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NORMALITY OF A FAMILY OF HOLOMORPHIC CURVES
THAT PARTIALLY SHARE WANDERING HYPERPLANES
WITH THEIR DERIVATIVES

Abstract. In this paper, we prove that a family of holomorphic
curves in PV (C) that partially share moving as well as wander-
ing hyperplanes with their derivatives is normal. By associating
a moving hyperplane in P!(C) to any holomorphic function, we
also obtain a normality criterion for a family of meromorphic func-
tions that partially share wandering holomorphic functions with
their derivatives. Further, we devise a tractable representation of
complex-valued holomorphic functions on a domain D as functions
from D to P?(C) to obtain a normality criterion that leads to a
counterexample to the converse of Bloch’s principle.
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1. Introduction. A family F of holomorphic functions on a do-
main D in the complex plane is said to be normal if every sequence
{fn} = F contains a subsequence that converges locally uniformly in D to
an analytic function f or a subsequence that converges locally uniformly
in D to co. Normality of families of meromorphic functions is defined like-
wise, where the convergence is required to be with respect to the spherical
metric of the Riemann sphere. The theory of normal families was pi-
oneered by P. Montel who in 1912 obtained the following fundamental
result:

Theorem 1. [20] Let F be a family of meromorphic functions on a
domain D < C that omit three distinct values a, b, ¢ in C := C u {oo}.
Then F is normal in D.
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Since then, normal families have found wide-ranging applications in
the fields of dynamics of rational and transcendental functions, bicomplex
analysis, harmonic mappings, functional analysis, and complex projective
geometry (see [1], [2], [5], [12], [28]).

A significant milestone in this theory is the following result by
W. Schwick [23], which drew a connection between normality and shared
values. Recall that two nonconstant meromorphic functions f and g on a
domain D share a value w € C if f~(w) = ¢~ (w).

Theorem 2. [23] Let F be a family of meromorphic functions on a
domain D < C, and a, b, ¢ be three distinct finite complex numbers. If
for every f € F,f and f' share the values a, b, ¢, then F is normal in D.

Over the last few decades, there have been various improvements of
Theorem 2 (see, for example, [4], [9], [21]). The notion of sharing of values
has been subsequently used by Sun [24] to generalize Theorem 1, where
omission of three distinct values is replaced by sharing three values by all
the functions of the family.

Recall that a function f: D — PY(C) that is holomorphic (regarded
as a map between two complex manifolds) is said to be a holomorphic
curve. Theorem 1 has been extended to the family of holomorphic curves
in PY(C) by J. Dufresnoy [13] where, instead of three distinct points,
the omission of 2N + 1 hyperplanes in general position is required. This
requirement of omission has been further reduced to merely sharing of
such hyperplanes by Yang et al [26]. An adequate extension of Theorem 2
to the case of holomorphic maps into complex projective space could only
be achieved after a proper extension of the notion of derivatives for such
maps, which was accomplished by Ye et al [27].

Let f and g be two meromorphic functions on a domain D < C. The
functions f and g are said to share a function @ on D if {z € D: f(z) =
=a(2)} ={zeD:g(z) =a(z)}. I {zeD: f(z)=a(z)} = {2€ D: g(z) =
= «a(2)}, then we say that f partially shares o with g on D. Recently,
the notion of partial sharing has led to some interesting normality criteria
(see, for example, 7], [8], [17]).

In 2014, Grahl and Nevo [15], using a simultaneous rescaling version
of the Zalcman Lemma, obtained a normality criterion for a family of
meromorphic functions, where each member shared three functions with
its derivative.

Theorem 3. [15] Let F be a family of functions meromorphic in the
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unit disk D = {z € C: |z| < 1} and € > 0. Assume that for each f € F

there exist functions agf ), agf ), and agf ) that are either meromorphic or

identically infinity in D, and do not have any common poles with f, such
that f and f’ share the functions agf), aéf), and aéf), with the property
that

a(a(-f)(z),a,(cf)(z)) >e VzeD, j, k €{1,2,3} with j # k.

Then F is normal in D.

The functions agf ), agf ), agf ) are called wandering shared functions as

they vary for different functions of the family F. After proving our first
main result, we shall be in a position to replace sharing in Theorem 3 by
partial sharing. But it shall entail some extra restrictions on the wandering
partially shared functions; that is, they must be bounded holomorphic
functions on .

The extension of results in theory of meromorphic functions to that
of holomorphic functions into PV (C) has been a regular feature in the
field of normal families (see [10], [16], [25]). The results so obtained are
more general and can be reduced to the case of meromorphic functions
by just taking N = 1. In our approach to the last result of this paper,
we have followed a different path by starting with a family of complex-
valued holomorphic functions and lifting them to curves in P*(C). A
choice of proper hyperplanes has enabled us to formulate a nice criterion
for normality of complex-valued holomorphic functions on D. Now we
introduce the necessary preliminaries.

1.1. Projective Space and Hyperplanes. An N— dimensional
complex projective space PV (C) is the quotient space (CN*\{0})/ ~,
where (ag, ...,ayn) ~ (bo,...,by)if and only if (ag, ...,an) = A(bo, ..., bn)

for some A € C\{0}. We denote by [ap : --- : ax] the equivalence
class of (ag,...,ay). The mapping m: CN*1\{0} — PY(C) given by
m(ag,...,ay) = [ag : -+ : ayn] is called the standard projection mapping.

In fact, PN(C) is endowed with a canonical metric called the Fubini-Study
metric. For details, see [19] and [22, pp. 99 -102].

A subset H of PN(C) is called a hyperplane if there is an N— dimen-
sional linear subspace H of CN*!, such that w(H\{0}) = H.

Let z = [20: 21 : --- : zy] be a fixed system of homogeneous coor-
dinates and a;(¢),j = 0,1,..., N be holomorphic functions on a domain
D not all simultaneously zero at any point in D. Then, corresponding to
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each point ¢ € D there is a hyperplane given by

H(¢) = {2 € PY(C)]ag(¢)z0 + -+ + an(¢)zn = 0}. (1)

We call it a moving hyperplane, and write it as H(() = {< z,a(¢) >= 0},
where «(C) = (ao(¢),...,an(¢)) for any ( € D, and

(z,a(Q)) == aog(C)zo + - - - + an({)2n.

In particular, if «(¢) = a = (ag,a4,...,ay) is a fixed non-zero vector in
CN*1 then H = {(z,a) = 0} is said to be a fixed hyperplane.

In this paper, we shall consider only moving hyperplanes H(({) given
by (1) for which we can find holomorphic functions a;(¢) on D with
|H(()| := max |a;(¢)] = 1V ¢ € D. The corresponding a(() is said

0<i<N
to give a normalized representation of the moving hyperplane H(().

Remark 1. If(3(() also gives a normalized representation of H((), then
there exists a uni-modular constant A\, such that «(¢) = A\3(¢) on D.

Remark 2. If a(() = (ao(C),...,an(C)) is such that for some k,
0 <k <N, |a(Q)] > OIP%)};VMJ-(C)\, V(¢ € D, then the hyperplane de-
\]\
J#k
fined by (1) shall always have a normalized representation on D given
by

B N GO(C) ak—l(C) ak+1(§) &N(C)
()= (g b i )

Remark 3. Any fixed hyperplane always has a normalized representa-
tion in D.

Remark. Henceforth, we consider hyperplanes (moving or fixed) only in
their normalized representation on any domain D.

Let Hy(C), Hy(C),..., Hy41(¢) be moving hyperplanes in PV (C) rep-
resented as H;(() = {{(z,a;(¢)y = 0} for j = 1,...,N + 1. Then, by
Remark 1, it is clear that

D(H1(C),- - Hy+1(C)) = [ det(ai (C), .- - .y 1(C))]

depends only on H;(¢) and not on any choice of «;({) for normalized
representations of such hyperplanes.
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Definition 1. Let H((),...,H,(¢) with ¢ > N + 1, be moving hy-
perplanes in PV (C) given in normalized representation respectively by
a1(Q),...,a4(C). Define

D(H1(C), - -, Hq(Q)) := I 1 | det(af, (), - -, iy, (O)I-

I<ji<<jin+1<g

We say the moving hyperplane family {H((), ..., H,(()}, ¢ > N + 1,
in PN(C) is in general position, at a point (; of D, if
D(Hl(<0>, . 7Hq(CO)) > 0.

1.2. Reduced Representation. Let D be a domain in C,
f: D — PY(C) be a holomorphic curve, and U be an open set in D.

Any holomorphic map f: U — CN*!, such that n(f(z)) = f(z) in U, is
called a representation of f on U, where 7 is the standard projection map.

Definition 2. For an open set U of D, we call f=(fo,--., fn) a reduced
representation of f on U if f is a representation of f and fy,..., fy are
holomorphic functions on U without common zeroes.

1
For any such representation, we put || f(z)] := <Zij\i0 |fz(z)|2> .

Remark 4. Every holomorphic map of D into PV (C) has a reduced rep-
resentation on D (see [14], Section 5).

Remark 5. Let f = (fo,..., fn) be a reduced representation of f on a
domain D. Then, for any arbitrary nowhere-zero holomorphic function h
on D, (hfo,...,hfyn) is also a reduced representation of f. Conversely, for
any other reduced representation (go, ..., gn) of f, each g; can be written
as g; = hf; for some nowhere-zero holomorphic function h on D.

Definition 3. A function f: D — PN(C) with the reduced representa-
tion f = (fo,..., fn) is said to intersect a moving hyperplane H({) given
by (1) at a point zy € D if

(f(2), H(2)) = ao(2) fo(2) + -+ + an(2) fn(2) (2)

has a zero at zy, and we then write f(zy) € H(zo).
If H is a fixed hyperplane given by {agpzo + - -+ + ayzy = 0}, then we
say that f(z) € H if (f(2), H) := aofo(2)+- - +an fn(2) has a zero at z.
If(f(z), H) = 0 on D, then we say that f(D) c H, and if(f(z), H) # 0
Vz € D, then f is said to omit H on D.
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1.3. Sharing of Moving Hyperplanes. With the same notation as
in Definition 3, we now define the sharing of moving hyperplanes, which
extends the definition of sharing functions.

Definition 4. Suppose f and g are two holomorphic curves from the
domain D into PY(C) and H({) be a moving hyperplane in PN(C). If
there exists some (and thus all) reduced representations f and § of f and
g, respectively, such that the holomorphic function { f(z), H(z)) shares (or
partially shares) zero with (§(z), H(z)) on D, then we say that f shares
(respectively, partially shares) the moving hyperplane H({) with g on D.

By Remark 5, (f(z), H(z)) = 0 is independent of the choice of reduced
representation of f. Therefore, the sharing (or partial sharing) of moving
hyperplanes is well-defined.

1.4. Normal Families of Holomorphic Curves in Complex
Projective Space.

Definition 5. A family F of holomorphic curves from a domain D into
PN (C) is said to be normal in D if any sequence in F contains a subse-
quence that converges uniformly, with respect to the Fubini-Study metric,
on compact subsets of D to a holomorphic curve from D into PV (C);
and F is said to be normal at a point a in D if F is normal on some
neighbourhood of a in D.

Using the Fubini-Study metric on PY(C), we see that a sequence
{fn}%_, of holomorphic maps of D into P¥(C) converges uniformly on
compact subsets of D to a holomorphic map f if and only if each f, for
any a € D has a reduced representation f,, = (fno, .. ., fun) on some fixed
neighbourhood U of a in D, such that {f,;}°_; converges uniformly on U
to a holomorphic function f; (for i = 0,1,..., N) on U with the property
that f = (fo, f1,..., fn) is a reduced representation of f on U.

1.5. Extension of Derivative. In order to extend Theorem 2 to a
family of holomorphic curves, a suitable notion of derivative was provided
by Ye et al [27] as follows:

Let f = [fo :---: fn] be a holomorphic map of D into PN(C), u €
{0,1,...,N} with f, # 0, and d(z) be a holomorphic function in D,
such that f2/d and W(f,, fi)/d, (i = 0,1,...,N;i # p) are holomorphic
functions in D without common zeroes. Here, as usual, W(f,, f;) denotes

the Wronskian of f, and f;.
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Definition 6. [27] The holomorphic map induced by the map

(W(f,u; f0)7 ERCCI) W(f#u fﬂ*l)? 57 W(fy,; fu+1)7 ER) W(f/u fN)) D — (CNJrl
is called the p-th derived holomorphic map of f and we write

V.f =
[W<f#7f0)/d7 . '7W(fu>fufl)/d7 fi/d’W(foer)/d? . '7W(fu>fN)/d]'

For simplicity, we will write Vof as V f.

Remark 6. The definition of V,f does not depend on the choice of a
reduced representation of f.

fi(z)

o\%
a holomorphic map from D to P*(C) given by f(z) = [fo(2) : fi(2)] and
V [ is exactly the ordinary derivative of f(z).

In 2015, Ye et al obtained the following result, which led them to an
extension of the Schwick’s theorem:

Remark 7. A meromorphic function f = on D can be regarded as

Theorem 4. [27] Let F be a family of holomorphic maps of a domain
D < C into PY(C), Hy, ..., Hon,, be hyperplanes in PY(C) in general
position, and § be a real number with 0 < § < 1. Suppose that for each
f € F the following conditions are satisfied:

(i) Vf(z) partially shares H; with f(z) on D, for j =1,...,2N + 1.

) Wi | y(e)
(ii) If f(z) € ]L=J1 H;, the ] > 0.
2 (KVf(=), Hel _ 1

<—-fork=1,...,2N + 1.

(iii) If f(z) € jL:Jl Hj, then fo(2)2 0

Then F is normal in D.

2. Main Results. We generalize Theorem 4 to the case where we
can take moving hyperplanes that can vary for different functions of the
family F.

Theorem 5. Let F be a family of holomorphic maps of a domain
D < C into PN(C) and § be a real number with 0 < § < 1. Suppose
that for each f € F and z € D there exist 2N + 1 moving hyperplanes
Hl(2),... ,HJNH(z) in PY(C) in general position with

D(H{(2), ..., Hly,,(2)) 2 6, Vf € F,z € D,
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such that the following conditions are satisfied:
(i) Vf(z) partially shares ij(z) with f(z) on D forj =1,... 2N + 1.

(i) If f(2) € zﬁlH;‘(Z), then 17002)]

Fe)I =
(i) I f(z) e U B (=), then Y7 (Jf)<’ fj,é“”' < k=1 2N+
=1 0l%

Then F is normal in D.

In particular, when f and V f share these 2N 4+ 1 moving hyperplanes,
then one can see (as in |27, Theorem 2.3]) that the condition (iii) of The-
orem 5 is satisfied and we obtain the following result:

Corollary 1. Let F be a family of holomorphic maps of a domain
D < C into PN(C) and § be a real number with 0 < § < 1. Suppose
that for each f € F and z € D there exist 2N + 1 moving hyperplanes
Hl(2),... ,HJNH(Z) in PY(C) in general position with

D(H{(Z>a s 7HJN+1(Z)) 2 5, Vf € JT'-,Z € _D7

such that the following conditions are satisfied:
(i) f, V f share the moving hyperplanes ij(z) onDforj=1,... 2N+,

At |fo(2)|

1) if f(z) € Iz en .
W riEe | B, then ey >0

Then F is normal in D.

Recently, Datt et al [11, Theorem 1.1] have obtained a result similar
to Corollary 1 but with an additional assumption on the normality of the

family of holomorphic functions H jf induced by the moving hyperplanes

H Jf (2). Inequality (3) of the assumption of [11, Theorem 1.1] clearly re-
quires a sort of normalized representation for such moving hyperplanes,
and as can be seen in our proof of Theorem 5, the additional assumption

on normality of {H Jf } is not necessary.

Now, considering the case NV = 1, we can see that each of the moving
hyperplane H Jf (2),7 = 1,2 and 3 is a function from the domain D into
P}(C) and we obtain the following normality criterion regarding partial
sharing of functions:
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Theorem 6. Let F be a family of meromorphic functions on a domain
D < C and ¢, M be two positive real numbers. Suppose for each f € F
there exist three holomorphic functions a{ , ag , and ag defined on D, such
that the following conditions are satisfied:
(i) |al(2)] < M and |al(z)—a](z)| > eVz€ D and j, k € {1,2,3}, j # k;
(ii) f’(z) partially shares af(z) with f(z) on D, for j € {1,2,3};
(iii) for any z € D if f(z) = af(z) then |f'(z)| < M for j € {1,2,3}.
Then F is normal in D.
The following examples show that each of the condition in Theorem 6
is essential. We denote the unit disk {z € C: |z| < 1} by D.

Example 1. [Condition (i) is essential] Consider the family
{fn(z) = €"*: n e N}, which is not normal in D. Take af"(z) = (j+1)ne™

for j € {1,2,3}. Note that f/(z) = ne™ # af"(z) for any z € D and
je{1,2,3}. Also, fu(2) # al"(2) for any j € {1,2,3}.

Example 2. [Condition (ii) is essential] Consider the family

()= G+ ) e

of meromorphic functions in I, which is not normal. Take

1 1
af"(z) = 5 + 8% ar(z) = —=— = and af"(z) =0,
which are holomorphic functions on D satisfying condition (i) of Theorem 6

with M =1 and € = g. We see that

£(2) —ncosnz<1+z>+ 1 (1)
2)=——— =+ — — ).
" sinnz \2  8n sinnz \8n

Note that f,(z) = a{"(z) implies sinnz = 1 and, consequently, cosnz = 0.
Then |f](%)] is clearly bounded by 1 for all z € D and n € N. Similarly, we
can see that f,(z) = al"(z) implies sinnz = —1, which leads to cosnz = 0
and, again, |f/ (z)|is bounded by 1. Also it is clear that f,(z) omits a3"(2)
on D. Thus condition (iii) of Theorem 6 is also satisfied.

Example 3. [Condition (iii) is essential] We consider the family
1
{fu(2) = nz: n € N}, which is not normal in D. Taking af”(z) =7
J
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j€{1,2,3}, on D, we can see that condition (i) of Theorem 6 is satisfied

with & = 15 and M = 1 whereas condition (ii) is vacuously true.

In case f(z) and f/(z) share the functions a{(z), it is easy to see that

the condition (ii) of Theorem 6 is fulfilled and so we have the following
Corollary, which is a weaker form of Theorem 3:

Corollary 2. Let F be a family of meromorphic functions on a domain
D < C. Suppose that for each f € F there exist three holomorphic
functions al,a} and af defined on D and some positive real numbers &

and M, with
]af(z)\ < M and ]af(z)—ai(z)\ >eVze D andj ke {l,2 3} withj # k,

such that f and f’ share the functions a{,ag and ag on D. Then F is
normal in D.

2.1. A Representation of Holomorphic Functions as Curves
in P?(C). Let f(2) be a holomorphic function on a domain D < C.
Corresponding to this function, we define a function F': D — P?(C), whose
representation F': D — C*\{0} is given by

F(z) = (1,2, f(2)). (3)

We regard it as the lifting of the complex-valued holomorphic function f
to a holomorphic curve F into P?(C). Note that the representation (3)
is always a reduced representation with Fy # 0 everywhere on D. The
derivative of F' (or, more precisely, the representation of the derivative of
F) is given by

VF = (L1, f'(2)), (4)

which again happens to be in reduced representation for the whole do-
main D.

It is worthwhile to mention that taking f to be a meromorphic function
in representation (3) would have forced us to use two different holomorphic
functions and we would not have been able to obtain such a convenient
form of derivative as in equation (4).

We show that the normality of a family of complex-valued holomor-
phic functions is equivalent to the normality of family of corresponding
holomorphic curves lifted to P?(C).
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Theorem 7. Let D be a domain in C and F be a family of complex-
valued holomorphic functions on D. Then the family

F* ={F: D — P*C) with F(2) = (1,2,f(2)): f € F}
is normal in D if and only if F is normal in D.

As a consequence, we obtain the following normality criterion for a
family of holomorphic curves that requires, among other conditions, a
boundedness condition on derivatives at fixed points of the respective
functions.

Theorem 8. Let F be a family of complex-valued holomorphic func-
tions on a domain D < C and M, € be two positive numbers. Suppose for
each f € F there exist two holomorphic functions af (z) and a}(z) defined
on D with |af(z)| <1,VzeD,j=1,2and |al () —al(2)| > e Vz € D,
and the following conditions are satisfied:

(i) f'(z) = a](z) implies f(2) = a] (2), f(2) = a}(2) implies | f'(z)| < M

for j € {1,2};

(ii) z is a fixed point of f wherever f’ assumes 1 in D;

(iii) |f'(z)| < M, whenever z is a fixed point of f.
Then F is a normal family.

The following example shows that condition (i) is essential:

Example 4. Let F = {f.(z) = ¢"* + z: n € N} be defined on C. Here
each f/(z) =ne™ 4+ 1 # 1 for any z € C. Also, it is clear that no member
of this family can have any fixed point. But F is not a normal family.

Theorem & enables us to formulate a counterexample to the converse
of Bloch’s principle. Bloch’s principle states that a family F of func-
tions holomorphic in a domain D and possessing a certain property P is
likely to be normal if there is no non-constant entire function possessing
the property P (see [3], |6], [18]).

Counterexample. Let F be a family of holomorphic functions on a
domain D and let P be the property that for each f € F there exist two

holomorphic functions af(z) and aJ(z) defined on D with \a;-c (z)] <1,

¥z e D, j = 1,2 and |af(2) — aj(2)| > ¢ ¥z € D, and the following
conditions are satisfied:

1) f'(z) = af(z) implies f(z) = af(z), f(z) = af(z) implies |f'(2)| < M
for j e {1,2}.
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2) zis a fixed point of f wherever f’ assumes 1 in D.
3) |f'(2)] < M, whenever z is a fixed point of f.

Then, by Theorem 8, F is normal on D. But the function f(z) = 2z
Vz € C is a non-constant entire function and possesses the property P
when af(2) = —1, a) = -1, ¢ =1, and M = 2. This shows that the
converse of Bloch’s principle fails to hold.

Remark 8. We have not been able to show that the conditions (ii) and
(iii) are essential in Theorem 8 and leave this question open for further

investigation.

3. Proofs of Main Results. To prove our main results, we require
the following lemmas:

Lemma 1. [I] Let F be a family of holomorphic maps of a domain D in
C into PN(C). The family F is not normal on D if and only if there exist
sequences {f,} < F, {z,} © D with z, — zo € D, {p,} with p, > 0, and
pn — 0, such that g,(&) := fu(zn + pu€) converges uniformly on compact
subsets of C to a nonconstant holomorphic map g of C into PV (C).

Lemma 2. [22, p.141] Let f: C — PY(C) be a holomorphic map, and
Hy,...,H,(q = 2N + 1) be hyperplanes in PY(C) in general position. If
for each j = 1,...,q, either f(C) is contained in H;, or f(C) omits H;,
then f is constant.

Proof of Theorem 5. Suppose F is not normal on D. Then, by
Lemma 1, there exist sequences {f,} < F,{z,} € D with z, — 2 € D,
{pn} with p, > 0, and p, — 0, such that ¢,(§) = fu.(z, + pu&) con-
verges uniformly on compact subsets of C to a nonconstant holomor-
phic map g: C — PY¥(C). Corresponding to each such f,, let Hf”(z),
j=1,2,...,2N + 1, be the moving hyperplanes given by the assumption
of the theorem. Let each H Jf "(z) be written in normalized representation

as
H"(2) = (¢, af"(2)) = 0},
where ;" (z) = (aﬁ](z), aﬁ(z), . ,aﬁ}\,(z)) is a non-zero vector in CV+1

for any z € D with rﬁ%{ ]afj}c(z)\ = 1.

From compactness of A = {(aq,...,a,) € CN*L: rilj\z;gc lag| = 1} it fol-
lows that for any j € {1,2,...,2N +1} there exist a subsequence of ozf"(z),
which we again call a;-c"(z), that converges to «;(z) locally uniformly on
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D with «a;(z) € A for any z € D. Let H;(z) be the moving hyperplane
defined by «;(z),j = 1,2,...,2N + 1. By continuity of the determinant
function, it is clear that for any z € D

D(H\(2),. .., Hays1(2)) = nf{D(H]"(2),..., Hfx . () neN} > 6 >0

and, so, hyperplanes Hi(2),..., Hyy,1(2) are in general position for any
z € D and in particular at z.

Now, we proceed along the line of [27, Proof of Theorem 2.1|, but
with due consideration for the hyperplanes that are moving on D as well
wandering for each f € F. As g: C — PY(C) is a non-constant function,
by Lemma 2 we may assume that {g(&), H1(zo)) does not vanish identically
and has at least one zero in C. Let & be such a zero. That is,

(9(&), Hi(z)) =0 (5)

and there exists a small neighbourhood U of &y, such that {g(§),H1(20))
has no other zero in U. Moreover, each g, has a reduced representation

g~n(£) = (gn,0(§)7 ce agn,N(g)) = (fn,O(Zn + png): R fn,N(zn + pn€>>

on U, such that for each ¢ = 0,1,..., N the sequence {g,;: n € N} con-
verges uniformly on U to a holomorphic function g; with g = (go, ..., gn)
as the reduced representation of g on U. Shrinking the neighbourhood U

N
if necessary, we can see that > oz{f;(zn + pn&)gn.i(§) converges uniformly on

1=0
N N
U to > a1:(20)g:(§). Note that from equation (5), > a1,(20)9:(§) = 0.
=0 =0

So, by Hurwitz’s theorem, there exists a sequence &, tending to &y, such

N
that, for large n, >, oz{j;(zn + Pnén)gn.i(&n) = 0, that is,
i=0

N
Z a{j)i('zn + pnfn)fn,i(zn + pn&n) = 0, (6)
i=0

which implies f,(zn + puén) € Hi™ (2, + puén); by condition (ii) of the
assumption, we have
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That is, |[gn0(0)| = 0/gn(&n)]- Taking n — o we get

190(80)| = 0] 3(&0) 0.

Thus, go(§) # 0 and further shrinking U, if necessary, we may assume
that go(§) # 0V € € U. This implies ¢, 0(§) # 0 for £ € U when n is
sufficiently large. For any such n,

(9121,0(5)7 W(gn,(b gn,l)(ﬁ)u A W(gn,(b gn,N)(é))

is then a reduced representation of Vg, (§) on U. Also note that for any
1=1,2,...,N and £ € U the Wronskian

W (g0 9ni)(§) = puW (fr05 fri) (20 + pnf). (7)

From (6) and condition (7i7) of the assumption, we have, for any
k=23,... 2N +1,

|<( 7%,07 W(fn,(b fn,1)7 T W(fﬂ,ﬂ) fn,N))v (O‘QLO» te vai?N)>| <

| fol h

where the left-hand side of the above inequality is evaluated at (2, + pn&,)-

I

ST

N _fn
fn ak,i(zn + Pnfn)W(fn,(), fn,z)(zn + Pnfn) 1
= |, (2 + pnén) + < <
k70( ) ; 3,0(7571 + Pnén) 0
Using (7), we get
N _fn
fn ak,i(zn + pngn)W<gn,Oa gmz)(&n) 1
;o (zn + pnén) + < -
kol ) Z{ PG o(6n) o
o N af (2 + Puba)W (900, 9n) (E) | o
d pnak@(zn + pnén) + Z 3 < 5 (8)
i=1 gn,()(gn)

Define for any £ =2,3,...,2N + 1

¢k(§) _ Z ak,i(ZO)Z;((gg)mgi)(g)’ cel.

Taking n — o in equation(8), we obtain

or(&) =0for k=2,3,...,2N + 1. 9)
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Now we claim that there are at most N hyperplanes in
{Hp: k = 2,3,...,2N + 1}, such that ¢x({) = 0 on U. Suppose, on
the contrary, that ¢2(§) = -+ ¢n42(§) =0 on U. Since

0; (&) = (i%,z’(%)%)/ =0,

N

there exist complex numbers c¢;, such that ZO‘J’J(ZO)& = ¢; on U for
- 9o
=1
7=2,...N +2.
Since Hy(zp), ..., Han11(20) are in general position, the system of equa-
tions

N

Zaj,i(zo)xi =cjforj=2,...,N+2

i=1
has no solution or the solution is unique. Thus g is uniquely determined
by go # 0 in U. Hence, g is constant on U, which is a contradiction. So
the claim is true. By the validity of our claim, we can suppose without
loss of generality that ¢, () 20 on U for k =2,..., N + 1. Also, for each
ke{2,....,N +1},

N _fa

fn oy’ (zn + Pr&)W (fa0, fri) (2 + pnf)
pna Zn + Pn§ + pn
k’O( ) ; 7%,0(271 + pn€>

converges uniformly to ¢x(§) on U. Again, by Hurwitz’s theorem and
equation (9), there exists a sequence ¢, — &g, such that

(V fulzn + puCa) B (20 + pua)) = 0.
Then, by condition (i) of the assumption,
{Falzn + puGa)s HI (20 + puGa)) = 0.
Taking n — o0, we get
(g(&), Hr(20)) =0 for k=2,...,N + 1.
Noting equation (5), we have

(9(&), Hk(20)) =0 for k =1,2,...,N + 1.
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This contradicts the fact that the hyperplanes {Hy(29): k=1,..., N+ 1}
are in general position. Hence F is normal on D. []

Proof of Theorem 6. We can assume that M = 1, for otherwise we

al(z) £
TR {1,2,3}, and ¢ by i

and consider the normality of the family ' = {% ferF } which is

equivalent to the normality of F.
Now, for any f € F,z € D,j € {1,2,3}, let ij(z) be the hyper-
plane defined by <z,oz§(z)> — 0, where o/ (2) = (al(2),—1) € C? gives a

J J
normalized representation for H Jf (z). Writing the meromorphic function
f(z)
1) =
() =% B
f(z0) = af(zg) if and only if f(z) € H]f(zo), and f'(z) = af(zo) if and

only if V f(z) € H]f(zo). It can easily be computed that

may replace the functions af (z) by

as f(z) = [fo(2), fi(2)], we can see that for any z; € D,

D(H!(2), H](2),H](2)) > &® VfeFandzeD. (10)

3
Further, f(z) € ij(z) implies f(z) = af(z) for some j € {1,2,3}
=1

and we have

| fo(2)] 1

IF(2)]

(11)

2

\
Sl

f1(2)

L+ 156

and
(V£ (z), HL(2)))|
| fo(2)[?
Taking 6 = min{e?, 1}, we see from equations (10), (11), and (12) that F
satisfies all the conditions of the Theorem 5. Hence F is normal in D. []

= laz(2) = f(2)l < 2. (12)

Proof of Theorem 7. To prove this theorem, it is enough to show that
a sequence {f,} < F converges locally uniformly on D to a holomorphic
function f on D or converges locally uniformly to oo if and only if the
sequence {F,} with F,, = (1,2,f.(2)) converges locally uniformly on D to
a holomorphic function F: D — P?(C).

First suppose that {f,} < F converges locally uniformly on D to a
holomorphic function f; then, clearly, F;,, converges locally uniformly to
F, whose reduced representation is F' = (1, z, f(z)). On the other hand,
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if f,, converges locally uniformly to oo, then we note that for any zo € D,
such a neighborhood U exists, that f, converges uniformly to co on U and
for sufficiently large n, f,,(z) # 0V z € U. On such a neighborhood U, we

JTL(’Z)’ ,}’I’L(’Z)’

is again a reduced representation of F,, that converges uniformly
on U to the function F': U — P?(C) with the reduced representation
F(z)=(0,0,1).

Conversely, suppose F,, — F. Let (y € D. Then there exists a neigh-
borhood U of {, and a reduced representation (a,(z),n(2),vn(z)) of
F,.(z) in U, such that o, — a, B, — [ and =, — < uniformly on U,
where («(z), B(z), 7(z)) is a reduced representation of F(z) in U. As
Fo(2) = (1,2, fo(2)) is also a reduced representation of F,(z), there are
nowhere-zero holomorphic functions h,(z) on U, such that for all n € N:

hn(2), (13)
ha(2), (14)
fn(2)ha(2). (15)

Claim: «(z) is either identically zero or nowhere-zero on U.

Suppose, on the contrary, that a(z) # 0 and a(zy) = 0 for some
2o € U. Then, by Hurwitz’s theorem, there exists a sequence {z,} < U
converging to zp, such that a,(z,) = 0 for sufficiently large n. Using this
in equation (13), we obtain h,(z,) = 0, which is a contradiction. This
proves our claim.

Now we consider both possible cases:

Case 1: a(z) #0 for all ze U.

Shrinking U, if necessary, to a compact neighbourhood of (,, we can

see that there exists 6 > 0, such that |«(z)| > 0,Vz € U. Then, due to
uniform convergence of o, (2) to a(z) in U, there exists ny € N, such that

an(2)
Bn(2)
Yn(2)

o
N —

an(z) #0 VzelU

for n > ny.
Using equation (15), we can write for z € U and n > ny:
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Thus f,(z) converges uniformly to the holomorphic function 1(2) on U.

a(z)

Case 2: a(z)=0on U.

By equation (13), we have h,(z) — 0 uniformly on U. With equation
(14), this implies that (3,(z) — 0 uniformly on U. That is, (z) = 0 on
U. Therefore, v(z) # 0 Vz € U, so that (a(z),5(2),v(2)) is a reduced
representation of F'(z) on U. As

fn(2)hn(2) = m(2) = 7(2) and hy(2) — 0

uniformly on U, it follows that f,, — co uniformly on U. []

Proof of Theorem 8. Since normality is a local property, we can take
D = D. We will show that the family F* as defined in Theorem 7 is normal
in D. For any f € F, we make the following choice of 5 hyperplanes:

HI(2) = {w e P(C) [(w,al(2)y =0}, j=1,...,5,

given in normalized representation by

of (z) = (a(2),0,-1),
af(z) = (af(2),0,-1),
of(z) = (0, 17 1),
af(z) 17 )

o
S
—

I\
S~—

I
VS
—_

w
H
)
——

We can compute that for any f e F and z € D:

D (H{(2), Hi (=), H{ (=), H] (=), HL ()

1 (al(2) al(z) al al(2) 3
el o e CORT(C]
1,1 .
/@(2> (—) g3 = §*(say) > 0.
If we take & = min {5* ! 1 } then it can be seen that F* satis-
V3 1+ M

fies all the conditions of Theorem 5. Hence, F* is normal, and, so, by
Theorem 7, F is also normal. []
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