
44 Probl. Anal. Issues Anal. Vol. 14 (32), No 3, 2025, pp. 44–64
DOI: 10.15393/j3.art.2025.18050

UDC 517.53, 517.55

S. Mehta, K. S. Charak

NORMALITY OF A FAMILY OF HOLOMORPHIC CURVES
THAT PARTIALLY SHARE WANDERING HYPERPLANES

WITH THEIR DERIVATIVES

Abstract. In this paper, we prove that a family of holomorphic
curves in P𝑁 pCq that partially share moving as well as wander-
ing hyperplanes with their derivatives is normal. By associating
a moving hyperplane in P1pCq to any holomorphic function, we
also obtain a normality criterion for a family of meromorphic func-
tions that partially share wandering holomorphic functions with
their derivatives. Further, we devise a tractable representation of
complex-valued holomorphic functions on a domain 𝐷 as functions
from 𝐷 to P2pCq to obtain a normality criterion that leads to a
counterexample to the converse of Bloch’s principle.
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curves, moving hyperplanes, partially shared functions
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1. Introduction. A family ℱ of holomorphic functions on a do-
main 𝐷 in the complex plane is said to be normal if every sequence
t𝑓𝑛u Ă ℱ contains a subsequence that converges locally uniformly in 𝐷 to
an analytic function 𝑓 or a subsequence that converges locally uniformly
in 𝐷 to 8. Normality of families of meromorphic functions is defined like-
wise, where the convergence is required to be with respect to the spherical
metric of the Riemann sphere. The theory of normal families was pi-
oneered by P. Montel who in 1912 obtained the following fundamental
result:

Theorem 1. [20] Let ℱ be a family of meromorphic functions on a
domain 𝐷 Ď C that omit three distinct values 𝑎, 𝑏, 𝑐 in Ĉ :“ C Y t8u.
Then ℱ is normal in 𝐷.
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Since then, normal families have found wide-ranging applications in
the fields of dynamics of rational and transcendental functions, bicomplex
analysis, harmonic mappings, functional analysis, and complex projective
geometry (see [1], [2], [5], [12], [28]).

A significant milestone in this theory is the following result by
W. Schwick [23], which drew a connection between normality and shared
values. Recall that two nonconstant meromorphic functions 𝑓 and 𝑔 on a
domain 𝐷 share a value 𝑤 P Ĉ if 𝑓´1p𝑤q “ 𝑔´1p𝑤q.

Theorem 2. [23] Let ℱ be a family of meromorphic functions on a
domain 𝐷 Ď C, and 𝑎, 𝑏, 𝑐 be three distinct finite complex numbers. If
for every 𝑓 P ℱ , 𝑓 and 𝑓 1 share the values 𝑎, 𝑏, 𝑐, then ℱ is normal in 𝐷.

Over the last few decades, there have been various improvements of
Theorem 2 (see, for example, [4], [9], [21]). The notion of sharing of values
has been subsequently used by Sun [24] to generalize Theorem 1, where
omission of three distinct values is replaced by sharing three values by all
the functions of the family.

Recall that a function 𝑓 : 𝐷 Ñ P𝑁pCq that is holomorphic (regarded
as a map between two complex manifolds) is said to be a holomorphic
curve. Theorem 1 has been extended to the family of holomorphic curves
in P𝑁pCq by J. Dufresnoy [13] where, instead of three distinct points,
the omission of 2𝑁 ` 1 hyperplanes in general position is required. This
requirement of omission has been further reduced to merely sharing of
such hyperplanes by Yang et al [26]. An adequate extension of Theorem 2
to the case of holomorphic maps into complex projective space could only
be achieved after a proper extension of the notion of derivatives for such
maps, which was accomplished by Ye et al [27].

Let 𝑓 and 𝑔 be two meromorphic functions on a domain 𝐷 Ď C. The
functions 𝑓 and 𝑔 are said to share a function 𝛼 on 𝐷 if t𝑧 P 𝐷 : 𝑓p𝑧q “
=𝛼p𝑧qu “t𝑧 P 𝐷 : 𝑔p𝑧q “ 𝛼p𝑧qu. If t𝑧 P𝐷 : 𝑓p𝑧q“𝛼p𝑧qu Ď t𝑧 P 𝐷 : 𝑔p𝑧q “
= 𝛼p𝑧qu, then we say that 𝑓 partially shares 𝛼 with 𝑔 on 𝐷. Recently,
the notion of partial sharing has led to some interesting normality criteria
(see, for example, [7], [8], [17]).

In 2014, Grahl and Nevo [15], using a simultaneous rescaling version
of the Zalcman Lemma, obtained a normality criterion for a family of
meromorphic functions, where each member shared three functions with
its derivative.

Theorem 3. [15] Let ℱ be a family of functions meromorphic in the
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unit disk D “ t𝑧 P C : |𝑧| ă 1u and 𝜀 ą 0. Assume that for each 𝑓 P ℱ
there exist functions 𝑎p𝑓q1 , 𝑎p𝑓q2 , and 𝑎

p𝑓q
3 that are either meromorphic or

identically infinity in D, and do not have any common poles with 𝑓 , such
that 𝑓 and 𝑓 1 share the functions 𝑎p𝑓q1 , 𝑎p𝑓q2 , and 𝑎

p𝑓q
3 , with the property

that

𝜎p𝑎
p𝑓qp𝑧q
𝑗 , 𝑎

p𝑓qp𝑧q
𝑘 q > 𝜀 @𝑧 P D, j, k P t1, 2, 3u with 𝑗 ‰ 𝑘.

Then ℱ is normal in D.

The functions 𝑎p𝑓q1 , 𝑎p𝑓q2 , 𝑎p𝑓q3 are called wandering shared functions as
they vary for different functions of the family ℱ . After proving our first
main result, we shall be in a position to replace sharing in Theorem 3 by
partial sharing. But it shall entail some extra restrictions on the wandering
partially shared functions ; that is, they must be bounded holomorphic
functions on D.

The extension of results in theory of meromorphic functions to that
of holomorphic functions into P𝑁pCq has been a regular feature in the
field of normal families (see [10], [16], [25]). The results so obtained are
more general and can be reduced to the case of meromorphic functions
by just taking 𝑁 “ 1. In our approach to the last result of this paper,
we have followed a different path by starting with a family of complex-
valued holomorphic functions and lifting them to curves in P2pCq. A
choice of proper hyperplanes has enabled us to formulate a nice criterion
for normality of complex-valued holomorphic functions on 𝐷. Now we
introduce the necessary preliminaries.

1.1. Projective Space and Hyperplanes. An 𝑁´ dimensional
complex projective space P𝑁pCq is the quotient space

`

C𝑁`1zt0u
˘

{ „,
where p𝑎0, . . . , 𝑎𝑁q „ p𝑏0, . . . , 𝑏𝑁q if and only if p𝑎0, . . . , 𝑎𝑁q “ 𝜆p𝑏0, . . . , 𝑏𝑁q
for some 𝜆 P Czt0u. We denote by r𝑎0 : ¨ ¨ ¨ : 𝑎𝑁 s the equivalence
class of p𝑎0, . . . , 𝑎𝑁q. The mapping 𝜋 : C𝑁`1zt0u Ñ P𝑁pCq given by
𝜋p𝑎0, . . . , 𝑎𝑁q “ r𝑎0 : ¨ ¨ ¨ : 𝑎𝑁 s is called the standard projection mapping.
In fact, P𝑁pCq is endowed with a canonical metric called the Fubini-Study
metric. For details, see [19] and [22, pp. 99 – 102].

A subset 𝐻 of P𝑁pCq is called a hyperplane if there is an 𝑁´ dimen-
sional linear subspace 𝐻̃ of C𝑁`1, such that 𝜋p𝐻̃zt0uq “ 𝐻.

Let 𝑧 “ r𝑧0 : 𝑧1 : ¨ ¨ ¨ : 𝑧𝑁 s be a fixed system of homogeneous coor-
dinates and 𝑎𝑗p𝜁q, 𝑗 “ 0,1, . . . , 𝑁 be holomorphic functions on a domain
𝐷 not all simultaneously zero at any point in 𝐷. Then, corresponding to
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each point 𝜁 P 𝐷 there is a hyperplane given by

𝐻p𝜁q “ t𝑧 P P𝑁
pCq|𝑎0p𝜁q𝑧0 ` ¨ ¨ ¨ ` 𝑎𝑁p𝜁q𝑧𝑁 “ 0u. (1)

We call it a moving hyperplane, and write it as 𝐻p𝜁q “ tă 𝑧,𝛼p𝜁q ą“ 0u,
where 𝛼p𝜁q “ p𝑎0p𝜁q, . . . , 𝑎𝑁p𝜁qq for any 𝜁 P 𝐷, and

x𝑧, 𝛼p𝜁qy :“ 𝑎0p𝜁q𝑧0 ` ¨ ¨ ¨ ` 𝑎𝑁p𝜁q𝑧𝑁 .

In particular, if 𝛼p𝜁q “ 𝛼 “ p𝑎0, 𝑎1, . . . , 𝑎𝑁q is a fixed non-zero vector in
C𝑁`1 then 𝐻 “ tx𝑧, 𝛼y “ 0u is said to be a fixed hyperplane.

In this paper, we shall consider only moving hyperplanes 𝐻p𝜁q given
by (1) for which we can find holomorphic functions 𝑎𝑗p𝜁q on 𝐷 with
}𝐻p𝜁q} :“ max

06𝑖6𝑁
|𝑎𝑖p𝜁q| “ 1 @ 𝜁 P 𝐷. The corresponding 𝛼p𝜁q is said

to give a normalized representation of the moving hyperplane 𝐻p𝜁q.

Remark 1. If 𝛽p𝜁q also gives a normalized representation of 𝐻p𝜁q, then
there exists a uni-modular constant 𝜆, such that 𝛼p𝜁q “ 𝜆𝛽p𝜁q on 𝐷.

Remark 2. If 𝛼p𝜁q “ p𝑎0p𝜁q, . . . , 𝑎𝑁p𝜁qq is such that for some 𝑘,
0 6 𝑘 6 𝑁 , |𝑎𝑘p𝜁q| > max

06𝑗6𝑁
𝑗‰𝑘

|𝑎𝑗p𝜁q|, @𝜁 P 𝐷, then the hyperplane de-

fined by (1) shall always have a normalized representation on 𝐷 given
by

𝛼˚p𝜁q “

ˆ

𝑎0p𝜁q

𝑎𝑘p𝜁q
, . . . ,

𝑎𝑘´1p𝜁q

𝑎𝑘p𝜁q
, 1,

𝑎𝑘`1p𝜁q

𝑎𝑘p𝜁q
, . . . ,

𝑎𝑁p𝜁q

𝑎𝑘p𝜁q

˙

.

Remark 3. Any fixed hyperplane always has a normalized representa-
tion in 𝐷.

Remark. Henceforth, we consider hyperplanes (moving or fixed) only in
their normalized representation on any domain 𝐷.

Let 𝐻1p𝜁q, 𝐻2p𝜁q, . . . , 𝐻𝑁`1p𝜁q be moving hyperplanes in P𝑁pCq rep-
resented as 𝐻𝑗p𝜁q “ tx𝑧, 𝛼𝑗p𝜁qy “ 0u for 𝑗 “ 1, . . . , 𝑁 ` 1. Then, by
Remark 1, it is clear that

𝒟p𝐻1p𝜁q, . . . , 𝐻𝑁`1p𝜁qq :“ | detp𝛼𝑡
1p𝜁q, . . . ,𝛼

𝑡
𝑁`1p𝜁qq|

depends only on 𝐻𝑗p𝜁q and not on any choice of 𝛼𝑗p𝜁q for normalized
representations of such hyperplanes.
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Definition 1. Let 𝐻1p𝜁q, . . . , 𝐻𝑞p𝜁q with 𝑞 > 𝑁 ` 1, be moving hy-
perplanes in P𝑁pCq given in normalized representation respectively by
𝛼1p𝜁q, . . . , 𝛼𝑞p𝜁q. Define

𝒟p𝐻1p𝜁q, . . . , 𝐻𝑞p𝜁qq :“
ź

16𝑗1ă¨¨¨ă𝑗𝑁`16𝑞

| detp𝛼𝑡
𝑗1
p𝜁q, . . . , 𝛼𝑡

𝑗𝑁`1
p𝜁qq|.

We say the moving hyperplane family t𝐻1p𝜁q, . . . , 𝐻𝑞p𝜁qu, 𝑞 > 𝑁 ` 1,
in P𝑁pCq is in general position, at a point 𝜁0 of 𝐷, if
𝒟p𝐻1p𝜁0q, . . . , 𝐻𝑞p𝜁0qq ą 0.

1.2. Reduced Representation. Let 𝐷 be a domain in C,
𝑓 : 𝐷 Ñ P𝑁pCq be a holomorphic curve, and 𝑈 be an open set in 𝐷.
Any holomorphic map 𝑓 : 𝑈 Ñ C𝑁`1, such that 𝜋p𝑓p𝑧qq ” 𝑓p𝑧q in 𝑈 , is
called a representation of 𝑓 on 𝑈 , where 𝜋 is the standard projection map.

Definition 2. For an open set 𝑈 of 𝐷, we call 𝑓 “ p𝑓0, . . . , 𝑓𝑁q a reduced
representation of 𝑓 on 𝑈 if 𝑓 is a representation of 𝑓 and 𝑓0, . . . , 𝑓𝑁 are
holomorphic functions on 𝑈 without common zeroes.

For any such representation, we put }𝑓p𝑧q} :“
´

ř𝑁
𝑖“0 |𝑓𝑖p𝑧q|

2
¯

1
2 .

Remark 4. Every holomorphic map of 𝐷 into P𝑁pCq has a reduced rep-
resentation on 𝐷 (see [14], Section 5).

Remark 5. Let 𝑓 “ p𝑓0, . . . , 𝑓𝑁q be a reduced representation of 𝑓 on a
domain 𝐷. Then, for any arbitrary nowhere-zero holomorphic function ℎ
on 𝐷, pℎ𝑓0, . . . , ℎ𝑓𝑁q is also a reduced representation of 𝑓 . Conversely, for
any other reduced representation p𝑔0, . . . , 𝑔𝑁q of 𝑓 , each 𝑔𝑖 can be written
as 𝑔𝑖 “ ℎ𝑓𝑖 for some nowhere-zero holomorphic function ℎ on 𝐷.

Definition 3. A function 𝑓 : 𝐷 Ñ P𝑁pCq with the reduced representa-
tion 𝑓 “ p𝑓0, . . . , 𝑓𝑁q is said to intersect a moving hyperplane 𝐻p𝜁q given
by (1) at a point 𝑧0 P 𝐷 if

x𝑓p𝑧q, 𝐻p𝑧qy :“ 𝑎0p𝑧q𝑓0p𝑧q ` ¨ ¨ ¨ ` 𝑎𝑁p𝑧q𝑓𝑁p𝑧q (2)

has a zero at 𝑧0, and we then write 𝑓p𝑧0q P 𝐻p𝑧0q.
If 𝐻 is a fixed hyperplane given by t𝑎0𝑧0 ` ¨ ¨ ¨ ` 𝑎𝑁𝑧𝑁 “ 0u, then we

say that 𝑓p𝑧0q P 𝐻 if x𝑓p𝑧q, 𝐻y :“ 𝑎0𝑓0p𝑧q`¨ ¨ ¨`𝑎𝑁𝑓𝑁p𝑧q has a zero at 𝑧0.
If x𝑓p𝑧q, 𝐻y ” 0 on𝐷, then we say that 𝑓p𝐷q Ă 𝐻, and if x𝑓p𝑧q, 𝐻y ‰ 0

@𝑧 P 𝐷, then 𝑓 is said to omit 𝐻 on 𝐷.
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1.3. Sharing of Moving Hyperplanes. With the same notation as
in Definition 3, we now define the sharing of moving hyperplanes, which
extends the definition of sharing functions.

Definition 4. Suppose 𝑓 and 𝑔 are two holomorphic curves from the
domain 𝐷 into P𝑁pCq and 𝐻p𝜁q be a moving hyperplane in P𝑁pCq. If
there exists some (and thus all) reduced representations 𝑓 and 𝑔 of 𝑓 and
𝑔, respectively, such that the holomorphic function x𝑓p𝑧q, 𝐻p𝑧qy shares (or
partially shares) zero with x𝑔p𝑧q, 𝐻p𝑧qy on 𝐷, then we say that 𝑓 shares
(respectively, partially shares) the moving hyperplane 𝐻p𝜁q with 𝑔 on 𝐷.

By Remark 5, x𝑓p𝑧q, 𝐻p𝑧qy “ 0 is independent of the choice of reduced
representation of 𝑓 . Therefore, the sharing (or partial sharing) of moving
hyperplanes is well-defined.

1.4. Normal Families of Holomorphic Curves in Complex
Projective Space.

Definition 5. A family ℱ of holomorphic curves from a domain 𝐷 into
P𝑁pCq is said to be normal in 𝐷 if any sequence in ℱ contains a subse-
quence that converges uniformly, with respect to the Fubini-Study metric,
on compact subsets of 𝐷 to a holomorphic curve from 𝐷 into P𝑁pCq;
and ℱ is said to be normal at a point 𝑎 in 𝐷 if ℱ is normal on some
neighbourhood of 𝑎 in 𝐷.

Using the Fubini-Study metric on P𝑁pCq, we see that a sequence
t𝑓𝑛u

8
𝑛“1 of holomorphic maps of 𝐷 into P𝑁pCq converges uniformly on

compact subsets of 𝐷 to a holomorphic map 𝑓 if and only if each 𝑓𝑛 for
any 𝑎 P 𝐷 has a reduced representation 𝑓𝑛 “ p𝑓𝑛0, . . . , 𝑓𝑛𝑁q on some fixed
neighbourhood 𝑈 of 𝑎 in 𝐷, such that t𝑓𝑛𝑖u8𝑛“1 converges uniformly on 𝑈
to a holomorphic function 𝑓𝑖 (for 𝑖 “ 0, 1, . . . , 𝑁) on 𝑈 with the property
that 𝑓 “ p𝑓0, 𝑓1, . . . , 𝑓𝑁q is a reduced representation of 𝑓 on 𝑈 .

1.5. Extension of Derivative. In order to extend Theorem 2 to a
family of holomorphic curves, a suitable notion of derivative was provided
by Ye et al [27] as follows:

Let 𝑓 “ r𝑓0 : ¨ ¨ ¨ : 𝑓𝑁 s be a holomorphic map of 𝐷 into P𝑁pCq, 𝜇 P
t0, 1, . . . , 𝑁u with 𝑓𝜇 ı 0, and 𝑑p𝑧q be a holomorphic function in 𝐷,
such that 𝑓 2

𝜇{𝑑 and 𝑊 p𝑓𝜇, 𝑓𝑖q{𝑑, p𝑖 “ 0, 1, . . . , 𝑁 ; 𝑖 ‰ 𝜇q are holomorphic
functions in 𝐷 without common zeroes. Here, as usual, 𝑊 p𝑓𝜇, 𝑓𝑖q denotes
the Wronskian of 𝑓𝜇 and 𝑓𝑖.
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Definition 6. [27] The holomorphic map induced by the map

p𝑊 p𝑓𝜇, 𝑓0q, . . . ,𝑊 p𝑓𝜇, 𝑓𝜇´1q, 𝑓
2
𝜇,𝑊 p𝑓𝜇, 𝑓𝜇`1q, . . . ,𝑊 p𝑓𝜇, 𝑓𝑁qq : 𝐷 Ñ C𝑁`1

is called the 𝜇-th derived holomorphic map of 𝑓 and we write

∇𝜇𝑓 “

r𝑊 p𝑓𝜇, 𝑓0q{𝑑, . . . ,𝑊 p𝑓𝜇, 𝑓𝜇´1q{𝑑, 𝑓
2
𝜇{𝑑,𝑊 p𝑓𝜇, 𝑓𝜇`1q{𝑑, . . . ,𝑊 p𝑓𝜇, 𝑓𝑁q{𝑑s.

For simplicity, we will write ∇0𝑓 as ∇𝑓 .

Remark 6. The definition of ∇𝜇𝑓 does not depend on the choice of a
reduced representation of 𝑓 .

Remark 7. A meromorphic function 𝑓 “
𝑓1p𝑧q

𝑓0p𝑧q
on 𝐷 can be regarded as

a holomorphic map from 𝐷 to P1pCq given by 𝑓p𝑧q “ r𝑓0p𝑧q : 𝑓1p𝑧qs and
∇𝑓 is exactly the ordinary derivative of 𝑓p𝑧q.

In 2015, Ye et al obtained the following result, which led them to an
extension of the Schwick’s theorem:

Theorem 4. [27] Let ℱ be a family of holomorphic maps of a domain
𝐷 Ď C into P𝑁pCq, 𝐻1, . . . , 𝐻2𝑁`1 be hyperplanes in P𝑁pCq in general
position, and 𝛿 be a real number with 0 ă 𝛿 ă 1. Suppose that for each
𝑓 P ℱ the following conditions are satisfied:

(i) ∇𝑓p𝑧q partially shares 𝐻𝑗 with 𝑓p𝑧q on 𝐷, for 𝑗 “ 1, . . . , 2𝑁 ` 1.

(ii) If 𝑓p𝑧q P
2𝑁`1
Ť

𝑗“1

𝐻𝑗, then
|𝑓0p𝑧q|

}𝑓p𝑧q}
> 𝛿.

(iii) If 𝑓p𝑧q P
2𝑁`1
Ť

𝑗“1

𝐻𝑗, then
|x∇𝑓p𝑧q, 𝐻𝑘y|

|𝑓0p𝑧q|2
6

1

𝛿
for 𝑘 “ 1, . . . , 2𝑁 ` 1.

Then ℱ is normal in 𝐷.

2. Main Results. We generalize Theorem 4 to the case where we
can take moving hyperplanes that can vary for different functions of the
family ℱ .

Theorem 5. Let ℱ be a family of holomorphic maps of a domain
𝐷 Ď C into P𝑁pCq and 𝛿 be a real number with 0 ă 𝛿 ă 1. Suppose
that for each 𝑓 P ℱ and 𝑧 P 𝐷 there exist 2𝑁 ` 1 moving hyperplanes
𝐻𝑓

1 p𝑧q, . . . , 𝐻
𝑓
2𝑁`1p𝑧q in P𝑁pCq in general position with

𝒟p𝐻𝑓
1 p𝑧q, . . . , 𝐻

𝑓
2𝑁`1p𝑧qq > 𝛿, @𝑓 P ℱ , 𝑧 P 𝐷,
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such that the following conditions are satisfied:

(i) ∇𝑓p𝑧q partially shares 𝐻𝑓
𝑗 p𝑧q with 𝑓p𝑧q on 𝐷 for 𝑗 “ 1, . . . , 2𝑁 ` 1.

(ii) If 𝑓p𝑧q P
2𝑁`1
Ť

𝑗“1

𝐻𝑓
𝑗 p𝑧q, then

|𝑓0p𝑧q|

||𝑓p𝑧q||
> 𝛿.

(iii) If 𝑓p𝑧q P
2𝑁`1
Ť

𝑗“1

𝐻𝑓
𝑗 p𝑧q, then

|x∇𝑓p𝑧q, 𝐻𝑓
𝑘 p𝑧qy|

|𝑓0p𝑧q|2
6

1

𝛿
, 𝑘 “ 1, . . . , 2𝑁 ` 1.

Then ℱ is normal in 𝐷.

In particular, when 𝑓 and ∇𝑓 share these 2𝑁 `1 moving hyperplanes,
then one can see (as in [27, Theorem 2.3]) that the condition (iii) of The-
orem 5 is satisfied and we obtain the following result:

Corollary 1. Let ℱ be a family of holomorphic maps of a domain
𝐷 Ď C into P𝑁pCq and 𝛿 be a real number with 0 ă 𝛿 ă 1. Suppose
that for each 𝑓 P ℱ and 𝑧 P 𝐷 there exist 2𝑁 ` 1 moving hyperplanes
𝐻𝑓

1 p𝑧q, . . . , 𝐻
𝑓
2𝑁`1p𝑧q in P𝑁pCq in general position with

𝒟p𝐻𝑓
1 p𝑧q, . . . , 𝐻

𝑓
2𝑁`1p𝑧qq > 𝛿, @𝑓 P ℱ , 𝑧 P 𝐷,

such that the following conditions are satisfied:

(i) 𝑓,∇𝑓 share the moving hyperplanes𝐻𝑓
𝑗 p𝑧q on𝐷 for 𝑗 “ 1, . . . , 2𝑁 1̀;

(ii) if 𝑓p𝑧q P
2𝑁`1
Ť

𝑗“1

𝐻𝑓
𝑗 p𝑧q, then

|𝑓0p𝑧q|

}𝑓p𝑧q}
> 𝛿.

Then ℱ is normal in 𝐷.

Recently, Datt et al [11, Theorem 1.1] have obtained a result similar
to Corollary 1 but with an additional assumption on the normality of the
family of holomorphic functions Ă

𝐻𝑓
𝑗 induced by the moving hyperplanes

𝐻𝑓
𝑗 p𝑧q. Inequality (3) of the assumption of [11, Theorem 1.1] clearly re-

quires a sort of normalized representation for such moving hyperplanes,
and as can be seen in our proof of Theorem 5, the additional assumption
on normality of tĂ𝐻𝑓

𝑗 u is not necessary.
Now, considering the case 𝑁 “ 1, we can see that each of the moving

hyperplane 𝐻𝑓
𝑗 p𝑧q, 𝑗 “ 1,2 and 3 is a function from the domain 𝐷 into

P1pCq and we obtain the following normality criterion regarding partial
sharing of functions:
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Theorem 6. Let ℱ be a family of meromorphic functions on a domain
𝐷 Ď C and 𝜀, 𝑀 be two positive real numbers. Suppose for each 𝑓 P ℱ
there exist three holomorphic functions 𝑎𝑓1 , 𝑎

𝑓
2 , and 𝑎𝑓3 defined on 𝐷, such

that the following conditions are satisfied:

(i) |𝑎𝑓𝑗 p𝑧q| 6𝑀 and |𝑎𝑓𝑗 p𝑧q´𝑎
𝑓
𝑘p𝑧q| > 𝜀 @𝑧 P 𝐷 and 𝑗, 𝑘 P t1,2,3u, 𝑗 ‰ 𝑘;

(ii) 𝑓 1p𝑧q partially shares 𝑎𝑓𝑗 p𝑧q with 𝑓p𝑧q on 𝐷, for 𝑗 P t1, 2, 3u;

(iii) for any 𝑧 P 𝐷 if 𝑓p𝑧q “ 𝑎𝑓𝑗 p𝑧q then |𝑓 1p𝑧q| 6𝑀 for 𝑗 P t1, 2, 3u.

Then ℱ is normal in 𝐷.

The following examples show that each of the condition in Theorem 6
is essential. We denote the unit disk t𝑧 P C : |𝑧| ă 1u by D.

Example 1. [Condition (i) is essential] Consider the family
t𝑓𝑛p𝑧q “ 𝑒𝑛𝑧 : 𝑛 P Nu, which is not normal in D. Take 𝑎𝑓𝑛𝑗 p𝑧q “ p𝑗`1q𝑛𝑒𝑛𝑧

for 𝑗 P t1, 2, 3u. Note that 𝑓 1𝑛p𝑧q “ 𝑛𝑒𝑛𝑧 ‰ 𝑎𝑓𝑛𝑗 p𝑧q for any 𝑧 P D and
𝑗 P t1, 2, 3u. Also, 𝑓𝑛p𝑧q ‰ 𝑎𝑓𝑛𝑗 p𝑧q for any 𝑗 P t1, 2, 3u.

Example 2. [Condition (ii) is essential] Consider the family
!

𝑓𝑛p𝑧q “
1

sin𝑛𝑧

´1

2
`

𝑧

8𝑛

¯

: 𝑛 P N
)

of meromorphic functions in D, which is not normal. Take

𝑎𝑓𝑛1 p𝑧q “
1

2
`

𝑧

8𝑛
, 𝑎𝑓𝑛2 p𝑧q “ ´

1

2
´

𝑧

8𝑛
and 𝑎𝑓𝑛3 p𝑧q ” 0,

which are holomorphic functions on D satisfying condition (i) of Theorem 6
with 𝑀 “ 1 and 𝜀 “ 3

8
. We see that

𝑓 1𝑛p𝑧q “
´𝑛 cos𝑛𝑧

sin2 𝑛𝑧

´1

2
`

𝑧

8𝑛

¯

`
1

sin𝑛𝑧

´ 1

8𝑛

¯

.

Note that 𝑓𝑛p𝑧q “ 𝑎𝑓𝑛1 p𝑧q implies sin𝑛𝑧 “ 1 and, consequently, cos𝑛𝑧 “ 0.
Then |𝑓 1𝑛p𝑧q| is clearly bounded by 1 for all 𝑧 P D and 𝑛 P N. Similarly, we
can see that 𝑓𝑛p𝑧q “ 𝑎𝑓𝑛2 p𝑧q implies sin𝑛𝑧 “ ´1, which leads to cos𝑛𝑧 “ 0
and, again, |𝑓 1𝑛p𝑧q| is bounded by 1. Also it is clear that 𝑓𝑛p𝑧q omits 𝑎𝑓𝑛3 p𝑧q
on D. Thus condition (iii) of Theorem 6 is also satisfied.

Example 3. [Condition (iii) is essential] We consider the family

t𝑓𝑛p𝑧q “ 𝑛𝑧 : 𝑛 P Nu, which is not normal in D. Taking 𝑎𝑓𝑛𝑗 p𝑧q ”
1

𝑗 ` 1
,
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𝑗 P t1, 2, 3u, on D, we can see that condition (i) of Theorem 6 is satisfied
with 𝜀 “ 1

12
and 𝑀 “ 1 whereas condition (ii) is vacuously true.

In case 𝑓p𝑧q and 𝑓 1p𝑧q share the functions 𝑎𝑓𝑗 p𝑧q, it is easy to see that
the condition (ii) of Theorem 6 is fulfilled and so we have the following
Corollary, which is a weaker form of Theorem 3:

Corollary 2. Let ℱ be a family of meromorphic functions on a domain
𝐷 Ď C. Suppose that for each 𝑓 P ℱ there exist three holomorphic
functions 𝑎𝑓1 , 𝑎

𝑓
2 and 𝑎𝑓3 defined on 𝐷 and some positive real numbers 𝜀

and 𝑀 , with

|𝑎𝑓𝑗 p𝑧q| 6𝑀 and |𝑎𝑓𝑗 p𝑧q´𝑎
𝑓
𝑘p𝑧q| > 𝜀 @𝑧 P 𝐷 and 𝑗, 𝑘 P t1, 2, 3u with 𝑗 ‰ 𝑘,

such that 𝑓 and 𝑓 1 share the functions 𝑎𝑓1 , 𝑎
𝑓
2 and 𝑎𝑓3 on 𝐷. Then ℱ is

normal in 𝐷.

2.1. A Representation of Holomorphic Functions as Curves
in P2pCq. Let 𝑓p𝑧q be a holomorphic function on a domain 𝐷 Ă C.
Corresponding to this function, we define a function 𝐹 : 𝐷 Ñ P2pCq, whose
representation 𝐹 : 𝐷 Ñ C3zt0u is given by

𝐹 p𝑧q “ p1, 𝑧, 𝑓p𝑧qq. (3)

We regard it as the lifting of the complex-valued holomorphic function 𝑓
to a holomorphic curve 𝐹 into P2pCq. Note that the representation (3)
is always a reduced representation with 𝐹0 ‰ 0 everywhere on 𝐷. The
derivative of 𝐹 (or, more precisely, the representation of the derivative of
𝐹 ) is given by

∇𝐹 “ p1, 1, 𝑓 1p𝑧qq, (4)

which again happens to be in reduced representation for the whole do-
main 𝐷.

It is worthwhile to mention that taking 𝑓 to be a meromorphic function
in representation (3) would have forced us to use two different holomorphic
functions and we would not have been able to obtain such a convenient
form of derivative as in equation (4).

We show that the normality of a family of complex-valued holomor-
phic functions is equivalent to the normality of family of corresponding
holomorphic curves lifted to P2pCq.
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Theorem 7. Let 𝐷 be a domain in C and ℱ be a family of complex-
valued holomorphic functions on 𝐷. Then the family

ℱ˚
“ t𝐹 : 𝐷 Ñ P2

pCq with 𝐹 p𝑧q “ p1,𝑧,𝑓p𝑧qq : 𝑓 P ℱu

is normal in 𝐷 if and only if ℱ is normal in 𝐷.

As a consequence, we obtain the following normality criterion for a
family of holomorphic curves that requires, among other conditions, a
boundedness condition on derivatives at fixed points of the respective
functions.

Theorem 8. Let ℱ be a family of complex-valued holomorphic func-
tions on a domain 𝐷 Ď C and 𝑀 , 𝜀 be two positive numbers. Suppose for
each 𝑓 P ℱ there exist two holomorphic functions 𝑎𝑓1p𝑧q and 𝑎𝑓2p𝑧q defined
on 𝐷 with |𝑎𝑓𝑗 p𝑧q| 6 1, @𝑧 P 𝐷, 𝑗 “ 1, 2 and |𝑎𝑓1p𝑧q ´ 𝑎𝑓2p𝑧q| > 𝜀 @𝑧 P 𝐷,
and the following conditions are satisfied:

(i) 𝑓 1p𝑧q “ 𝑎𝑓𝑗 p𝑧q implies 𝑓p𝑧q “ 𝑎𝑓𝑗 p𝑧q, 𝑓p𝑧q “ 𝑎𝑓𝑗 p𝑧q implies |𝑓 1p𝑧q| 6𝑀
for 𝑗 P t1, 2u;

(ii) 𝑧 is a fixed point of 𝑓 wherever 𝑓 1 assumes 1 in 𝐷;
(iii) |𝑓 1p𝑧q| 6𝑀 , whenever 𝑧 is a fixed point of 𝑓 .

Then ℱ is a normal family.

The following example shows that condition (i) is essential:

Example 4. Let ℱ “ t𝑓𝑛p𝑧q “ 𝑒𝑛𝑧 ` 𝑧 : 𝑛 P Nu be defined on C. Here
each 𝑓 1𝑛p𝑧q “ 𝑛𝑒𝑛𝑧 ` 1 ‰ 1 for any 𝑧 P C. Also, it is clear that no member
of this family can have any fixed point. But ℱ is not a normal family.

Theorem 8 enables us to formulate a counterexample to the converse
of Bloch’s principle. Bloch’s principle states that a family ℱ of func-
tions holomorphic in a domain 𝐷 and possessing a certain property 𝑃 is
likely to be normal if there is no non-constant entire function possessing
the property 𝑃 (see [3], [6], [18]).
Counterexample. Let ℱ be a family of holomorphic functions on a
domain 𝐷 and let 𝑃 be the property that for each 𝑓 P ℱ there exist two
holomorphic functions 𝑎𝑓1p𝑧q and 𝑎𝑓2p𝑧q defined on 𝐷 with |𝑎𝑓𝑗 p𝑧q| 6 1,
@𝑧 P 𝐷, 𝑗 “ 1, 2 and |𝑎𝑓1p𝑧q ´ 𝑎𝑓2p𝑧q| > 𝜀 @𝑧 P 𝐷, and the following
conditions are satisfied:

1) 𝑓 1p𝑧q “ 𝑎𝑓𝑗 p𝑧q implies 𝑓p𝑧q “ 𝑎𝑓𝑗 p𝑧q, 𝑓p𝑧q “ 𝑎𝑓𝑗 p𝑧q implies |𝑓 1p𝑧q| 6𝑀
for 𝑗 P t1, 2u.
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2) 𝑧 is a fixed point of 𝑓 wherever 𝑓 1 assumes 1 in 𝐷.
3) |𝑓 1p𝑧q| 6𝑀 , whenever 𝑧 is a fixed point of 𝑓 .

Then, by Theorem 8, ℱ is normal on 𝐷. But the function 𝑓p𝑧q “ 2𝑧
@𝑧 P C is a non-constant entire function and possesses the property 𝑃
when 𝑎𝑓1p𝑧q ” ´1

2
, 𝑎𝑓2 “ ´1

2
, 𝜀 “ 1, and 𝑀 “ 2. This shows that the

converse of Bloch’s principle fails to hold.

Remark 8. We have not been able to show that the conditions (ii) and
(iii) are essential in Theorem 8 and leave this question open for further
investigation.

3. Proofs of Main Results. To prove our main results, we require
the following lemmas:

Lemma 1. [1] Let ℱ be a family of holomorphic maps of a domain 𝐷 in
C into P𝑁pCq. The family ℱ is not normal on 𝐷 if and only if there exist
sequences t𝑓𝑛u Ă ℱ , t𝑧𝑛u Ă 𝐷 with 𝑧𝑛 Ñ 𝑧0 P 𝐷, t𝜌𝑛u with 𝜌𝑛 ą 0, and
𝜌𝑛 Ñ 0, such that 𝑔𝑛p𝜉q :“ 𝑓𝑛p𝑧𝑛 ` 𝜌𝑛𝜉q converges uniformly on compact
subsets of C to a nonconstant holomorphic map 𝑔 of C into P𝑁pCq.

Lemma 2. [22, p.141] Let 𝑓 : C Ñ P𝑁pCq be a holomorphic map, and
𝐻1, . . . , 𝐻𝑞p𝑞 > 2𝑁 ` 1q be hyperplanes in P𝑁pCq in general position. If
for each 𝑗 “ 1, . . . ,𝑞, either 𝑓pCq is contained in 𝐻𝑗, or 𝑓pCq omits 𝐻𝑗,
then 𝑓 is constant.

Proof of Theorem 5. Suppose ℱ is not normal on 𝐷. Then, by
Lemma 1, there exist sequences t𝑓𝑛u Ă ℱ , t𝑧𝑛u Ă𝐷 with 𝑧𝑛 Ñ 𝑧0 P 𝐷,
t𝜌𝑛u with 𝜌𝑛 ą 0, and 𝜌𝑛 Ñ 0, such that 𝑔𝑛p𝜉q :“ 𝑓𝑛p𝑧𝑛 ` 𝜌𝑛𝜉q con-
verges uniformly on compact subsets of C to a nonconstant holomor-
phic map 𝑔 : C Ñ P𝑁pCq. Corresponding to each such 𝑓𝑛, let 𝐻𝑓𝑛

𝑗 p𝑧q,
𝑗 “ 1, 2, . . . , 2𝑁 ` 1, be the moving hyperplanes given by the assumption
of the theorem. Let each 𝐻𝑓𝑛

𝑗 p𝑧q be written in normalized representation
as

𝐻𝑓𝑛
𝑗 p𝑧q “ tx𝜁, 𝛼

𝑓𝑛
𝑗 p𝑧qy “ 0u,

where 𝛼𝑓𝑛
𝑗 p𝑧q “ p𝛼

𝑓𝑛
𝑗,0p𝑧q, 𝛼

𝑓𝑛
𝑗,1p𝑧q, . . . , 𝛼

𝑓𝑛
𝑗,𝑁p𝑧qq is a non-zero vector in C𝑁`1

for any 𝑧 P 𝐷 with 𝑁
max
𝑘“0

|𝛼𝑓𝑛
𝑗,𝑘p𝑧q| “ 1.

From compactness of 𝐴 “ tp𝛼0, . . . , 𝛼𝑛q P C𝑁`1 :
𝑁

max
𝑘“0

|𝛼𝑘| “ 1u it fol-

lows that for any 𝑗 P t1, 2, . . . , 2𝑁`1u there exist a subsequence of 𝛼𝑓𝑛
𝑗 p𝑧q,

which we again call 𝛼𝑓𝑛
𝑗 p𝑧q, that converges to 𝛼𝑗p𝑧q locally uniformly on
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𝐷 with 𝛼𝑗p𝑧q P 𝐴 for any 𝑧 P 𝐷. Let 𝐻𝑗p𝑧q be the moving hyperplane
defined by 𝛼𝑗p𝑧q, 𝑗 “ 1, 2, . . . , 2𝑁 ` 1. By continuity of the determinant
function, it is clear that for any 𝑧 P 𝐷

𝒟p𝐻1p𝑧q, . . . , 𝐻2𝑁`1p𝑧qq > inft𝒟p𝐻𝑓𝑛
1 p𝑧q, . . . , 𝐻

𝑓𝑛
2𝑁`1p𝑧qq : 𝑛 P Nu > 𝛿 ą 0

and, so, hyperplanes 𝐻1p𝑧q, . . . , 𝐻2𝑁`1p𝑧q are in general position for any
𝑧 P 𝐷 and in particular at 𝑧0.

Now, we proceed along the line of [27, Proof of Theorem 2.1], but
with due consideration for the hyperplanes that are moving on 𝐷 as well
wandering for each 𝑓 P ℱ . As 𝑔 : C Ñ P𝑁pCq is a non-constant function,
by Lemma 2 we may assume that x𝑔p𝜉q, 𝐻1p𝑧0qy does not vanish identically
and has at least one zero in C. Let 𝜉0 be such a zero. That is,

x𝑔p𝜉0q, 𝐻1p𝑧0qy “ 0 (5)

and there exists a small neighbourhood 𝑈 of 𝜉0, such that x𝑔p𝜉q,𝐻1p𝑧0qy
has no other zero in 𝑈 . Moreover, each 𝑔𝑛 has a reduced representation

𝑔𝑛p𝜉q “ p𝑔𝑛,0p𝜉q, . . . , 𝑔𝑛,𝑁p𝜉qq “ p𝑓𝑛,0p𝑧𝑛 ` 𝜌𝑛𝜉q, . . . , 𝑓𝑛,𝑁p𝑧𝑛 ` 𝜌𝑛𝜉qq

on 𝑈 , such that for each 𝑖 “ 0, 1, . . . , 𝑁 the sequence t𝑔𝑛,𝑖 : 𝑛 P Nu con-
verges uniformly on 𝑈 to a holomorphic function 𝑔𝑖 with 𝑔 “ p𝑔0, . . . , 𝑔𝑁q
as the reduced representation of 𝑔 on 𝑈 . Shrinking the neighbourhood 𝑈

if necessary, we can see that
𝑁
ř

𝑖“0

𝛼𝑓𝑛
1,𝑖p𝑧𝑛`𝜌𝑛𝜉q𝑔𝑛,𝑖p𝜉q converges uniformly on

𝑈 to
𝑁
ř

𝑖“0

𝑎1,𝑖p𝑧0q𝑔𝑖p𝜉q. Note that from equation (5),
𝑁
ř

𝑖“0

𝛼1,𝑖p𝑧0q𝑔𝑖p𝜉0q “ 0.

So, by Hurwitz’s theorem, there exists a sequence 𝜉𝑛 tending to 𝜉0, such

that, for large 𝑛,
𝑁
ř

𝑖“0

𝛼𝑓𝑛
1,𝑖p𝑧𝑛 ` 𝜌𝑛𝜉𝑛q𝑔𝑛,𝑖p𝜉𝑛q “ 0, that is,

𝑁
ÿ

𝑖“0

𝛼𝑓𝑛
1,𝑖p𝑧𝑛 ` 𝜌𝑛𝜉𝑛q𝑓𝑛,𝑖p𝑧𝑛 ` 𝜌𝑛𝜉𝑛q “ 0, (6)

which implies 𝑓𝑛p𝑧𝑛 ` 𝜌𝑛𝜉𝑛q P 𝐻𝑓𝑛
1 p𝑧𝑛 ` 𝜌𝑛𝜉𝑛q; by condition (ii) of the

assumption, we have

|𝑓𝑛,0p𝑧𝑛 ` 𝜌𝑛𝜉𝑛q| > 𝛿||𝑓𝑛p𝑧𝑛 ` 𝜌𝑛𝜉𝑛q||.
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That is, |𝑔𝑛,0p𝜉𝑛q| > 𝛿}𝑔𝑛p𝜉𝑛q}. Taking 𝑛Ñ 8 we get

|𝑔0p𝜉0q| > 𝛿}𝑔p𝜉0q}0.

Thus, 𝑔0p𝜉0q ‰ 0 and further shrinking 𝑈 , if necessary, we may assume
that 𝑔0p𝜉q ‰ 0 @ 𝜉 P 𝑈 . This implies 𝑔𝑛,0p𝜉q ‰ 0 for 𝜉 P 𝑈 when 𝑛 is
sufficiently large. For any such 𝑛,

p𝑔2𝑛,0p𝜉q,𝑊 p𝑔𝑛,0, 𝑔𝑛,1qp𝜉q, . . . ,𝑊 p𝑔𝑛,0, 𝑔𝑛,𝑁qp𝜉qq

is then a reduced representation of ∇𝑔𝑛p𝜉q on 𝑈 . Also note that for any
𝑖 “ 1,2, . . . , 𝑁 and 𝜉 P 𝑈 the Wronskian

𝑊 p𝑔𝑛,0, 𝑔𝑛,𝑖qp𝜉q “ 𝜌𝑛𝑊 p𝑓𝑛,0, 𝑓𝑛,𝑖qp𝑧𝑛 ` 𝜌𝑛𝜉q. (7)

From (6) and condition p𝑖𝑖𝑖q of the assumption, we have, for any
𝑘 “ 2, 3, . . . , 2𝑁 ` 1,

|xp𝑓 2
𝑛,0,𝑊 p𝑓𝑛,0, 𝑓𝑛,1q, . . . ,𝑊 p𝑓𝑛,0, 𝑓𝑛,𝑁qq, p𝛼

𝑓𝑛
𝑘,0, . . . , 𝛼

𝑓𝑛
𝑘,𝑁qy|

|𝑓 2
𝑛,0|

6
1

𝛿
,

where the left-hand side of the above inequality is evaluated at p𝑧𝑛`𝜌𝑛𝜉𝑛q.

ùñ

ˇ

ˇ

ˇ

ˇ

𝛼𝑓𝑛
𝑘,0p𝑧𝑛 ` 𝜌𝑛𝜉𝑛q `

𝑁
ÿ

𝑖“1

𝛼𝑓𝑛
𝑘,𝑖p𝑧𝑛 ` 𝜌𝑛𝜉𝑛q𝑊 p𝑓𝑛,0, 𝑓𝑛,𝑖qp𝑧𝑛 ` 𝜌𝑛𝜉𝑛q

𝑓 2
𝑛,0p𝑧𝑛 ` 𝜌𝑛𝜉𝑛q

ˇ

ˇ

ˇ

ˇ

6
1

𝛿
.

Using (7), we get
ˇ

ˇ

ˇ

ˇ

𝛼𝑓𝑛
𝑘,0p𝑧𝑛 ` 𝜌𝑛𝜉𝑛q `

𝑁
ÿ

𝑖“1

𝛼𝑓𝑛
𝑘,𝑖p𝑧𝑛 ` 𝜌𝑛𝜉𝑛q𝑊 p𝑔𝑛,0, 𝑔𝑛,𝑖qp𝜉𝑛q

𝜌𝑛𝑔2𝑛,0p𝜉𝑛q

ˇ

ˇ

ˇ

ˇ

6
1

𝛿
.

ùñ

ˇ

ˇ

ˇ

ˇ

𝜌𝑛𝛼
𝑓𝑛
𝑘,0p𝑧𝑛 ` 𝜌𝑛𝜉𝑛q `

𝑁
ÿ

𝑖“1

𝛼𝑓𝑛
𝑘,𝑖p𝑧𝑛 ` 𝜌𝑛𝜉𝑛q𝑊 p𝑔𝑛,0, 𝑔𝑛,𝑖qp𝜉𝑛q

𝑔2𝑛,0p𝜉𝑛q

ˇ

ˇ

ˇ

ˇ

6
𝜌𝑛
𝛿
. (8)

Define for any 𝑘 “ 2, 3, . . . , 2𝑁 ` 1

𝜑𝑘p𝜉q “
𝑁
ÿ

𝑖“1

𝛼𝑘,𝑖p𝑧0q𝑊 p𝑔0, 𝑔𝑖qp𝜉q

𝑔20p𝜉q
, 𝜉 P 𝑈.

Taking 𝑛Ñ 8 in equation(8), we obtain

𝜑𝑘p𝜉0q “ 0 for 𝑘 “ 2, 3, . . . , 2𝑁 ` 1. (9)
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Now we claim that there are at most 𝑁 hyperplanes in
t𝐻𝑘 : 𝑘 “ 2, 3, . . . , 2𝑁 ` 1u, such that 𝜑𝑘p𝜉q ” 0 on 𝑈 . Suppose, on
the contrary, that 𝜑2p𝜉q ” ¨ ¨ ¨𝜑𝑁`2p𝜉q ” 0 on 𝑈 . Since

𝜑𝑗p𝜉q “
´

𝑁
ÿ

𝑖“1

𝛼𝑗,𝑖p𝑧0q
𝑔𝑖
𝑔0

¯1

” 0,

there exist complex numbers 𝑐𝑗, such that
𝑁
ÿ

𝑖“1

𝛼𝑗,𝑖p𝑧0q
𝑔𝑖
𝑔0
” 𝑐𝑗 on 𝑈 for

𝑗 “ 2, . . . 𝑁 ` 2.
Since𝐻1p𝑧0q, . . . , 𝐻2𝑁`1p𝑧0q are in general position, the system of equa-

tions
𝑁
ÿ

𝑖“1

𝛼𝑗,𝑖p𝑧0q𝑥𝑖 ” 𝑐𝑗 for 𝑗 “ 2, . . . , 𝑁 ` 2

has no solution or the solution is unique. Thus 𝑔 is uniquely determined
by 𝑔0 ‰ 0 in 𝑈 . Hence, 𝑔 is constant on 𝑈 , which is a contradiction. So
the claim is true. By the validity of our claim, we can suppose without
loss of generality that 𝜑𝑘p𝜉q ı 0 on 𝑈 for 𝑘 “ 2, . . . , 𝑁 ` 1. Also, for each
𝑘 P t2, . . . , 𝑁 ` 1u,

𝜌𝑛𝛼
𝑓𝑛
𝑘,0p𝑧𝑛 ` 𝜌𝑛𝜉q ` 𝜌𝑛

𝑁
ÿ

𝑖“1

𝛼𝑓𝑛
𝑘,𝑖p𝑧𝑛 ` 𝜌𝑛𝜉q𝑊 p𝑓𝑛,0, 𝑓𝑛,𝑖qp𝑧𝑛 ` 𝜌𝑛𝜉q

𝑓 2
𝑛,0p𝑧𝑛 ` 𝜌𝑛𝜉q

converges uniformly to 𝜑𝑘p𝜉q on 𝑈 . Again, by Hurwitz’s theorem and
equation (9), there exists a sequence 𝜁𝑛 Ñ 𝜉0, such that

x∇𝑓𝑛p𝑧𝑛 ` 𝜌𝑛𝜁𝑛q, 𝐻𝑓𝑛
𝑘 p𝑧𝑛 ` 𝜌𝑛𝜁𝑛qy “ 0.

Then, by condition (i) of the assumption,

x𝑓𝑛p𝑧𝑛 ` 𝜌𝑛𝜁𝑛q, 𝐻
𝑓𝑛
𝑘 p𝑧𝑛 ` 𝜌𝑛𝜁𝑛qy “ 0.

Taking 𝑛Ñ 8, we get

x𝑔p𝜉0q, 𝐻𝑘p𝑧0qy “ 0 for 𝑘 “ 2, . . . , 𝑁 ` 1.

Noting equation (5), we have

x𝑔p𝜉0q, 𝐻𝑘p𝑧0qy “ 0 for 𝑘 “ 1, 2, . . . , 𝑁 ` 1.
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This contradicts the fact that the hyperplanes t𝐻𝑘p𝑧0q : 𝑘 “ 1, . . . , 𝑁 ` 1u
are in general position. Hence ℱ is normal on D. l

Proof of Theorem 6. We can assume that 𝑀 “ 1, for otherwise we

may replace the functions 𝑎𝑓𝑗 p𝑧q by
𝑎𝑓𝑗 p𝑧q

𝑀
, 𝑗 P t1, 2, 3u, and 𝜀 by

𝜀

𝑀
,

and consider the normality of the family ℱ 1 “

! 𝑓

𝑀
: 𝑓 P ℱ

)

which is
equivalent to the normality of ℱ .

Now, for any 𝑓 P ℱ , 𝑧 P 𝐷, 𝑗 P t1, 2, 3u, let 𝐻𝑓
𝑗 p𝑧q be the hyper-

plane defined by x𝑧, 𝛼𝑓
𝑗 p𝑧qy “ 0, where 𝛼𝑓

𝑗 p𝑧q “ p𝑎
𝑓
𝑗 p𝑧q,´1q P C2 gives a

normalized representation for 𝐻𝑓
𝑗 p𝑧q. Writing the meromorphic function

𝑓p𝑧q “
𝑓1p𝑧q

𝑓0p𝑧q
as 𝑓p𝑧q “ r𝑓0p𝑧q, 𝑓1p𝑧qs, we can see that for any 𝑧0 P 𝐷,

𝑓p𝑧0q “ 𝑎𝑓𝑗 p𝑧0q if and only if 𝑓p𝑧0q P 𝐻𝑓
𝑗 p𝑧0q, and 𝑓 1p𝑧0q “ 𝑎𝑓𝑗 p𝑧0q if and

only if ∇𝑓p𝑧0q P 𝐻𝑓
𝑗 p𝑧0q. It can easily be computed that

𝒟p𝐻𝑓
1 p𝑧q, 𝐻

𝑓
2 p𝑧q, 𝐻

𝑓
3 p𝑧qq > 𝜀3 @𝑓 P ℱ and 𝑧 P 𝐷. (10)

Further, 𝑓p𝑧q P
3
Ť

𝑗“1

𝐻𝑓
𝑗 p𝑧q implies 𝑓p𝑧q “ 𝑎𝑓𝑗 p𝑧q for some 𝑗 P t1, 2, 3u

and we have
|𝑓0p𝑧q|

}𝑓p𝑧q}
“

1
c

1`
ˇ

ˇ

ˇ

𝑓1p𝑧q
𝑓0p𝑧q

ˇ

ˇ

ˇ

2
>

1
?

2
(11)

and
|x∇𝑓p𝑧q, 𝐻𝑓

𝑘 p𝑧qy|

|𝑓0p𝑧q|2
“ |𝑎𝑓𝑘p𝑧q ´ 𝑓

1
p𝑧q| 6 2. (12)

Taking 𝛿 “ mint𝜀3, 1
2
u, we see from equations (10), (11), and (12) that ℱ

satisfies all the conditions of the Theorem 5. Hence ℱ is normal in 𝐷. l

Proof of Theorem 7. To prove this theorem, it is enough to show that
a sequence t𝑓𝑛u Ă ℱ converges locally uniformly on 𝐷 to a holomorphic
function 𝑓 on 𝐷 or converges locally uniformly to 8 if and only if the
sequence t𝐹𝑛u with 𝐹𝑛 “ p1,𝑧,𝑓𝑛p𝑧qq converges locally uniformly on 𝐷 to
a holomorphic function 𝐹 : 𝐷 Ñ P2pCq.

First suppose that t𝑓𝑛u Ă ℱ converges locally uniformly on 𝐷 to a
holomorphic function 𝑓 ; then, clearly, 𝐹𝑛 converges locally uniformly to
𝐹 , whose reduced representation is 𝐹 “ p1, 𝑧, 𝑓p𝑧qq. On the other hand,
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if 𝑓𝑛 converges locally uniformly to 8, then we note that for any 𝑧0 P 𝐷,
such a neighborhood 𝑈 exists, that 𝑓𝑛 converges uniformly to 8 on 𝑈 and
for sufficiently large 𝑛, 𝑓𝑛p𝑧q ‰ 0 @ 𝑧 P 𝑈 . On such a neighborhood 𝑈 , we
can see that

ˆ

1

𝑓𝑛p𝑧q
,

𝑧

𝑓𝑛p𝑧q
, 1

˙

is again a reduced representation of 𝐹𝑛 that converges uniformly
on 𝑈 to the function 𝐹 : 𝑈 Ñ P2pCq with the reduced representation
𝐹 p𝑧q ” p0, 0, 1q.

Conversely, suppose 𝐹𝑛 Ñ 𝐹 . Let 𝜁0 P 𝐷. Then there exists a neigh-
borhood 𝑈 of 𝜁0 and a reduced representation p𝛼𝑛p𝑧q, 𝛽𝑛p𝑧q, 𝛾𝑛p𝑧qq of
𝐹𝑛p𝑧q in 𝑈 , such that 𝛼𝑛 Ñ 𝛼, 𝛽𝑛 Ñ 𝛽 and 𝛾𝑛 Ñ 𝛾 uniformly on 𝑈 ,
where p𝛼p𝑧q, 𝛽p𝑧q, 𝛾p𝑧qq is a reduced representation of 𝐹 p𝑧q in 𝑈 . As
𝐹𝑛p𝑧q “ p1, 𝑧, 𝑓𝑛p𝑧qq is also a reduced representation of 𝐹𝑛p𝑧q, there are
nowhere-zero holomorphic functions ℎ𝑛p𝑧q on 𝑈 , such that for all 𝑛 P N:

𝛼𝑛p𝑧q “ 1.ℎ𝑛p𝑧q, (13)
𝛽𝑛p𝑧q “ 𝑧.ℎ𝑛p𝑧q, (14)
𝛾𝑛p𝑧q “ 𝑓𝑛p𝑧qℎ𝑛p𝑧q. (15)

Claim: 𝛼p𝑧q is either identically zero or nowhere-zero on 𝑈 .
Suppose, on the contrary, that 𝛼p𝑧q ı 0 and 𝛼p𝑧0q “ 0 for some

𝑧0 P 𝑈 . Then, by Hurwitz’s theorem, there exists a sequence t𝑧𝑛u Ă 𝑈
converging to 𝑧0, such that 𝛼𝑛p𝑧𝑛q “ 0 for sufficiently large 𝑛. Using this
in equation (13), we obtain ℎ𝑛p𝑧𝑛q “ 0, which is a contradiction. This
proves our claim.

Now we consider both possible cases:
Case 1: 𝛼p𝑧q ‰ 0 for all 𝑧 P 𝑈 .
Shrinking 𝑈 , if necessary, to a compact neighbourhood of 𝜁0, we can

see that there exists 𝛿 ą 0, such that |𝛼p𝑧q| > 𝛿, @𝑧 P 𝑈 . Then, due to
uniform convergence of 𝛼𝑛p𝑧q to 𝛼p𝑧q in 𝑈 , there exists 𝑛0 P N, such that

𝛼𝑛p𝑧q ‰ 0 @𝑧 P 𝑈

for 𝑛 > 𝑛0.
Using equation (15), we can write for 𝑧 P 𝑈 and 𝑛 > 𝑛0:

𝑓𝑛p𝑧q “
𝛾𝑛p𝑧q

𝛼𝑛p𝑧q

𝛼𝑛p𝑧q

ℎ𝑛p𝑧q
Ñ

𝛾p𝑧q

𝛼p𝑧q
.
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Thus 𝑓𝑛p𝑧q converges uniformly to the holomorphic function
𝛾p𝑧q

𝛼p𝑧q
on 𝑈 .

Case 2: 𝛼p𝑧q ” 0 on 𝑈 .
By equation (13), we have ℎ𝑛p𝑧q Ñ 0 uniformly on 𝑈 . With equation

(14), this implies that 𝛽𝑛p𝑧q Ñ 0 uniformly on 𝑈 . That is, 𝛽p𝑧q ” 0 on
𝑈 . Therefore, 𝛾p𝑧q ‰ 0 @𝑧 P 𝑈 , so that p𝛼p𝑧q, 𝛽p𝑧q, 𝛾p𝑧qq is a reduced
representation of 𝐹 p𝑧q on 𝑈 . As

𝑓𝑛p𝑧qℎ𝑛p𝑧q “ 𝛾𝑛p𝑧q Ñ 𝛾p𝑧q and ℎ𝑛p𝑧q Ñ 0

uniformly on 𝑈 , it follows that 𝑓𝑛 Ñ 8 uniformly on 𝑈 . l

Proof of Theorem 8. Since normality is a local property, we can take
𝐷 “ D. We will show that the family ℱ˚ as defined in Theorem 7 is normal
in D. For any 𝑓 P ℱ , we make the following choice of 5 hyperplanes:

𝐻𝑓
𝑗 p𝑧q “ t𝑤 P P2

pCq | x𝑤, 𝛼𝑓
𝑗 p𝑧qy “ 0u, 𝑗 “ 1, . . . , 5,

given in normalized representation by

𝛼𝑓
1p𝑧q “ p𝑎

𝑓
1p𝑧q, 0,´1q,

𝛼𝑓
2p𝑧q “ p𝑎

𝑓
2p𝑧q, 0,´1q,

𝛼𝑓
3p𝑧q “ p0, 1,´1q,

𝛼𝑓
4p𝑧q “

´

1,
´1

2
, 0
¯

,

𝛼𝑓
5p𝑧q “

´

1,
´1

3
, 0
¯

.

We can compute that for any 𝑓 P ℱ and 𝑧 P D:

𝒟
´

𝐻𝑓
1 p𝑧q, 𝐻

𝑓
2 p𝑧q, 𝐻

𝑓
3 p𝑧q, 𝐻

𝑓
4 p𝑧q, 𝐻

𝑓
5 p𝑧q

¯

“
1

64

ˇ

ˇ

ˇ

𝑎𝑓1p𝑧q

2
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

𝑎𝑓2p𝑧q

2
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

𝑎𝑓1p𝑧q

3
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

𝑎𝑓2p𝑧q

3
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
𝑎𝑓2p𝑧q ´ 𝑎

𝑓
1p𝑧q

ˇ

ˇ

ˇ

3

>
1

64

´1

2

¯2´2

3

¯2

𝜀3 “ 𝛿˚(say) ą 0.

If we take 𝛿 “ min
!

𝛿˚,
1
?

3
,

1

1`𝑀

)

, then it can be seen that ℱ˚ satis-

fies all the conditions of Theorem 5. Hence, ℱ˚ is normal, and, so, by
Theorem 7, ℱ is also normal. l
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