑥𝑛 ÝÑ 𝑇𝑥.

In 1987, Guo and Lakshmikantham [8] introduced the concept of cou-
pled fixed point in Banach spaces. The same concept holds in case of
𝑑-metric space also.

Definition 5. [8] Let p𝑋, 𝑑q be a 𝑑-metric space. An element p𝑥, 𝑦q P
𝑋ˆ𝑋 is said to be a coupled fixed point of the mapping 𝑇 : 𝑋ˆ𝑋 ÝÑ 𝑋
if 𝑇 p𝑥, 𝑦q “ 𝑥 and 𝑇 p𝑦, 𝑥q “ 𝑦.

Jleli and Samet [12] introduced a new type of contraction mapping
called 𝜃-contraction. They denote by Θ the set of functions 𝜃 : p0,8q ÝÑ
p1,8q satisfying the following conditions:
pΘ1q 𝜃 is non-decreasing;
pΘ2q for each sequence t𝑡𝑛u Ă p0,8q, lim

𝑛Ñ8
𝜃p𝑡𝑛q “ 1 if and only if

lim
𝑛Ñ8

𝑡𝑛 “ 0`.
pΘ3q there exists 𝑟 P p0, 1q and 𝑙 P p0,8s, such that

lim
𝑡Ñ0`

𝜃p𝑡q ´ 1

𝑡𝑟
“ 𝑙.

In 2020, Yesilkaya et al. [21] introduced the concept of 𝜃-expansive
mapping in ordered metric space.

Definition 6. [21] Let p𝑋,6, 𝑑q be an ordered metric space. A mapping
𝑇 : 𝑋 ÝÑ 𝑋 is said to be surjective 𝜃-expansive if there exists 𝜃 P Θ and
𝜂 ą 1, such that

𝜃p𝑑p𝑇𝑥, 𝑇𝑦qq > r𝜃p𝑑p𝑥, 𝑦qqs𝜂

for all p𝑥, 𝑦q P𝑀 , where

𝑀 “ tp𝑥, 𝑦q P 𝑋 ˆ𝑋 : 𝑥 6 𝑦, 𝑑p𝑇𝑥, 𝑇𝑦q ą 0u.

3. Main results. We define the concept of 𝐺𝑟-expansive mapping
and derive some fixed-point results considering such mapping in complete
𝑑-metric space endowed with a directed graph. Next we show an appli-
cation of 𝜃-𝐺𝑟-expansive type mappings to Fredholm integral equation.
Here 𝐹 p𝑇 q denotes the set of fixed point of the mapping 𝑇 .
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Definition 7. Let p𝑋, 𝑑q be a 𝑑-metric space endowed with the di-
rected graph 𝐺 “ p𝑉 p𝐺q, 𝐸p𝐺qq. A mapping 𝑇 : 𝑋 ÝÑ 𝑋 is said to be
𝐺𝑟-expansive mapping if it satisfies the following conditions:

a) p𝑇𝑥, 𝑇𝑦q P 𝐸p𝐺q ùñ p𝑥, 𝑦q P 𝐸p𝐺q @ 𝑥, 𝑦 P 𝑋.
b) 𝑇 increases weights of edges of 𝐺, i.e., there exists some 𝜆 ą 1, such

that
𝑑p𝑇𝑥, 𝑇𝑦q > 𝜆𝑑p𝑥, 𝑦q @ p𝑥, 𝑦q P 𝐸p𝐺q. (1)

Example 2. Let 𝑋 “ NYt0u and define a 𝑑-metric 𝑑 : 𝑋ˆ𝑋 ÝÑ r0,8q
by 𝑑p𝑥, 𝑦q=maxt𝑥, 𝑦u @ 𝑥, 𝑦 P 𝑋.

Define 𝑇 : 𝑋 ÝÑ 𝑋 by 𝑇𝑥 “ 5𝑥 @ 𝑥 P 𝑋.
Consider the graph 𝐺 “ p𝑉 p𝐺q, 𝐸p𝐺qq, where 𝑉 p𝐺q “ 𝑋 and

𝐸p𝐺q “ tp𝑥, 𝑥q : 𝑥 P 𝑋u Y tp0, 1q, p0, 5qu.

Take 𝜆 “
3

2
. Then 𝑇 is a 𝐺𝑟-expansive mapping.

Example 3. Let 𝑋 “ t0, 1, 2u. Define a 𝑑-metric 𝑑 : 𝑋 ˆ 𝑋 ÝÑ r0,8q
as follows:

𝑑p0, 0q “ 𝑑p1, 1q “ 𝑑p2, 2q “ 0, 𝑑p0, 1q “ 𝑑p1, 0q “ 7,

𝑑p0, 2q “ 𝑑p2, 0q “ 3, 𝑑p1, 2q “ 𝑑p2, 1q “ 4.

Define 𝑇 : 𝑋 ÝÑ 𝑋 by

𝑇 p0q “ 0, 𝑇 p1q “ 0, 𝑇 p2q “ 1.

Consider the graph 𝐺 “ p𝑉 p𝐺q, 𝐸p𝐺qq, where 𝑉 p𝐺q “ 𝑋 and 𝐸p𝐺q “
tp0, 0q, p1, 1q, p2, 2q, p2, 1qu.

For 𝜆 “
3

2
, 𝑇 is a 𝐺𝑟-expansive mapping.

Theorem 1. Let p𝑋, 𝑑q be a complete 𝑑-metric space endowed with
the directed graph 𝐺 “ p𝑉 p𝐺q, 𝐸p𝐺qq and 𝑇 be an onto 𝐺𝑟-expansive
self-mapping on 𝑋.

If the following conditions hold:

i) there exists a point 𝑥1 P 𝑋, such that p𝑇𝑥1, 𝑥1q P 𝐸p𝐺q,
ii) 𝑇 is 𝐺-continuous,

then 𝐹 p𝑇 q ‰ 𝜑. Moreover, if for each 𝑥, 𝑦 P 𝐹 p𝑇 q we have p𝑥, 𝑦q P 𝐸p𝐺q,
then 𝑇 has a unique fixed point in 𝑋.
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Proof. By i), there exists a point 𝑥1 P 𝑋 with p𝑇𝑥1, 𝑥1q P 𝐸p𝐺q. Let
𝑇𝑥1 “ 𝑥0. Therefore,

p𝑥0, 𝑥1q P 𝐸p𝐺q. (2)

For 𝑥1 P 𝑋, since 𝑇 is onto, there exists 𝑥2 P 𝑋, such that 𝑥1 “ 𝑇𝑥2.
From (2), we have p𝑇𝑥1, 𝑇𝑥2q P 𝐸p𝐺q. By condition a) of Definition 7,

p𝑥1, 𝑥2q P 𝐸p𝐺q. (3)

Also, there exists 𝜆 ą 1, such that

𝑑p𝑥0, 𝑥1q “ 𝑑p𝑇𝑥1, 𝑇𝑥2q > 𝜆 𝑑p𝑥1, 𝑥2q.

This implies that

𝑑p𝑥1, 𝑥2q 6
1

𝜆
𝑑p𝑥0, 𝑥1q,

i.e., 𝑑p𝑥1, 𝑥2q 6 𝑘 𝑑p𝑥0, 𝑥1q, where 𝑘 “
1

𝜆
.

Again for 𝑥2 P 𝑋, since 𝑇 is onto, there exists 𝑥3 P 𝑋, such that 𝑥2 “ 𝑇𝑥3.
From (3), we have p𝑇𝑥2, 𝑇𝑥3q P 𝐸p𝐺q and so, p𝑥2, 𝑥3q P 𝐸p𝐺q.
Now,

𝑑p𝑥1, 𝑥2q “ 𝑑p𝑇𝑥2, 𝑇𝑥3q > 𝜆 𝑑p𝑥2, 𝑥3q.

This implies that

𝑑p𝑥2, 𝑥3q 6
1

𝜆
𝑑p𝑥1, 𝑥2q,

i.e., 𝑑p𝑥2, 𝑥3q 6 𝑘 𝑑p𝑥1, 𝑥2q.

Continuing in this way, we get a sequence t𝑥𝑛u Ď 𝑋, such that p𝑥𝑛, 𝑥𝑛`1q P
𝐸p𝐺q with 𝑥𝑛 “ 𝑇𝑥𝑛`1 @ 𝑛 P NY t0u and

𝑑p𝑥𝑛, 𝑥𝑛`1q 6 𝑘 𝑑p𝑥𝑛´1, 𝑥𝑛q.

Thus,
𝑑p𝑥𝑛, 𝑥𝑛`1q 6 𝑘𝑛 𝑑p𝑥0, 𝑥1q @ 𝑛 P N.

Now, for each 𝑚 ą 𝑛 P N,

𝑑p𝑥𝑛, 𝑥𝑚q 6 𝑑p𝑥𝑛, 𝑥𝑛`1q ` 𝑑p𝑥𝑛`1, 𝑥𝑛`2q ` . . .` 𝑑p𝑥𝑚´1, 𝑥𝑚q

6 p𝑘𝑛 ` 𝑘𝑛`1 ` . . .` 𝑘𝑚´1q𝑑p𝑥0, 𝑥1q 6
𝑘𝑛

1´ 𝑘
𝑑p𝑥0, 𝑥1q.
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Since 𝑘 P p0, 1q, so t𝑥𝑛u is a Cauchy sequence in 𝑋. By completeness of
𝑋, 𝑥𝑛 ÝÑ 𝑢 in 𝑋.

As 𝑇 is a 𝐺-continuous, so 𝑇𝑥𝑛 ÝÑ 𝑇𝑢, i.e., 𝑥𝑛´1 ÝÑ 𝑇𝑢. Hence,
𝑇𝑢 “ 𝑢, and thus 𝑢 is a fixed point of 𝑇 .

To show the uniqueness, let 𝑢 and 𝑣 be two distinct fixed points of 𝑇 ,
such that p𝑢, 𝑣q P 𝐸p𝐺q. Then

𝑑p𝑢, 𝑣q “ 𝑑p𝑇𝑢, 𝑇𝑣q > 𝜆 𝑑p𝑢, 𝑣q.

Since 𝜆 ą 1, so, 𝑑p𝑢, 𝑣q “ 0, which implies 𝑢 “ 𝑣. l

We illustrate Theorem 1 by the following example.

Example 4. Let 𝑋 “ r0,8q and define a complete 𝑑-metric
𝑑 : 𝑋 ˆ𝑋 ÝÑ r0,8q by 𝑑p𝑥, 𝑦q “ maxt𝑥, 𝑦u @ 𝑥, 𝑦 P 𝑋.
Let 𝑇 : 𝑋 ÝÑ 𝑋 be such that

𝑇𝑥 “

$

’

&

’

%

5𝑥, 0 6 𝑥 ă 1,

6´ 𝑥, 1 6 𝑥 ă 2,

2𝑥, 𝑥 > 2.

Consider the graph 𝐺 “ p𝑉 p𝐺q, 𝐸p𝐺qq,
where 𝑉 p𝐺q “ 𝑋 and 𝐸p𝐺q “

tp𝑥, 𝑥q : 𝑥 P 𝑋uYtp0,
1

5𝑘
q : 𝑘 “

0, 1, 2, . . .u. Then for 𝜆 “ 1.1, 𝑇 is
an onto 𝐺𝑟-expansive mapping. Also,
all the conditions of Theorem 1 are
satisfied. Clearly, 0 is the unique fixed
point of 𝑇 on 𝑋.

Remark 1. It is seen that if the mapping 𝑇 is not surjective, then The-
orem 1 does not hold. For this, we consider the following example.

Let 𝑋 “ r0,8q and define a complete 𝑑-metric 𝑑 : 𝑋ˆ𝑋 ÝÑ r0,8q by
𝑑p𝑥, 𝑦q “ |𝑥 ´ 𝑦| @ 𝑥, 𝑦 P 𝑋. Let 𝑇 : 𝑋 ÝÑ 𝑋 be such that
𝑇𝑥 “ 5𝑥` 1, 𝑥 P 𝑋. Here 𝑇 is not onto.

Consider the graph 𝐺 “ p𝑉 p𝐺q, 𝐸p𝐺qq, where 𝑉 p𝐺q “ 𝑋 and 𝐸p𝐺q “
tp𝑥, 𝑥q : 𝑥 P 𝑋u Y tp1, 2q, p0, 1

5
q, p1, 0qu.
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Then for 𝜆 “ 2, 𝑇 is a 𝐺𝑟-expansive mapping. Also, conditions i) and ii)
of Theorem 1 are satisfied. But 𝑇 has no fixed point.

The following is a fixed-point result for another type of 𝐺𝑟-expansive
mapping.

Theorem 2. Let p𝑋, 𝑑q be a complete 𝑑-metric space endowed with the
directed graph 𝐺 “ p𝑉 p𝐺q, 𝐸p𝐺qq and 𝑇 be an onto self-mapping on 𝑋
satisfying

𝑑p𝑇𝑥, 𝑇𝑦q ` 𝑑p𝑇𝑥, 𝑥q > 𝜆 𝑑p𝑥, 𝑦q ` 𝑑p𝑇𝑦, 𝑦q, (4)

for all p𝑥, 𝑦q P 𝐸p𝐺q with 𝜆 ą 1. If the following conditions hold:

i) p𝑇𝑥, 𝑇𝑦q P 𝐸p𝐺q ùñ p𝑥, 𝑦q P 𝐸p𝐺q,

ii) there exists 𝑥1 P 𝑋, such that p𝑇𝑥1, 𝑥1q P 𝐸p𝐺q,
iii) 𝑇 is 𝐺-continuous,

then 𝐹 p𝑇 q ‰ 𝜑. Moreover, if for each 𝑥, 𝑦 P 𝐹 p𝑇 q we have p𝑥, 𝑦q P 𝐸p𝐺q,
then 𝑇 has a unique fixed point in 𝑋.

Proof. By ii), there exists 𝑥1 P 𝑋 with p𝑇𝑥1, 𝑥1q P 𝐸p𝐺q. Let 𝑇𝑥1 “ 𝑥0.
Therefore,

p𝑥0, 𝑥1q P 𝐸p𝐺q. (5)

For 𝑥1 P 𝑋, since 𝑇 is onto, there exists 𝑥2 P 𝑋, such that 𝑥1 “ 𝑇𝑥2.
From (5), we have p𝑇𝑥1, 𝑇𝑥2q P 𝐸p𝐺q; and by i),

p𝑥1, 𝑥2q P 𝐸p𝐺q. (6)

Using (4), we have,

𝑑p𝑇𝑥1, 𝑇𝑥2q ` 𝑑p𝑇𝑥1, 𝑥1q > 𝜆 𝑑p𝑥1, 𝑥2q ` 𝑑p𝑇𝑥2, 𝑥2q,

i.e., 2𝑑p𝑥0, 𝑥1q > p𝜆` 1q𝑑p𝑥1, 𝑥2q,

i.e., 𝑑p𝑥1, 𝑥2q 6 𝑘 𝑑p𝑥0, 𝑥1q, where 𝑘 “
2

𝜆` 1
.

Again for 𝑥2 P 𝑋, since 𝑇 is onto, there exists 𝑥3 P 𝑋, such that 𝑥2 “ 𝑇𝑥3.
From (6), p𝑇𝑥2, 𝑇𝑥3q P 𝐸p𝐺q and by i), p𝑥2, 𝑥3q P 𝐸p𝐺q.

Now,

𝑑p𝑇𝑥2, 𝑇𝑥3q ` 𝑑p𝑇𝑥2, 𝑥2q > 𝜆 𝑑p𝑥2, 𝑥3q ` 𝑑p𝑇𝑥3, 𝑥3q,

i.e., 2𝑑p𝑥1, 𝑥2q > p𝜆` 1q 𝑑p𝑥2, 𝑥3q,



74 H. Das, N. Goswami

i.e., 𝑑p𝑥2, 𝑥3q 6 𝑘 𝑑p𝑥1, 𝑥2q.

Continuing in this way, we generate a sequence t𝑥𝑛u Ď 𝑋, such that
p𝑥𝑛, 𝑥𝑛`1q P 𝐸p𝐺q with 𝑥𝑛 “ 𝑇𝑥𝑛`1 @ 𝑛 P NY t0u and

𝑑p𝑥𝑛, 𝑥𝑛`1q 6 𝑘 𝑑p𝑥𝑛´1, 𝑥𝑛q.

Also,
𝑑p𝑥𝑛, 𝑥𝑛`1q 6 𝑘𝑛 𝑑p𝑥0, 𝑥1q @ 𝑛 P N.

Now, for each 𝑚 ą 𝑛 P N,

𝑑p𝑥𝑛, 𝑥𝑚q6𝑑p𝑥𝑛, 𝑥𝑛`1q`𝑑p𝑥𝑛`1, 𝑥𝑛`2q`. . .`𝑑p𝑥𝑚´1, 𝑥𝑚q 6
𝑘𝑛

1´ 𝑘
𝑑p𝑥0, 𝑥1q.

Since 𝑘 P p0, 1q for 𝜆 ą 1, so, t𝑥𝑛u is a Cauchy sequence in 𝑋, which
converges to some 𝑢 P 𝑋.

As 𝑇 is a 𝐺-continuous, so, 𝑇𝑥𝑛 ÝÑ 𝑇𝑢 i.e., 𝑥𝑛´1 ÝÑ 𝑇𝑢. Hence
𝑇𝑢 “ 𝑢, and thus 𝑢 is a fixed point of 𝑇 .

For the uniqueness, let 𝑢 and 𝑣 be two distinct fixed points of 𝑋, such
that p𝑢, 𝑣q P 𝐸p𝐺q. Then

𝑑p𝑇𝑢, 𝑇𝑣q ` 𝑑p𝑇𝑢, 𝑢q > 𝜆 𝑑p𝑢, 𝑣q ` 𝑑p𝑇𝑣, 𝑣q.

Using Lemma 2, since 𝑑p𝑢, 𝑢q “ 0, we get:

𝑑p𝑢, 𝑣q > 𝜆 𝑑p𝑢, 𝑣q ` 𝑑p𝑣, 𝑣q,

i.e., 𝑑p𝑢, 𝑣q > 𝜆 𝑑p𝑢, 𝑣q.

Since 𝜆 ą 1, so, 𝑑p𝑢, 𝑣q “ 0, which implies 𝑢 “ 𝑣. l

Example 5. Let 𝑋 “ r0,8q and define a complete 𝑑-metric
𝑑 : 𝑋 ˆ𝑋 ÝÑ r0,8q by 𝑑p𝑥, 𝑦q “ maxt𝑥, 𝑦u ` |𝑥´ 𝑦| @ 𝑥, 𝑦 P 𝑋.

Let 𝑇 : 𝑋 ÝÑ 𝑋 be such that

𝑇𝑥 “

$

’

&

’

%

4𝑥, 0 6 𝑥 ă 1,

5´ 𝑥, 1 6 𝑥 ă 2,
3𝑥
2
, 𝑥 > 2.

Consider the graph 𝐺 “ p𝑉 p𝐺q, 𝐸p𝐺qq, where 𝑉 p𝐺q “ 𝑋 and 𝐸p𝐺q “

tp𝑥, 𝑥q : 𝑥 P 𝑋u Y tp
1

4𝑘
, 0q : 𝑘 “ 0, 1, 2, . . . u.
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For 𝜆 “ 1.1, it is seen that all the conditions of Theorem 2 are satisfied.
Here 0 is the unique fixed point of 𝑇 .

In 2013, Han et.al. [9] derived some new theorems for expanding map-
pings in cone metric spaces without using continuity condition. In our
next result, we replace the 𝐺-continuity of 𝑇 by another condition.

Theorem 3. Let p𝑋, 𝑑q be a complete 𝑑-metric space endowed with the
directed graph 𝐺 “ p𝑉 p𝐺q, 𝐸p𝐺qq and 𝑇 be an onto 𝐺𝑟-expansive self-
mapping on 𝑋.

If the following conditions hold:

i) there exists a point 𝑥1 P 𝑋, such that p𝑇𝑥1,𝑥1q P 𝐸p𝐺q,
ii) for each sequence t𝑥𝑛u, such that 𝑥𝑛 ÝÑ 𝑢 with p𝑥𝑛, 𝑥𝑛`1q P 𝐸p𝐺q

for all 𝑛 P NYt0u, if 𝑇𝑝 “ 𝑢 then p𝑝, 𝑥𝑛q P 𝐸p𝐺q for all 𝑛 P NYt0u,

then 𝐹 p𝑇 q ‰ 𝜑. Moreover, if for each 𝑥, 𝑦 P 𝐹 p𝑇 q, we have p𝑥, 𝑦q P 𝐸p𝐺q,
then 𝑇 has a unique fixed point in 𝑋.

Proof. As in Theorem 1, t𝑥𝑛u is a Cauchy sequence in 𝑋. By complete-
ness of 𝑋, 𝑥𝑛 ÝÑ 𝑢 in 𝑋.

Let 𝑝 P 𝑋 be such that 𝑇𝑝 “ 𝑢. Then by ii), p𝑝, 𝑥𝑛q P 𝐸p𝐺q for all
𝑛 P NY t0u. Now,

𝑑p𝑢, 𝑥𝑛q “ 𝑑p𝑇𝑝, 𝑇𝑥𝑛`1q > 𝜆 𝑑p𝑝, 𝑥𝑛`1q.

Taking limit as 𝑛 Ñ 8, and using continuity of 𝑑p𝑢, .q, 𝑑p𝑝, .q : 𝑋 ÝÑ R,
we get,

𝑑p𝑢, 𝑢q > 𝜆 𝑑p𝑝, 𝑢q.

Using Lemma 2 and since 𝜆 ą 1, we have, 𝑑p𝑝, 𝑢q “ 0 and thus 𝑝 “ 𝑢.
Uniqueness part is similar to Theorem 1. l

4. 𝜃-𝐺𝑟-expansive type mapping and application to Fredholm
integral equation. In this section, we define Reich and Chatterjea-type
𝜃-𝐺𝑟-expansive mapping and give application to the Fredholm integral
equation via the fixed point formulation of such mappings.

Definition 8. Let p𝑋, 𝑑q be a 𝑑-metric space. A self-mapping 𝑇 on 𝑋
is said to be a Reich-type 𝜃-𝐺𝑟-expansive mapping if there exists 𝜃 P Θ
and 𝐺 P Ψ, such that

i) p𝑇𝑥, 𝑇𝑦q P 𝐸p𝐺q ùñ p𝑥, 𝑦q P 𝐸p𝐺q @ 𝑥, 𝑦 P 𝑋,
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ii) there exsits 𝜂 ą 1 and 𝛼, 𝛽 P r0, 1s, such that

𝑑p𝑇𝑥, 𝑇𝑦q ‰ 0 ùñ

𝜃p𝑑p𝑇𝑥, 𝑇𝑦qq > r𝜃p𝛼𝑑p𝑇𝑥, 𝑥q ` 𝛽𝑑p𝑇𝑦, 𝑦q ` 𝑑p𝑥, 𝑦qqs𝜂, (7)

for all 𝑥, 𝑦 P 𝑋 with p𝑥, 𝑦q P 𝐸p𝐺q.
Example 6. Let 𝑋 “ t0, 1, 2u. Define a 𝑑-metric 𝑑 : 𝑋 ˆ𝑋 ÝÑ r0,8q
as follows:

𝑑p0, 0q “ 0, 𝑑p1, 1q “ 3, 𝑑p2, 2q “ 1, 𝑑p0, 1q “ 𝑑p1, 0q “ 7,

𝑑p0, 2q “ 𝑑p2, 0q “ 3, 𝑑p1, 2q “ 𝑑p2, 1q “ 4.

Define 𝑇 : 𝑋 ÝÑ 𝑋 by 𝑇 p0q “ 0, 𝑇 p1q “ 0, 𝑇 p2q “ 1. Consider the
graph 𝐺 “ p𝑉 p𝐺q, 𝐸p𝐺qq, where 𝑉 p𝐺q “ 𝑋 and 𝐸p𝐺q “ tp0, 0q, p1, 1q,

p2, 2q, p1, 0q, p2, 0qu. Take 𝜃p𝑡q “ 𝑒
?
𝑡, 𝑡 P p0,8q, 𝛼 “ 𝛽 “ 0, 𝜂 “

3

2
.

Clearly, 𝑑p𝑇𝑥, 𝑇𝑦q ‰ 0 only for the edges p2, 2q and p2, 0q, and 𝑇 sat-
isfies the condition (7) for these edges. Therefore, 𝑇 is a Reich-type 𝜃-𝐺𝑟-
expansive mapping.

Definition 9. Let p𝑋, 𝑑q be a 𝑑-metric space. A self-mapping 𝑇 on 𝑋 is
said to be a Chatterjea-type 𝜃-𝐺𝑟-expansive mapping if there exists 𝜃 P Θ
and 𝐺 P Ψ, such that

i) p𝑇𝑥, 𝑇𝑦q P 𝐸p𝐺q ùñ p𝑥, 𝑦q P 𝐸p𝐺q @ 𝑥, 𝑦 P 𝑋,
ii) there exists 𝜂 ą 1 and 𝛼 P r0, 1s, such that

𝑑p𝑇𝑥, 𝑇𝑦q ‰ 0 ùñ 𝜃p𝑑p𝑇𝑥, 𝑇𝑦qq > r𝜃p𝛼 𝑑p𝑇𝑥, 𝑦q ` 𝑑p𝑇𝑦, 𝑥qqs𝜂, (8)

for all 𝑥, 𝑦 P 𝑋 with p𝑥, 𝑦q P 𝐸p𝐺q.

Example 7. Let 𝑋 “ t0, 1, 2u. Define a 𝑑-metric 𝑑 : 𝑋 ˆ 𝑋 ÝÑ r0,8q
as follows:

𝑑p0, 0q “ 0, 𝑑p1, 1q “ 1, 𝑑p2, 2q “
2

3
, 𝑑p0, 1q “ 𝑑p1, 0q “

9

10
,

𝑑p0, 2q “ 𝑑p2, 0q “
7

10
, 𝑑p1, 2q “ 𝑑p2, 1q “

4

5
.

We take 𝑇,𝐺 and 𝜃 as in Example 6. Then for 𝛼 “ 0, 𝜂 “
11

10
, 𝑇 is a

Chatterjea-type 𝜃-𝐺𝑟-expansive mapping.

Theorem 4. Let p𝑋, 𝑑q be a complete 𝑑-metric space endowed with
the directed graph 𝐺 “ p𝑉 p𝐺q, 𝐸p𝐺qq and 𝑇 be an onto Reich-type
𝜃-𝐺𝑟-expansive self-mapping on 𝑋 satisfying the following conditions:
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i) there exists 𝑥1 P 𝑋, such that p𝑇𝑥1, 𝑥1q P 𝐸p𝐺q,
ii) 𝑇 is 𝐺-continuous.

Then 𝐹 p𝑇 q ‰ 𝜑. Moreover, if for each 𝑥, 𝑦 P 𝐹 p𝑇 q we have p𝑥, 𝑦q P 𝐸p𝐺q,
then 𝑇 has a unique fixed point in 𝑋.

Proof. As in Theorem 2, we generate a sequence t𝑥𝑛u Ď 𝑋, such that
p𝑥𝑛, 𝑥𝑛`1q P 𝐸p𝐺q with 𝑥𝑛 “ 𝑇𝑥𝑛`1 @ 𝑛 P NY t0u.
If for some 𝑛, 𝑥𝑛`1 “ 𝑥𝑛, then 𝑥𝑛 is a fixed point of 𝑇 .
Now, assume that 𝑥𝑛 ‰ 𝑥𝑛`1 for all 𝑛. Without loss the generality, we
take 𝑑p𝑇𝑥𝑛, 𝑇𝑥𝑛`1q ą 0. Using (7) we have,

𝜃p𝑑p𝑥𝑛´1, 𝑥𝑛qq “ 𝜃p𝑑p𝑇𝑥𝑛, 𝑇𝑥𝑛`1qq

> r𝜃p𝛼𝑑p𝑇𝑥𝑛, 𝑥𝑛q ` 𝛽𝑑p𝑇𝑥𝑛`1, 𝑥𝑛`1q ` 𝑑p𝑥𝑛, 𝑥𝑛`1qqs
𝜂

“ r𝜃p𝛼𝑑p𝑥𝑛´1, 𝑥𝑛q ` 𝛽𝑑p𝑥𝑛, 𝑥𝑛`1q ` 𝑑p𝑥𝑛, 𝑥𝑛`1qqs
𝜂

> r𝜃p𝑑p𝑥𝑛, 𝑥𝑛`1qqs
𝜂.

Now, proceeding similarly to Theorem 3 in [21], we can show that t𝑥𝑛u is
a Cauchy sequence in 𝑋, which converges to some 𝑢 P 𝑋.

Since 𝑇 is a 𝐺-continuous, so, 𝑇𝑥𝑛`1 ÝÑ 𝑇𝑢, i.e., 𝑥𝑛 ÝÑ 𝑇𝑢. Hence,
𝑇𝑢 “ 𝑢, and thus 𝑢 is a fixed point of 𝑇 .

For the uniqueness, let 𝑢 and 𝑣 be two distinct fixed points of 𝑋, such
that p𝑢, 𝑣q P 𝐸p𝐺q. Using (7), we have:

𝜃p𝑑p𝑢, 𝑣qq “ 𝜃p𝑑p𝑇𝑢, 𝑇𝑣qq

> r𝜃p𝛼𝑑p𝑇𝑢, 𝑢q ` 𝛽𝑑p𝑇𝑣, 𝑣q ` 𝑑p𝑢, 𝑣qqs𝜂

> r𝜃p𝑑p𝑢, 𝑣qqs𝜂 ą r𝜃p𝑑p𝑢, 𝑣qqs,

which is a contradiction. Thus, 𝑢 “ 𝑣. l

Example 8. In Example 4, we take 𝜃p𝑡q “ 𝑒
?
𝑡, 𝛼 “ 𝛽 “ 0, 𝜂 “ 1.1.

Then 𝑇 is an onto Reich-type 𝜃-𝐺𝑟-expansive mapping. Also, all the
conditions of Theorem 4 are satisfied. Clearly, 0 is the unique fixed point
of 𝑇 on 𝑋.

Corollary 1. Let p𝑋, 𝑑q be a complete 𝑑-metric space endowed with
the directed graph 𝐺 “ p𝑉 p𝐺q, 𝐸p𝐺qq and 𝑇 be an onto self-mapping on
𝑋 with 𝜃 P Θ satisfying

𝑑p𝑇𝑥, 𝑇𝑦q ‰ 0 ùñ 𝜃p𝑑p𝑇𝑥, 𝑇𝑦qq > r𝜃p𝑑p𝑥, 𝑦qqs𝜂, (9)

for all 𝑥, 𝑦 P 𝑋 with p𝑥, 𝑦q P 𝐸p𝐺q and 𝜂 ą 1. If the following conditions
hold:
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i) p𝑇𝑥, 𝑇𝑦q P 𝐸p𝐺q ùñ p𝑥, 𝑦q P 𝐸p𝐺q,

ii) there exists a point 𝑥1 P 𝑋, such that p𝑇𝑥1, 𝑥1q P 𝐸p𝐺q,

iii) 𝑇 is 𝐺-continuous,

then 𝐹 p𝑇 q ‰ 𝜑. Moreover, if for each 𝑥, 𝑦 P 𝐹 p𝑇 q we have p𝑥, 𝑦q P 𝐸p𝐺q,
then 𝑇 has a unique fixed point on 𝑋.

Remark 2. Condition (9) is an extension of condition (1).
Taking 𝜃p𝑡q “ 𝑒

?
𝑡, 𝑡 ą 0 in (9), we obtain

𝑒
?

𝑑p𝑇𝑥,𝑇𝑦q >
”

𝑒
?

𝑑p𝑥,𝑦q
ı𝜂

“ 𝑒
?

𝜂2𝑑p𝑥,𝑦q,

from which we get 𝑑p𝑇𝑥, 𝑇𝑦q > 𝜆 𝑑p𝑥, 𝑦q for all 𝑥, 𝑦 P 𝑋 with p𝑥, 𝑦q P 𝐸p𝐺q
and 𝜆 “ 𝜂2 ą 1.

Now we consider the following Fredholm integral equation:

𝑥p𝑡q “

𝑏
ż

𝑎

𝑘p𝑡, 𝑠, 𝑥p𝑠qq𝑑𝑠` 𝑔p𝑡q, for all 𝑡 P r𝑎, 𝑏s, (10)

where 𝑥, 𝑔 : r𝑎, 𝑏s ÝÑ r𝑎, 𝑏s and 𝑘 : r𝑎, 𝑏s ˆ r𝑎, 𝑏s ˆ R ÝÑ R are contin-
uous mappings. We take 𝑥 as onto and |𝑔p𝑡q| 6 𝜇1, |𝑘p𝑡, 𝑠, 𝑟q| 6 𝜇2

for all 𝑡,𝑠 P r𝑎, 𝑏s, 𝑟 P R, where 0 ă 𝜇1, 𝜇2 ă 𝑏 with 𝜇2 6 𝑏´𝜇1

𝑏´𝑎
. Let

𝑋 “ 𝐶pr𝑎, 𝑏s, r𝑎, 𝑏sq, the set of all continuous functions from r𝑎, 𝑏s to r𝑎, 𝑏s
and the 𝑑-metric 𝑑 : 𝑋 ˆ𝑋 ÝÑ r0,8q be defined by

𝑑p𝑥, 𝑦q “ sup
𝑡Pr𝑎,𝑏s

|𝑥p𝑡q ´ 𝑦p𝑡q| @ 𝑥, 𝑦 P 𝑋.

Theorem 5. Suppose that

i) 𝑘p𝑡, 𝑠, .q : R ÝÑ R is non-decreasing for each 𝑡, 𝑠 P r𝑎, 𝑏s,

ii) there exists 𝜆 ą 1, such that for all 𝑥, 𝑦 P 𝑋,

ˇ

ˇ

ˇ

𝑏
ż

𝑎

𝑘p𝑡, 𝑠, 𝑥p𝑠qq𝑑𝑠´

𝑏
ż

𝑎

𝑘p𝑡, 𝑠, 𝑦p𝑠qq𝑑𝑠
ˇ

ˇ

ˇ
> 𝜆|𝑥p𝑡q ´ 𝑦p𝑡q| @ 𝑡 P r𝑎, 𝑏s.

Then the integral equation (10) has a solution.
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Proof. Define a mapping 𝑇 : 𝑋 ÝÑ 𝑋 by

𝑇𝑥p𝑡q “

𝑏
ż

𝑎

𝑘p𝑡, 𝑠, 𝑥p𝑠qq𝑑𝑠` 𝑔p𝑡q @ 𝑡 P r𝑎,𝑏s. (11)

Clearly, from i), 𝑇 is non-decreasing. Also, 𝑇 is onto, since 𝑥 is an onto
mapping.

Consider a graph 𝐺 consisting of 𝑉 p𝐺q “ 𝑋 and 𝐸p𝐺q “ tp𝑥, 𝑦q P
𝑋 ˆ 𝑋 : 𝑥p𝑡q 6 𝑦p𝑡q @ 𝑡 P r𝑎, 𝑏su. Since 𝑘 and 𝑔 are continuous, so, 𝑇 is
𝐺-continuous.

Suppose p𝑇𝑥, 𝑇𝑦q P 𝐸p𝐺q. Therefore 𝑇𝑥p𝑡q 6 𝑇𝑦p𝑡q @ 𝑡 P r𝑎, 𝑏s. If
𝑥 > 𝑦, since 𝑇 is non-decreasing, so, 𝑇𝑥p𝑡q > 𝑇𝑦p𝑡q @ 𝑡 P r𝑎, 𝑏s, which is a
contradiction. Therefore, 𝑥 6 𝑦, which implies that p𝑥, 𝑦q P 𝐸p𝐺q.

We define a continuous mapping 𝑥0 on r𝑎, 𝑏s by

𝑥0p𝑡q “ 𝑔p𝑡q ` p𝑏´ 𝜇1q, 𝑡 P r𝑎, 𝑏s.

By (11),

𝑇𝑥0p𝑡q “

𝑏
ż

𝑎

𝑘p𝑡, 𝑠, 𝑥0p𝑠qq𝑑𝑠` 𝑔p𝑡q 6

𝑏
ż

𝑎

|𝑘p𝑡, 𝑠, 𝑥0p𝑠qq|𝑑𝑠` 𝑔p𝑡q

6 𝜇2p𝑏´ 𝑎q ` 𝑔p𝑡q 6 𝑥0p𝑡q,

which implies that p𝑇𝑥0, 𝑥0q P 𝐸p𝐺q.
Now, for every 𝑥, 𝑦 P 𝑋 with p𝑥, 𝑦q P 𝐸p𝐺q and 𝑑p𝑇𝑥, 𝑇𝑦q ą 0, we

have:

𝑑p𝑇𝑥, 𝑇𝑦q “ sup
𝑡Pr𝑎,𝑏s

ˇ

ˇ

ˇ
𝑇𝑥p𝑡q ´ 𝑇𝑦p𝑡q

ˇ

ˇ

ˇ

“ sup
𝑡Pr𝑎,𝑏s

ˇ

ˇ

ˇ

𝑏
ż

𝑎

𝑘p𝑡, 𝑠, 𝑥p𝑠qq𝑑𝑠´

𝑏
ż

𝑎

𝑘p𝑡, 𝑠, 𝑦p𝑠qq𝑑𝑠
ˇ

ˇ

ˇ

> sup
𝑡Pr𝑎,𝑏s

𝜆 |𝑥p𝑡q ´ 𝑦p𝑡q| “ 𝜆 𝑑p𝑥, 𝑦q.

Taking 𝜃p𝑡q “ 𝑒
?
𝑡, 𝑡 ą 0, so that 𝜃 P Θ, we have:

𝜃p𝑑p𝑇𝑥, 𝑇𝑦qq “ 𝑒
?

𝑑p𝑇𝑥,𝑇𝑦q > 𝑒
?

𝜆𝑑p𝑥,𝑦q
“

”

𝑒
?

𝑑p𝑥,𝑦q
ı𝜂

“ r𝜃p𝑑p𝑥, 𝑦qqs𝜂



80 H. Das, N. Goswami

@ p𝑥, 𝑦q P 𝐸p𝐺q, where 𝜂 “
?
𝜆 ą 1 as 𝜆 ą 1. Thus, the mapping 𝑇

satisfies the conditions of Corollary 1. So, there exists a fixed point of the
mapping 𝑇 in 𝑋, which is a solution for the integral equation (10). l

Similar results as in Theorem 4 and Theorem 5 also hold in the case
of Chatterjea-type 𝜃-𝐺𝑟-expansive mappings.

Theorem 6. Let p𝑋, 𝑑q be a complete 𝑑-metric space endowed with the
directed graph𝐺 “ p𝑉 p𝐺q, 𝐸p𝐺qq and 𝑇 : 𝑋 ÝÑ 𝑋 be an onto Chatterjea-
type 𝜃-𝐺𝑟-expansive mapping satisfying the following conditions:

i) there exists 𝑥1 P 𝑋, such that p𝑇𝑥1, 𝑥1q P 𝐸p𝐺q

ii) 𝑇 is 𝐺-continuous.

Then 𝐹 p𝑇 q ‰ 𝜑. Moreover, if for each 𝑥, 𝑦 P 𝐹 p𝑇 q we have
p𝑥, 𝑦q P 𝐸p𝐺q, then 𝑇 has a unique fixed point on 𝑋.

The proof follows as in Theorem 4.

Theorem 7. Suppose that

i) 𝑘p𝑡, 𝑠, .q : R ÝÑ R is non-decreasing for each 𝑡, 𝑠 P r𝑎, 𝑏s,

ii) there exists 𝜆 ą 1, such that for all 𝑥, 𝑦 P 𝑋,

ˇ

ˇ

ˇ

𝑏
ż

𝑎

𝑘p𝑡, 𝑠, 𝑥p𝑠qq𝑑𝑠´

𝑏
ż

𝑎

𝑘p𝑡, 𝑠, 𝑦p𝑠qq𝑑𝑠
ˇ

ˇ

ˇ

> 𝜆
ˇ

ˇ

ˇ

𝑏
ż

𝑎

𝑘p𝑡, 𝑠, 𝑦p𝑠qq𝑑𝑠` 𝑔p𝑡q ´ 𝑥p𝑡q
ˇ

ˇ

ˇ
@ 𝑡 P r𝑎, 𝑏s.

Then the integral equation (10) has a solution.

Proof. Taking 𝛼 “ 0 in (8), the proof is analogous to the proof of Theo-
rem 5. l

5. Coupled fixed-point theorem with 𝐺𝑟-expansive-type con-
dition. This section contains a coupled fixed-point theorem for onto
𝐺𝑟-expansive type mapping in a complete 𝑑-metric space endowed with
graph 𝐺 “ p𝑉 p𝐺q,𝐸p𝐺qq, where 𝑉 p𝐺q “ 𝑋 ˆ 𝑋 and 𝐸p𝐺q Ď 𝑋2 ˆ 𝑋2

includes all the loops.
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Theorem 8. Let p𝑋, 𝑑q be a complete 𝑑-metric space endowed with the
directed graph 𝐺 and 𝑇 : 𝑋 ˆ 𝑋 ÝÑ 𝑋 be a continuous onto mapping
satisfying the condition:

𝑑p𝑇 p𝑥, 𝑦q, 𝑇 p𝑢, 𝑣qq > 𝑎1𝑑p𝑥, 𝑢q ` 𝑎2𝑑p𝑦, 𝑣q, (12)

for all pp𝑥, 𝑢q, p𝑦, 𝑣qq P 𝐸p𝐺q with 𝑎1, 𝑎2 ą 1. If the following conditions
hold:

i) there exist 𝑥1, 𝑦1 in 𝑋, such that pp𝑇 p𝑥1, 𝑦1q, 𝑇 p𝑦1, 𝑥1qq, p𝑥1, 𝑦1qq and
pp𝑇 p𝑦1, 𝑥1q, 𝑇 p𝑥1, 𝑦1qq, p𝑦1, 𝑥1qq P 𝐸p𝐺q,

ii) for each p𝑥, 𝑦q P 𝑋 ˆ𝑋,

pp𝑇 p𝑥, 𝑦q, 𝑇 p𝑦, 𝑥qq, p𝑥, 𝑦qq P 𝐸p𝐺q,

then 𝑇 has a coupled fixed point. Moreover, if for each coupled fixed point
p𝑥, 𝑦q and p𝑢, 𝑣q, we have pp𝑥, 𝑦q, p𝑢, 𝑣qq and pp𝑦, 𝑥q, p𝑣, 𝑢qq P 𝐸p𝐺q, then
𝑇 has a unique coupled fixed point.

Proof. We take 𝑇 p𝑥1𝑦1q “ 𝑥0 and 𝑇 p𝑦1𝑥1q “ 𝑦0. Then, by i),

pp𝑥0, 𝑦0q,p𝑥1, 𝑦1qq and pp𝑦0, 𝑥0q, p𝑦1, 𝑥1qq P 𝐸p𝐺q. (13)

For 𝑥1 P 𝑋, since 𝑇 is onto, there exists p𝑥2, 𝑦2q P 𝑋 ˆ 𝑋, such that
𝑇 p𝑥2, 𝑦2q “ 𝑥1. Let 𝑇 p𝑦2, 𝑥2q “ 𝑦1. By ii), we have:

pp𝑥1, 𝑦1q, p𝑥2, 𝑦2qq and pp𝑦1, 𝑥1q, p𝑦2𝑥2qq P 𝐸p𝐺q.

Continuing in this way, we generate two sequences t𝑥𝑛u, t𝑦𝑛u Ď 𝑋, such
that

pp𝑥𝑛, 𝑦𝑛q, p𝑥𝑛`1, 𝑦𝑛`1qq and pp𝑦𝑛, 𝑥𝑛q, p𝑦𝑛`1, 𝑥𝑛`1qq P 𝐸p𝐺q

with

𝑇 p𝑥𝑛`1, 𝑦𝑛`1q “ 𝑥𝑛 and 𝑇 p𝑦𝑛`1, 𝑥𝑛`1q “ 𝑦𝑛 @ 𝑛 P NY t0u.

Using (12), for 𝑛 P N, we have:

𝑑p𝑥𝑛´1, 𝑥𝑛q “ 𝑑p𝑇 p𝑥𝑛, 𝑦𝑛q, 𝑇 p𝑥𝑛`1, 𝑦𝑛`1qq

> 𝑎1𝑑p𝑥𝑛, 𝑥𝑛`1q ` 𝑎2𝑑p𝑦𝑛, 𝑦𝑛`1q > 𝑎1𝑑p𝑥𝑛, 𝑥𝑛`1q.
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This implies

𝑑p𝑥𝑛, 𝑥𝑛`1q 6
1

𝑎1
𝑑p𝑥𝑛´1, 𝑥𝑛q “ 𝑘 𝑑p𝑥𝑛´1, 𝑥𝑛q 6 𝑘𝑛𝑑p𝑥0, 𝑥1q,where 𝑘 “

1

𝑎1
.

Now, for each 𝑚 ą 𝑛 P N,

𝑑p𝑥𝑛, 𝑥𝑚q 6 𝑑p𝑥𝑛, 𝑥𝑛`1q`𝑑p𝑥𝑛`1, 𝑥𝑛`2q`. . .`𝑑p𝑥𝑚´1, 𝑥𝑚q6
𝑘𝑛

1´ 𝑘
𝑑p𝑥0, 𝑥1q.

Similarly, we can show that

𝑑p𝑦𝑛, 𝑦𝑚q 6
𝑘𝑛

1´ 𝑘
𝑑p𝑦0, 𝑦1q.

Since 𝑘 P p0, 1q, so, t𝑥𝑛u and t𝑦𝑛u are Cauchy sequences in 𝑋, which
converge to some 𝑝 and 𝑞 in 𝑋, respectively.
Since 𝑇 is continuous,

𝑝 “ lim
𝑛ÝÑ8

𝑥𝑛 “ lim
𝑛ÝÑ8

𝑇 p𝑥𝑛`1, 𝑦𝑛`1q “ 𝑇 p𝑝, 𝑞q.

Similarly, 𝑞 “ 𝑇 p𝑞, 𝑝q. Thus, p𝑝, 𝑞q is a coupled fixed point of 𝑇 .
For the uniqueness, let p𝑟, 𝑠q be another coupled fixed point of 𝑇 with

pp𝑝, 𝑞q, p𝑟, 𝑠qq and pp𝑞, 𝑝q, p𝑠, 𝑟qq P 𝐸p𝐺q. Using (12), we have

𝑑p𝑝, 𝑟q “ 𝑑p𝑇 p𝑝, 𝑞q, 𝑇 p𝑟, 𝑠qq > 𝑎1𝑑p𝑝, 𝑟q ` 𝑎2𝑑p𝑞, 𝑠q,

which implies that
𝑑p𝑝, 𝑟q > 𝑎1𝑑p𝑝, 𝑟q.

Since 𝑎1 ą 1, so, 𝑝 “ 𝑟 and, similarly, we can show that 𝑞 “ 𝑠. l

An illustrative example of Theorem 8 is provided below.

Example 9. Let 𝑋 “ r0,8q and define a complete 𝑑-metric

𝑑 : 𝑋 ˆ𝑋 ÝÑ r0,8q by 𝑑p𝑥, 𝑦q “ maxt𝑥, 𝑦u @ 𝑥, 𝑦 P 𝑋.

Let 𝑇 : 𝑋 ˆ 𝑋 ÝÑ 𝑋 be such that 𝑇 p𝑥, 𝑦q “ 3𝑥 ` 4𝑦 @ p𝑥, 𝑦q P
𝑋ˆ𝑋. Consider the graph 𝐺 “ p𝑉 p𝐺q, 𝐸p𝐺qq, where 𝑉 p𝐺q “ 𝑋ˆ𝑋 and
𝐸p𝐺q “ tpp𝑥, 𝑦q, p𝑥, 𝑦qq P 𝑋2ˆ𝑋2 : 𝑥, 𝑦 P 𝑋uYtpp3𝑥`4𝑦, 3𝑦`4𝑥q, p𝑥, 𝑦qq :
𝑥, 𝑦 P 𝑋u. Then for 𝑎1 “ 𝑎2 “ 2, all the conditions of Theorem 8 are
satisfied. Thus p0, 0q is the unique coupled fixed point of 𝑇 .
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Remark 3. If the mapping is not surjective, then Theorem 8 does not
hold. For example, let 𝑋 “ N Y t0u and define a complete 𝑑-metric
𝑑 : 𝑋 ˆ𝑋 ÝÑ r0,8q by 𝑑p𝑥, 𝑦q “ 𝑥` 𝑦 @ 𝑥, 𝑦 P 𝑋. Let 𝑇 : 𝑋 ˆ𝑋 ÝÑ 𝑋
be such that 𝑇 p𝑥, 𝑦q “ 3𝑥` 3𝑦 ` 1 @ p𝑥, 𝑦q P 𝑋 ˆ𝑋. Consider the graph
𝐺 “ p𝑉 p𝐺q, 𝐸p𝐺qq, where 𝑉 p𝐺q “ 𝑋 ˆ𝑋 and 𝐸p𝐺q “ tpp𝑥, 𝑦q, p𝑥, 𝑦qq P
𝑋2 ˆ𝑋2 : 𝑥, 𝑦 P 𝑋u Y tpp3𝑥` 3𝑦 ` 1, 3𝑥` 3𝑦 ` 1q, p𝑥, 𝑦qq : 𝑥, 𝑦 P 𝑋u.

Then for 𝑎1 “ 𝑎2 “ 2, 𝑇 satisfies the conditions (12), i) and ii) of
Theorem 8. But 𝑇 has no coupled fixed point.

It can also be seen that the coupled fixed point in Theorem 8 is not
necessarily unique if there is no edge connecting the coupled fixed points.

For example, take 𝑋 “ NYt0u and a complete 𝑑-metric 𝑑 : 𝑋ˆ𝑋 ÝÑ

r0,8q defined by 𝑑p𝑥, 𝑦q “ |𝑥´ 𝑦| @ 𝑥, 𝑦 P 𝑋.
Let 𝑇 : 𝑋 ˆ 𝑋 ÝÑ 𝑋 be such that 𝑇 p𝑥, 𝑦q “ 𝑥 @ 𝑥 P 𝑋. Con-

sider the graph 𝐺 “ p𝑉 p𝐺q, 𝐸p𝐺qq where 𝑉 p𝐺q “ 𝑋 ˆ 𝑋 and 𝐸p𝐺q “
tpp𝑥, 𝑦q, p𝑥, 𝑦qq P 𝑋2 ˆ 𝑋2 : 𝑥, 𝑦 P 𝑋u. Then, for 𝑎1 “ 𝑎2 “ 2, all the
conditions of Theorem 8 are satisfied. However, p0, 0q, p1, 1q, . . . are all
coupled fixed points of 𝑇 and there is no edge connecting them.
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