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ANALYSIS OF EULER-BANACH OPERATOR TO
APPROXIMATE THE FUNCTION USING ITS FOURIER
SERIES

Abstract. The Fourier series, known for expressing functions
as sums of sines and cosines, can be refined in various ways to im-
prove convergence and achieve more accurate signal approximation.
Utilizing a product transform increases the convergence rate, result-
ing in a closer representation of the original signal. In this work,
we introduce the notion of Euler-Banach operator to approximate
functions in the Lebesgue class through the Fourier series and its
conjugate series and also to establish two approximation theorems
using our proposed summation operator.
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1. Introduction and Motivation. In the fields of analysis and func-
tional analysis, summability theory is a substantial area of mathematics
with extensive applications. It is used in approximation theory, orthog-
onal series, numerical analysis (for studying convergence rates), operator
theory (to approximate functions of positive linear operators), and vari-
ous other domains. The concept of approximation theory originated with
Weierstrass’ theorem, which established that a continuous function can
be approximated by polynomials over a given interval. When estimating
approximation errors, it was observed that the error is minimized if the
coefficients of the n-th trigonometric polynomial match the Fourier coeffi-
cients, making the n-th partial sum of the Fourier series a more accurate
approximation for periodic functions.

Several classical summability methods have been effectively employed
in the theory of Fourier series, conjugate series, and derived series to im-
prove convergence behavior and handle divergence issues. Among them,
the Cesaro method is one of the earliest and most widely studied, offering a
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simple averaging technique that smooths partial sums to enhance conver-
gence. The Norlund method generalizes the Cesaro means by assigning
varying weights to terms in the sequence, allowing greater flexibility in
approximation. Additionally, matrix summability methods provide a uni-
fying framework encompassing both Cesaro and Norlund means, and have
been used to study convergence properties of both Fourier series and their
conjugates under broader conditions. These methods have laid a strong
foundation for the development of more refined techniques, such as the
Euler-Banach approach proposed in this work.

Over time, additional linear summability methods for Fourier series of
2m-periodic functions on the real line R, such as the Cesaro, Norlund, and
matrix means, were developed to improve approximation accuracy. Many
researchers have explored signal approximation using these summability
techniques. For example, Bak et al. [3] and Mittal et al. [10] investigated
generalized polynomial approximation and linear operator approximation,
respectively. Studies by McFadden [8], Mursaleen and Alotaibi [11] and
Singh [16] further applied various summability techniques for signal ap-
proximation.

Misra and Sahoo [9] explored the absolute Banach summability of the
conjugate series of a Fourier series in 2002, Paikray et al. [12| discussed
the factored Fourier series using absolute Banach summation method, al-
though product Banach summability has received comparatively little re-
search attention to date. This gap motivates our investigation of conver-
gence rates and the formulation of two approximation theorems using the
Euler-Banach summation technique for periodic functions in the Lebesgue
space. The application of the Euler-Banach operator to the Fourier series
of the function g(y) significantly improves the convergence rate. This idea
later expanded to include trigonometric polynomials for approximating
piecewise continuous periodic functions and harmonic functions [17]|. For
recent works in this direction, see [1], [2], [6], |7], [13], and [14].

Definition 1. A function g(y) € L(0, o) is expanded by Fourier-series as

a0 0
~ —+Z (b, cosny + ¢, sinny) = Z (1)

n=1
and its conjugate series is given by

0

Z (¢, cosny — b, sinny) = Z B, (y). (2)

n=1 n=1



Euler-Banach operator 3

Definition 2. Let the sequence {s,} be the n® partial sum of the series
Q0

> ay. If

n=0

n

tn E’r] (] 9) I}Q(ﬁ)@ S, — S as 77—>OO,

then {s, } converges to a definite value s by EY means (by Hardy [5]), and
we write 1t as

5y — S(Ef;).

Definition 3. Also, the infinite series 2107021 a, converges to s by the Ba-
nach summation method [4], if

1 K
te(n) = Z Sp+p — S aS K — 0.
v 1
0¢]
If for all n € N, t.(n) tends to a definite value s uniformly, then ) a,
n=1

tends to s by the Banach summation method.

We now propose the Euler-Banach summation method of order 6 as
follows:

e @]

Definition 4. The series ), a, tends to s by the (E,#)B-summation
n=1

method if

1 "/ 1 &
0 _ —K _
Ent/{(n)_ <1+9>n};<ﬁ)0" {E;sn+y}—sasn—>oo.

The regularity of Euler and Banach methods implies the regularity of
FEuler-Banach method.

Notation used:
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o= s 3 () (L

v=1

]
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u

2. Approximation Theorems. In this section, we establish two
approximation theorems via our proposed product Euler-Banach summa-
bility mean and accordingly estimate the degree of approximation of g in
the Lebesgue space.

Before proving the main results, we first recall the following auxiliary
lemmas.

Lemma 1.[15] Ifn e N, K, (u), and K, (u) are the kernels, then | K, (u)| =
= O(n) for 0 < u < 1/n; sin nu < nsin u; | cos nu| < 1.

Lemma 2.[15| |K,(u)| = O(1/u) for 1/n < u < 7; sinu/2 > wu/2;
| sin nu| < 1.

Lemma 3.[15] |K,(u)] = O(1/u) for 0 < u < 1/n; sinu/2 > u/2;
lcosnu| <1

Lemma 4.[15] |K,(u)| = O(1/u) for 1/n < u < 7 sin u/2 > u/2.

and

We now establish and prove two approximation theorems.

Theorem 1. If &(u f](b )dz = ) as u — 0, then the

( 7(1/u)
degree of approximation E, ( ) of g € Ly is defined as
E,(9) =| ;7% — g(y) |= O(1) as 1 — 0,

and the series (1) is (E,0)B summable to g(y).
Proof. From Titchmash [18|, we get

1

S, (g:y) — __J¢ 51n77+1/2)
0

——d
sin(u/2) “

2m
and t.(n) is a transform of S, (f;x) given by

1 f¢ S sin(n + v+ 1/2u
K b sin(u/2)

te(n) —9(y) = -
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Now denote (E,0)t,(n) transform of S, (g;y) by Eit.(n); then the error
estimation for Fourier series using Euler-Banach summable technique is
given by

Ejt.(n) — g(y)

B 1 L\ 1 [ 5 sin(n + v+ 1/2)u
—2m(1 4+ O)n Z (/{) o EJQb Z sin(u/2) du
0

_ f o(w) Ky (u)du, (3)

00~ g 2 () 1 L

k=1 v=1

where

Now we will show that
| Bt~ 9(0) |= | | )y fu)du [ O(1) as = .
0

For 0 < 6 < m, we have

f )y () | = | T+ f H | S0 (u)du|
0 _1 O+ 121/1 13.(S ()

Using Lemma 1, we have

1/n

5| f|¢ u)du |
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Using Lemma 2, we have

L)< TM w)du |- O Hw |—du]
1/n
_0 :{%gb(u)}jm +1 £ %qﬁ(u)du]
_ :

¢ _{wll/u) }/ *i O{u 7 }d“1

:O{ﬁ} *115 O{uwl<u>}d“]

=O{ﬁ}+0{ﬁ}wdu=0(l) s o0

Similarly,
|13|<f|¢ wdu |= O(1) as 7 — o, (6)

by (3), (4), and (5), and we have
[ 70 —g(y) |= O(1) as  — .

This completes the proof of Theorem 1. []

Theorem 2. If U(u J | ((2) | dz = (

) as u — 0, where

v(1/u)
v(u) is a monotonically decreasmg signal, such that v(u) > 0, then
[ 1508 — g(y) |= O(1) as n — o,

and the conjugate series (2) is (F,0)B summable to

g(y) = —% f((u) cot(u/2)du

0
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at the point where this integral exists.

Proof. Degree of approximation for a conjugate Fourier series using Fuler-
Banach summable technique is given by

MfﬂB—mm:JWawR«mmu

1/n 1) T

([ i

0 1/p
= |J1 + Jo + J5].
Using Lemma 3, we have
1/n
| fm u)du |
1/n L/n

~o| [ 5 1cw1du| = o] [ ¢t ]
= Ot lO{n 71(77) H O{ﬁ}

=0(1) as n — 0. (7)

Using Lemma 4, we have

1< [ 1cnman=of [ 1 al

1/n

::o:{%cao};n+jjn55<uﬁw]

olf) folea
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- O{ﬁ} +O{n 71(77)} Jdu

1/s
=0(1) as n — . (8)
Similarly,
| J3 |< f | C(u)f(n(u)du |=O(1) as n — o0, (9)
19

by (6), (7), and (8), and we have

| 708 — g(y) |= O(1) as n — .

This completes the proof of Theorem 2. []

3. Conclusion. In this study, we have introduced and thoroughly ex-
amined the Euler-Banach operator as a powerful tool for approximating
functions via their Fourier series. By formulating and proving two approx-
imation theorems based on the proposed product deferred Euler-Banach
summability mean, we have established its superiority in enhancing the
rate of convergence over traditional summability methods. Furthermore,
the proposed operator holds promising applications in fields such as math-
ematical physics, engineering, and applied mathematics, especially in con-
texts where iterative and numerical techniques are fundamental. The find-
ings of this work provide a foundation for future research into more ad-
vanced summability approaches and their practical implications in solving
complex analytical problems.
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