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SHARP CONDITIONS FOR WEIGHTED INTEGRABILITY
OF q-DUNKL FOURIER TRANSFORMS

Abstract. We obtain sufficient conditions for the weighted inte-
grability of the g-Dunkl Fourier transforms of functions from gen-
eralized integral Lipschitz classes. In the L? case, we prove the
sharpness of these conditions.
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1. Introduction. Let f € L'(R), ie., f: R — C be Lebesgue-
integrable function on R. Then the Fourier transform of f is defined by

~

f(z) = (27?)_1/2Jf(t)6_“’” dt, zeR.

~

If fe LP(R), 1 <p<2,then f(x) is defined as a limit of
b
(2m) "2 J f(z)e ™ dx

in the norm of L”(R), 1/p + 1/p' = 1, as a,b — +oo. In particular,
f e L”(R). The following Hausdorff-Young inequality proved by Titch-
marsh [16, Ch. IV]

~ /p
Il < cisty=c( [1rora)”, jer®. 1<p<2
R

is valid. For p = p’ = 2, we have the Plancherel equality H]?HQ = | fllz-
More about these results see in [16, Ch. III and IV].
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Szész [15] obtained the sufficient conditions for convergence of the se-
ries Y (Jan (f)|P+[bu(f)|?), where a,(f) (b,(f)) are cosine (sine) Fourier
coefficients of 2m-periodic function f € LP([0,27]), 1 < p < 2. An analogue
of Szdsz’s result for Fourier transform was established by Titchmarsh [16,
Ch. IV, Theorem 84| and this result is well-known.

Gogoladze and Meskhia |7| proposed a class of weighted sequences sat-
isfying a condition similar to the reverse Holder inequality and studied
convergence of series of |a,(f)|? + |b,(f)|? with such weights. Moricz [11]
introduced the continual analogues of Gogoladze-Meskhia classes as fol-
lows. Let v > 1, A\(t) € L},.(R) (i.e., A(t) be Lebesgue-integrable on each
compact from R), A(t) be even and nonnegative, such that the inequality

2i+1 2i
1/ .
( f M(t)dt) T < CO(y)2i -0 J At)dt, ieZ,
21 2i—1

holds for some C(y) > 1. Then A(¢) belongs to the class A,.
Let us define the modulus of continuity of f € LP(R), 1 < p < o0, by

w(f,0) ey = sup [f(-+h) = F()lp-
0<h<6

Moricz [11] proved

Theorem 1. Let 1 <p<2, felP(R),1/p+1/p=1,0<r <p and
AE Ap/(p,errr). Then

o]

f AD|F(B)] dt < JA(t)t—T/P’w’“( Fo 7 /t) Loy dt.

1 >2 1

Seen a more general variant of Theorem 1 in [10, Theorem 4.1|, while
its sharpness was discussed in [10, Theorem 4.2].

The aim of this paper is to obtain an analogue of Theorem 1 for
g-Dunkl Fourier transform and to show its sharpness in the case p = 2.
We note that for g-Bessel Fourier transform such sufficient conditions are
proved by Krotova [9], while for the classical Dunkl transform one can
see [19]. Particular results for generalized Lipschitz and Dini-Lipschitz
classes of functions and non-weighted case were obtained by Daher and

Tyr [5].
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2. Definitions. Let 0 < ¢ < 1, > —1/2 and R} = {¢": n € Z},

z{iq":neZ}andﬂ/Q;:un{O}. Forae Cand ne N ={1,2,...},
we set

@ao =1, (@a=[]0~ad), (@a)e=]]0as)

and

[a], = 11__(2 [, = (iq’_q;’;n, neZ, =1{0,1,...}.

The g-gamma function is given by
Ly(z) = M(l )t w#£0,-1,-2,....
(4", @)
Then (see [3]) Iy(z + 1) = [z],[y(x), T'y(1) = 1 and liIInOFq(:B) = ['(x)
q—1—
for Rex > 0 (Re z is the real part of z € C). A g-analogue of exponential
function e is introduced by Rubin [13]
e(z,q?) = cos(—ixz, ¢*) + isin(—iz, ¢*),

where

%

0 o0
j(i+1) - 2y _ 1)ty _F
cos(z q Z ik sin(zx, ¢°) JZO( 1)q ISR

2j+1

The g-derivative of a function f defined on R, in x # 0 is given by

Do(f)(x) = (f(x) = f(qz))/((1 = g)z), = # 0,
Dy(f)(0) = f'(0), if f'(0) exists. Also we consider D (f)(x) = D, f(q"" ).

Then it is easy to see that for v € R one has D,a” = [v],z¥"! and
Dfa¥ = q "[v]gz "
If f is defined on R,, we can consider the even and odd parts of f:

f(z) + f(==) f(z) = f(==)

fula) = BEEEEE f ) = SRR 2)

and Rubin’s ¢-differential operator [13]

0(f)(x) = Dy fe(x) + Dy folw).
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Let us introduce the g-integral of Jackson for f defined on R, on in-
tervals [0,a], [0, +c0), [a,b], a,be RY, and (—c0,0) by

0

| r@de = -0 X @) + £
% nez
Definitions of §f dyx for a < 0, a € Ry, and S f(z) d,z may be ob-

tained in the same way. Then

D,( | 10d®) = sla). [ Dust1a = 56) - fa)

More about g-analysis see in [§8], e.g., the following simple change of vari-
ables formula may be found in (19.14) from this book:

b
Jb fOx)d,x = 271 ff(:v) dy(x), AeR].
¢ Aa

For a > —1/2, we consider ¢-Dunkl differential operator

flz) = (=)

Nyal£)(@) = 2l + ¢ ol @) + [20 + 1), 22—,

where f., f, are defined in (2). Bettaibi and Bettaieb [3] proved that the
equation Ay (f)(z) = iAf(x) with the initial condition f(0) = 1 has an
unique solution

. AT
\Ilq,oc(/\m> = ja()\xa QQ) + ] ]a+1()\l‘), T € Rq.

[2a + 2],
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Here j,(z, ) is the third Jackson normalized g-Bessel function of the first
kind given by

FqQ (Ck + 1>qn(n+1) ( €T >2n
a+n+1)len+1)\1+gq

ja(I,QQ) = Z(_l)nr 2(

n=0
It is easy to see that

xT
[Qa + 2]qja+1(x7 q2> .

aqja(x>q2) = D;rja(l',(f) = =

Therefore, ¥, () = jo(z,¢?) — i04ja(z, ¢%).
Further, we consider the measure

(1+q)

= mm‘%ﬁ-l dq(l‘) = Ca,q‘$’2a+1 dq(a:) (3)
q

diga ()

For 1 < p < o, the space L?  (IR,) consists of all real functions f on R,
for which

+00
2 = f @) ditg (1) < 0.

The space L;°,(RR,) is the space of bounded on R, functions with uniform
norm £ = 1l = Subes, 1/ (@)
A g-analogue S,(RR,) of the Schwartz space consists of all functions with
finite seminorms P, y,4(f) = sup,eg, [ ()|, m,n € Z, and such that
lim  0p f(x) exists for all n € Z,. It is known that ¥, € S,(R,) and

z—0, zeR,

4

V,al2)] < ,
Voal@) (¢, 90)w

reRy,, (4)

(see [3]). Let us define the g-Dunkl Fourier transform of f € L} ,(R,) by

Fial D) = [ £@)Vsal-y2) dityale)

where the value of ¢, 4 is given in (3). In [3, Theorem 11] it is proved that
Faa(Sy(Ry)) < Sy(R,) and

[Fea(Plzga = 1£l2q.a ()
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for f e S,(R,). Therefore, .7-"d can be uniquely extended to an isometry
of L? ,(R,) and (5) holds for f e L2 (R;). On the other hand, from (4)
we deduce that

4caq

[Fa(Nlega < m\lf ligar [ € Lga(Ry), (6)

(see also |3, Proposition 9]). From (5) and (6) by the Riesz-Thorin theorem
we obtain that Fy, can be extended to L? ,(R), 1 < p < 2, and

HfZa(f)Hp’,qﬂ < C(p, Q)Hpr,qym fe Lg,a<Rq)7 Ip+1/p =1 (7)

The generalized ¢-Dunkl translation is defined for f € S,(R,), h,z € R,
by the formula (see [4])

o0 f j VW o (y2) Wy (9h) dptg(y),

T9“ f = f. Using the density of S,(R,) in L2 ,(R,), Bettaibi et al proved
in |4, Proposition 2| that for f € Lza R,)

175 (Nl2g.0 < [fl2.g.00 1€ Ry,

(q, Qo
and
Faa T ()W) = Coalyh) Fo o) (). (8)
In the same way, the boundedness of translation 7“ and (8) can be proved
for fe b (R, 1<p<2 For fel?l (R, 1<p<2 andmeN, we
introduce the difference of order m with step h € R} by
ARyl N)@) = (I =T f(x)

and the g-modulus of smoothness of order m

Wi (f, 5)p,q,a = sup 1AL 4, olf )Hp,q,a'
0<h<6,heRy L{0}

For conditions of Gogoladze-Meskhia-Moricz type we consider even
functions A(t) defined on R, such that for i € Z and v > 1

(1/q)"*+? y (1/q)!
( J /\'V(t)duw(t)) 7g(/w(fz‘(2(1+2)(1/%1) f A dpga).  (9)
(1/q)t (1/q)i—1
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If (9) holds, we write A(t) € A, 4. Note that fory = p'/(p'—r),0 <7 <P/,
onehas1/y—1=1—r/p'—1= —r/p'. In |9, Lemma 4], it is proved that
A(t) = |t|°, § € R, belongs to all classes A, 0, 7 > 1.

Let W (R,), where m € N, 1 < p < 2, be the Sobolev spaces of

p7q7a

functions f € L? (R,), such that AJ ,(f) € LE ,(R,) for j =1,2,...,m.
Let ® be the set of nondecreasing continuous on R, = [0,00) func-

5
tions w, such that w(0) = 0. f w e ® and [t 'w(t)dt = O(w(9)), then w
0

0

belongs to the Bary class B; if w € ® and 6™ { ¢t ™ w(t) dt = O(w(0)),
5

m > 0, then w belongs to the Bary-Stechkin class B,, (see [2]).

3. Auxiliary propositions

Lemma 1. Let a > 0,0 < q < 1. Then there exists v > 0, such that
Ja(z, @) <1, zeRS, a>0, (10)

oz, ¢%) — 1| =, zeR) A (1, +0). (11)

Proof. The inequality (10) was noted by Dhaouadi |6, Remark 1|, the
inequality (11) was proved by Achak, Daher, Dhaouadi and Loualid in [1].
Similar estimates for the classical Bessel function can be found in [12]. [J

The result of Lemma 2 can be found in [17, Lemma 3.2].

Lemma 2. Leta >0,0<qg<1,kmeN, k>m,feW (R
Then for some C' > 0 we have

wk(f, 5)27(17& < C(Smwk_m([\g?af, 5)27,1,06, 6> 0.

Lemma 3 easily follows from (8).

Lemma 3. LetmeN, a>0,1<p<2. Then
FaaBilgal)(@) = (1= Wya(ha))"Foo(f)(x),  haeR,

Lemma 4 is an analogue of the famous Titchmarsh equivalence theo-
rem. It is proved by Tyr [18].

Lemma 4. Letwe By, meNand fe L? (R,). Then the statements
Win(fit)240 = O(w(t)), t e RY, and

q’

f FL (W) dagaly) = O (P(R), heRF,  (12)

ly|=h—1
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are equivalent.

Lemma 5. Let o > 0 and

>
Dy 4.l J U, o(—tx) ditg.a —f;a()([_%y])(x), ye]qu
t|<y

where xg be the indicator of a set E. Then
|1Dy,q.al2.q0 = Kyt ye R;v

where K does not depend on y.

Proof. By the Plancherel equality (5) for y = ¢°, s € Z, we obtain

s

q

|%wiw=mmmw=zﬁwwm=
0

e 0
1_ q qs Z n+s 2a+1 q" Cl((l _ q s(204+2) Z 2a+2
n=0

n=0

(1- Q)qs@a”) 2042
=G 1 — g2o+2 = Coy™ ™

[

3. Main results.

Theorem 2. Let1<p<2,1/p+1/p=1,a20, fell (R;), meN.
If X € Apjp—priryge = Ap/—r).q.a for some r € (0,p), )\(:E)X[,Ll](x) €
2P~ (R,), and the integral

0
[ Ao (.71, diat)
1

converges, then A(t)|Fg ,(f)(t)]" € L} ,(R,).

Proof. Let M; = [(1/q)',(1/q)"'] U [—(1/q)*"', — (1/q)!], i € Zy. By
Lemma 3, (11) from Lemma 1, and Hausdorff-Young type inequality (7),
we have

QJV&W@WWW@<
M;
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s J [Fra DW= Uyala'y.a®)"™ dpgaly) <

M;
o
J IFa (D= Yaald'y,a®)™ ditga(y) = | Fou (AR 0 (FE g <
—0

< G AT AN g0 < Cowh(f.0p g

By the condition A € Ay /(y—r) ¢« and the Holder inequality with exponents
p//r and p'/(p’ — r), we have

/

| MO DO ittt < (| 17 OF diga)

M;

) —r 1—r/p’
<[ [ e duan) " <

M;
< Cw”, (£,0")pgag 2D J M) dptg.a(t).

M;—

By the monotonicity of the integral, we have

| ronz DO deat < | AOnld o g, (1), (13)

M; M;—y

Summing up (13) over i = 0,1,2,..., we obtain

| A OF daate) <

teRy,|t|>1

cor [ Ay )

‘t’r(2u+2)/p’
teRq,[t|>1/q

Since A e LEAP7[=1,1], || and wy(t, |t|)pga are bounded for
t| € [1/q, 1], the integral in the right-hand side of (14) is finite.

Finally, by the condition A € LEA¥ ™" [—1,1], the Hélder inequality
with the same exponents, and (7), we obtain that A(t)|Fy,(f)(t)|" €
L; ,[—1,1] and the theorem is proved. []
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Let 0 <7 < p/. By Lemma 5 in 9] it is easy to see that \s(t) = [t|°
belongs to LE AP~ [=1,1] if and only if 8 > —(1 — r/p')(2a + 2). From
this note and Theorem 2, we obtain

Corollary 1. Let 1l <p <2, meN 1/p+1/p =1, a >0, feR,
fe P (Ry), and wy(f,t)pqa = O(t°) for some 6 > nd all t € R,.
Ifre(0,p), B> (r/p —1)(2a + 2) and

/ 2 2
p/>r>p(ﬁ+ o+ )7
20 + 2 4+ p'o

(15)

then 7|, (f)(1)]" € Ly o(Ry).

If =0, then in (15) the case p' = r can be added.
Corollary 2. Let a > 0, k,m € N, 0 < r < 2, f € Wy, (R).
If X e Asyja—r) g0 M) x[-1,17(2) € Lﬁ,/gf*” (R,) and the integral

0

[ A g £ g a0 (16)
i
converges, then A(t)|F,(f)(t)]" € L} ,(Ry).

Proof. By Lemma 2, from the convergence of integral (16) the convergence
of

o]

J)‘@)t r(2at2)/2 7:1+k(f7 )2,q,a dﬂq,a(t)
1

follows. Applying Theorem 2, we obtain the result of the present Corol-
lary. []

Theorem 3 can be considered as a counterpart of Theorem 2 from [11].

Theorem 3. Let 1 <p <2, 1/p+1/p =1,1 < s <p, a>=0,
felr (Ry)NL:(R,) is bounded onRy. Ifm € N, wy(f,t)s g0 = O(H*),

te RS, A€ Ayr)ga for some e (0,p), Az)x_1y(x) € LEAY T (R,)
and the integral

Ayt Ear B g D (f 471 g0 dbg a(t)

——s

converges, then A(t)|Fg ,(f)(t)]" € L} ,(Ry).
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Proof. By definition, under conditions of Theorem for h € R}, we have

||Ahqaf|pqa—j|Ahqa (P dptga(t) <

teRy

o0
<sup|AT F(H)P j AL SO dptgalt) < Chal (£, ) pger

whence
Wi (f, pga < C1EP0l P (f )0 g0 tER]. (17)

Substituting (17) into integral from the condition of Theorem 2, we con-
clude that under conditions of Theorem 3 the function A(t)|F¢,(f)(t)["
belongs to L, ,(R,). O]

Theorem 4 shows the sharpness of Theorem 2 in the case p = 2 under
some restrictions.

Theorem 4. Leta >0, me N, we Bn By, re (0,2). If \(t) is even
positive on R, function, such that the integral

0

| Ao ) da

1

diverges, then there exists fy € L7 ,(R,) with property wm(fo,t)24a =
O(w(t)), t e RY, but A(t)|F, (fo) ()" ¢ Lg o (Ry).

Proof. Let us consider the function
Z aH q j,q,oc(t) - Dql*j,q,a(t»a

where D, 4 are defined in Lemma 5. If g € Lg’a(Rq) is even, then the
equality F¢ (F¢,(g)) = g holds. Therefore,

a0
Z )X i<y ()
and (see the proof of Lemma 5)

| 1P OF dialy) -

ly|>q—™,yeRy
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—J
0 q

=2 ) W)t flduqa( ) =

j=m+1 i

o ©
_ Cl Z w2(qj)q2(a+1)j(q—j(2a+2) . q(l—j)(2a+2)) < Cl Z w2<qj) <

j=m+1 j=m+1

qm
2
=y f “ Qiu) du < Csw(q™).
0

Here we use the fact that the conditions w € B and w? € B are equivalent
(see condition (S) in |2, Lemma 2]) and obtain that the condition (??) from
Lemma 4 is valid for fo. By Lemma 4, we have wy,(fo,t)24a = O(w(t)),
t € RY. On the other hand, w € B,, satisfies Ay-condition w(2t) < Cw(t)
and

q 7

MOV dinaft) = D) [ X diga(t) >

= —3

i f 7D g o(t) = +o0

and, moreover, A(t)|FZ,(fo)(t)|" ¢ Ly o(Ry). O
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