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MEIR-KEELER CONDENSING OPERATORS AND A
FAMILY OF MEASURES OF NONCOMPACTNESS IN

FRÉCHET SPACES

Abstract. In this paper, we propose the concept of Meir-Keeler
(MK) condensing operators with respect to a family of measures of
noncompactness (FMN) in a Fréchet space, and present a gener-
alization of the Darbo theorem. Additionally, we state the notion
of an 𝑛-variable MK condensing operator regarding an FMN and
extend our findings to the 𝑛-variable context. To support our main
results, we demonstrate the existence of solutions for a class of sys-
tems of 𝑛-variable functional Volterra integral equations, which can
generalize many standard and couple systems.
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1. Introduction. The theory of differential and integral equations
has become a significant branch of nonlinear analysis with wide-ranging
applications in real-world problems. To date, numerous studies have ex-
plored the existence of solutions of nonlinear differential and integral equa-
tions by means of the measure of noncompactness (abbreviated MN) as
a key analytical technique [3], [4], [5], [6], [7], [8], [9], [13], [19], [23]. In
particular, several research articles have focused on the asymptotic behav-
ior of continuous solutions of certain integral and differential equations on
the real half-axis in [11], [12] and references therein. These investigations
have yielded some significant results through the application of MN and
Darbo theorem. The analyses were performed in Banach space 𝐵𝐶pR`q,
which includes all bounded and continuous real-valued functions on R`,
equipped with the standard norm. In 1980, Banaś and Goebel introduced
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Definition 3. [7] Suppose that ℳ is a class of subsets of a Fréchet space
ℰ and Nℰ denotes the subfamily containing all relatively compact sets.
ℳ is called an admissible set when Conv pℐq and ℐ̄ Pℳ for any ℐ Pℳ,
and Nℬ Xℳ ‰ H.

Note that a Fréchet space is a locally convex space, which is complete
with respect to a translation-invariant metric. Throughout this article,
presume ℰ is a Fréchet space and ℳ is an admissible set of ℰ with 𝒟 Pℳ.
In addition, Nℰ refers to the subfamily including all relatively compact
subsets of ℰ . For a ℐ Ă ℰ , ℐ̄, and Conv pℐq are denoted as the closure of
ℐ and the closed convex hull of ℐ, respectively.

Definition 4. [20] Presume ℰ is a Fréchet space. A family of functions
t𝜇𝑚u𝑚>0, where 𝜇𝑚 : ℳÑ r0,8q, is called an FMN in ℰ if the following
properties are held:

(1) The family kert𝜇𝑚u “ tℐ P ℳ : 𝜇𝑚pℐq “ 0 for all 𝑚 > 0u is
nonempty and kert𝜇𝑚u Ă Nℰ ;

(2) For any ℐ Ă 𝒥 , 𝜇𝑚pℐq 6 𝜇𝑚p𝒥 q for all 𝑚 > 0;
(3) 𝜇𝑚pConv pℐqq “ 𝜇𝑚pℐq for all 𝑚 > 0;
(4) If tℐ𝑛u is a sequence of closed sets in ℳ provided that ℐ𝑛`1 Ă ℐ𝑛

for 𝑛 “ 1, 2, ¨ ¨ ¨ and lim
𝑛Ñ8

𝜇𝑚pℐ𝑛q “ 0 for any 𝑚 > 0, then the

intersection ℐ8 “
8
Ş

𝑛“1

ℐ𝑛 is nonempty.

Note that kert𝜇𝑚u mentioned in Definition 4(1) is as the kernel of
the FMN t𝜇𝑚u𝑚>0. Note that ℐ8 in Definition 4(4) belongs to kert𝜇𝑚u.
Indeed, it follows from 𝜇𝑚pℐ8q 6 𝜇𝑚pℐ𝑛q for any 𝑚 > 0 and 𝑛 P N that
𝜇𝑚pℐ8q “ 0. Therefore, we conclude that ℐ8 P kert𝜇𝑚u.

In the following, a famous theorem in topology, needed in the proof of
the main theorem, is recalled.

Theorem 2. [1, Tychonoff Theorem] Presume ℬ is a Hausdorff locally
convex linear topological space and 𝒟 is a convex subset of ℬ. Also,
suppose ℋ : 𝒟 Ñ ℬ is a continuous mapping, so that ℋp𝒟q Ď 𝒜 Ď 𝒟, in
which 𝒜 is compact. Then ℋ possesses at least one fixed point.

This article presents several novel contributions that try to extend
and enrich the existing literature. First, we propose a generalization of
the classical MK operators by employing an FMN within the framework
of Fréchet spaces. This development significantly broadens the applica-
bility of fixed point results to a wider class of topological vector spaces,
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including those without norm structures. Second, we extend our results
on the classical MK operators to multi-variable MK condensing operators
by applying the construction of an FMN on a Fréchet finite product space.
Finally, we establish new existence results for a class of finite system of
an 𝑛-variable functional nonlinear Volterra integral equations defined on
the space 𝐶pR`q. It should be mention that while several studies have
examined single Volterra-type equations on unbounded domains or Ba-
nach spaces like 𝐵𝐶pR`q, the analysis of systems of such equations in
spaces like 𝐶pR`q is notably scarce. Thus, this extension offers greater
flexibility, allowing for the inclusion of more general functional equations
while still maintaining solvability. The approach presented here offers a
significant improvement over past studies, which often focused on sim-
pler, more restrictive cases. Also, the potential applications of this work
extend to various fields, including physics, engineering, and economics,
where multi-variable systems are prevalent.

2. Single variable MK condensing operators. The concept of a
MK condensing operator regarding an FMN on a Fréchet space is intro-
duced here. We also present several fixed point theorems.

Definition 5. Presume 𝒟 ‰ H is a subset of a Fréchet space ℰ with
𝒟 P ℳ and t𝜇𝑚u𝑚>0 is a given FMN on ℰ . An operator 𝒮 : 𝒟 Ñ 𝒟 is
called a MK condensing operator with respect to t𝜇𝑚u𝑚>0, if, for each
𝜉 ą 0, there is 𝛾 ą 0 provided that

𝜉 6 𝜇𝑚pℐq ă 𝜉 ` 𝛾 ùñ 𝜇𝑚p𝒮pℐqq ă 𝜉

for every subset ℐ of 𝒟 and each 𝑚 > 0.

As Theorem 2 is applied in our main theorem, the boundedness as-
sumption on the domain is not required.

Theorem 3. Suppose 𝒟 ‰ H is a closed and convex subset of a Fréchet
space ℰ with 𝒟 Pℳ and t𝜇𝑚u𝑚>0 is a given FMN on ℰ . If 𝒮 : 𝒟 Ñ 𝒟 is
a continuous and MK condensing operator with respect to t𝜇𝑚u𝑚>0, then
𝒮 possesses at least a fixed point.

Proof. By induction, we construct a sequence t𝒟𝑛u, where 𝒟0 “ 𝒟 and
𝒟𝑛 “ Convp𝒮𝒟𝑛´1q for 𝑛 > 1. If there is a non-negative integer 𝑁 pro-
vided that 𝜇𝑚p𝒟𝑁q “ 0 for all 𝑚 > 0, then 𝒟𝑁 is compact. Consequently,
Theorem 2 induces that 𝒮 has a fixed point. Now, presume 𝜇𝑚p𝒟𝑛q ‰ 0
for all 𝑛 > 0 and some 𝑚 > 0. Let 𝜇𝑚p𝒟𝑛q “ 𝜉𝑛 and 𝛾𝑛 “ 𝛾𝑛p𝜉𝑛q.
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Applying the definition of 𝒟𝑛, we get

𝜉𝑛`1 “ 𝜇𝑚p𝒟𝑛`1q “ 𝜇𝑚p𝐶𝑜𝑛𝑣p𝒮𝒟𝑛qq “ 𝜇𝑚p𝒮𝒟𝑛q 6 𝜇𝑚p𝒟𝑛q “ 𝜉𝑛.

Thus, t𝜉𝑛u forms a positive non-increasing sequence of R and 𝑟 > 0 exists,
such that 𝜉𝑛 Ñ 𝑟 when 𝑛 Ñ 8. Now, we prove 𝑟 “ 0. If 𝑟 ‰ 0, there
is a 𝑁0 P N provided that 𝑟 6 𝜉𝑛 ă 𝑟 ` 𝛾p𝑟q for 𝑛 ą 𝑁0, and by the
definition of a MK condensing operator with respect to t𝜇𝑚u𝑚>0, we have
𝜉𝑛`1 ă 𝑟, being a contradiction. Therefore, 𝑟 “ 0 and it can be deduced
that 𝜇𝑚p𝒟𝑛q Ñ 0 as 𝑛 Ñ 8 for any 𝑚 > 0. Further, as 𝒟𝑛`1 Ă 𝒟𝑛 and

using 4(4), we deduce 𝒟8 “
8
Ş

𝑛“1

𝒟𝑛 to be a nonempty, closed, and convex

set and 𝒟8 Ă 𝒟. Furthermore, 𝒟8 P kert𝜇𝑚u is invariant under 𝒮. By
Theorem 2, 𝒮 possesses a fixed point. l

Definition 6. [17] An ℒ-function is a function 𝜒 : r0,8s Ñ r0,8s that
satisfies the following conditions:

1) 𝜒p0q “ 0;
2) 𝜒p𝑎q ą 0 for 𝑎 P p0,8q;
3) For any 𝑎 P p0,8q, there is a 𝛾 ą 0, provided that 𝜒p𝑏q 6 𝑎 for all

𝑏 P r𝑎, 𝑎` 𝛾s.

These properties define the class of ℒ-functions. Below are some ex-
amples of such functions.

Example 1. [2] Take the function 𝜒 : r0,8q Ñ r0,8q by 𝜒p0q “ 0 and
for x ą 0, 0 ă 𝜒pxq ă x, which is continuous from the right. It is straight-
forward to verify that 𝜒 satisfies the properties of an ℒ-function. For
instances, take 𝜒p𝑏q “ 𝑘𝑏 in which 0 6 𝑘 ă 1.

Theorem 4. Presume 𝒟 ‰ H is a subset of a Fréchet space ℰ with
𝒟 Pℳ and t𝜇𝑚u𝑚>0 is a given FMN on ℰ . Then 𝒮 is classified as a MK
condensing operator with respect to t𝜇𝑚u𝑚>0 iff there is an ℒ-function 𝜒,
such that

𝜇𝑚p𝒮ℐq ă 𝜒p𝜇𝑚pℐqq (1)

for each ℐ Ă 𝒟 with 𝜇𝑚pℐq ‰ 0 for 𝑚 > 0.

Proof. Sufficiency: Assume 𝜉 ą 0 is given. As 𝜒 is an ℒ-function, there
is 𝛾 ą 0 provided that 𝜒p𝑏q 6 𝜉 for 𝜉 6 𝑏 ă 𝜉 ` 𝛾. Now, consider a subset
ℐ of 𝒟 provided that 𝜉 6 𝜇𝑚pℐq ă 𝜉 ` 𝛾p𝜉q for each 𝑚 > 0. Using (1),
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we get 𝜇𝑚p𝒮ℐq ă 𝜒p𝜇𝑚pℐqq 6 𝜉 for 𝑚 > 0. This shows that 𝒮 is a MK
condensing operator in respect of t𝜇𝑚u𝑚>0.

Necessity: Presume 𝒮 is a MK condensing operator in respect of
t𝜇𝑚u𝑚>0. Then we are able to introduce a function 𝜈 : p0,8q Ñ p0,8q
provided that

𝜉 6 𝜇𝑚pℐq ă 𝜉 ` 2𝜈p𝜉q ùñ 𝜇𝑚p𝒮pℐqq ă 𝜉

for all 𝜉 P p0,8q and 𝑚 > 0. By 𝜈, we can consider a nondecreasing
function 𝜌 : p0,8q Ñ p0,8q by 𝜌p𝑏q “ inft𝜉 : 𝑏 6 𝜉 ` 𝜈p𝜉qu for 𝑏 P p0,8q.
It follows from 𝑏 6 𝜉 ` 𝜈p𝜉q that 𝜌p𝑏q 6 𝑏 for all 𝑏 P p0,8q. Now, take
𝜓1 : r0,8q Ñ r0,8q by

𝜓1p𝑏q “

$

’

’

&

’

’

%

0, 𝑏 “ 0,

𝜌p𝑏q, 𝑏 ą 0 and mint𝜉 ą 0: 𝑏 6 𝜉 ` 𝜈p𝜉qu exists,
𝜌p𝑏q ` 𝑏

2
, otherwise.

It is evident that 𝜓1p0q “ 0 and 0 ă 𝜓1p𝑎q 6 𝑎 for 𝑎 P p0,8q. Now, fix
𝑎 P p0,8q. If 𝜓1p𝑏q 6 𝑎 for each 𝑏 P p𝑎, 𝑎`𝜈p𝑎qs, then we are able to choose
𝛾 “ 𝜈p𝑎q; otherwise, there is 𝜎 P p𝑎, 𝑎 ` 𝜈p𝑎qs provided that 𝜓1p𝜎q ą 𝑎.
Since 𝜎 6 𝑎 ` 𝜈p𝑎q, we conclude that 𝜌p𝜎q 6 𝑎. When 𝜌p𝜎q “ 𝑎, we get
𝜓1p𝜎q “ 𝜌p𝜎q “ 𝑎 “ 𝜓1p𝜎q, which is a contradiction. Therefore,

𝜌p𝜎q ă 𝑎 ă 𝜓1p𝜎q “
𝜌p𝜎q ` 𝜎

2
.

Now, select 𝑢 P p𝜌p𝜎q, 𝑎q so that 𝜎 6 𝑢` 𝜈p𝑢q and 𝛾 “ 𝑎´ 𝑢 ą 0, and fix
𝑏 P r𝑎, 𝑎` 𝛾s. Since

𝑏 6 𝑎` 𝛾 “ 2𝑎´ 𝑢 ă 2
𝜌p𝜎q ` 𝜎

2
´ 𝜌p𝜎q “ 𝜎 6 𝑢` 𝜈p𝑢q,

we get 𝜌p𝑏q 6 𝑢. In conclusion,

𝜓1p𝑏q 6
𝜌p𝑏q ` 𝑏

2
6
𝑢` 𝑎` 𝛾

2
“ 𝑎.

Thus, 𝜓1 is an ℒ-function. Now, pick ℐ Pℳ so that 𝜇𝑚pℐq ‰ 0 for each
𝑚 > 0. From the definition of 𝜓1, there is 𝜉 P p0, 𝜓1p𝑡qq provided that
𝑏 6 𝜉 ` 𝜈p𝜉q for every 𝑏 P p0,8q. Hence, there is 𝜉 P p0, 𝜓1p𝜇𝑚pℐqqq
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provided that 𝜇𝑚pℐq 6 𝜉 ` 𝜈p𝜉q for each 𝑚 > 0. Therefore, 𝜇𝑚p𝒮ℐq ă
ă 𝜉 6 𝜓1p𝜇𝑚pℐqq and the proof ends. l

Corollary 1. Presume 𝒟 ‰ H is a closed and convex subset of a Fréchet
space ℰ with 𝒟 P ℳ and 𝒮 : 𝒟 Ñ 𝒟 is a continuous operator satisfying
𝜇𝑚p𝒮ℐq ă 𝜒p𝜇𝑚pℐqq for all ℐ Ă 𝒟 and 𝑚 > 0, where t𝜇𝑚u𝑚>0 is a given
FMN and 𝜒 is an ℒ-function. Then 𝒮 possesses at least a fixed point.

Definition 7. [2, Definition 2.8] 𝜅 : r0,8q Ñ r0,8q is said to be a strictly
ℒ-function if

1) 𝜅p0q “ 0;

2) 𝜅p𝑎q ą 0 for 𝑎 ą 0;

3) for each 𝑎 ą 0, there exists 𝛾p𝑎q ą 0, such that 𝜅p𝑏q ă 𝑎 for any
𝑏 P r𝑎, 𝑎` 𝛾p𝑎qs.

Example 2. [2, Example 2.11] Let 𝜅 : r0,8q Ñ r0,8q be the function
defined by 𝜅p𝑡q “ lnp1` 𝑡q. Then 𝜅p0q “ ln 1 “ 0 and 𝜅p𝑎q “ lnp1`𝑎q ą 0
for 𝑎 ą 0. Moreover, for each 𝑎 ą 0, set 𝛾p𝑎q “ 𝑒𝑎 ´ 1 ´ 𝑎 ą 0. If
𝑏 P r𝑎, 𝑎 ` 𝛾p𝑎qs, then 𝑏 ă 𝑒𝑎 ´ 1, so 𝜅p𝑏q “ lnp1 ` 𝑏q ă 𝑎. Thus, 𝜅 is a
strictly ℒ-function.

Corollary 2. Presume 𝒟 ‰ H is a closed and convex subset of a Fréchet
space ℰ with 𝒟 P ℳ and 𝒮 : 𝒟 Ñ 𝒟 is a continuous operator provided
that 𝜇𝑚p𝒮ℐq 6 𝜅p𝜇𝑚pℐqq for any ℐ Ă 𝒟 and 𝑚 > 0 in which t𝜇𝑚u𝑚>0 is
a given FMN and 𝜅 is a strictly ℒ-function. Then 𝒮 possesses at least one
fixed point.

Proof. It is sufficient to demonstrate that 𝒮 is a MK condensing operator
regarding t𝜇𝑚u𝑚>0. Let 𝜉 ą 0 be arbitrary. As 𝜅 is a strictly ℒ-function,
there is a 𝛾 ą 0 provided that 𝜅p𝑏q ă 𝜉 for 𝜉 6 𝑏 ă 𝜉 ` 𝛾. Now, suppose
ℐ is a subset of 𝒟 so that 𝜉 6 𝜇𝑚pℐq ă 𝜉 ` 𝛾 for each 𝑚 > 0. Then we
can conclude that 𝜇𝑚p𝒮pℐqq 6 𝜅p𝜇𝑚pℐqq ă 𝜉. Now, applying Theorem 3,
the proof ends. l

3. Multi-variable MK condensing operators. In the recent
decade, many researchers have discussed the equivalence of the existence
and uniqueness of 𝑛-tuples fixed points and usual fixed points for multidi-
mensional mappings in [15], [16], [21], [22] and references therein. Follow-
ing their ideas, we present some useful theorems regarding the construction
of an FMN on a finite product space.



106 F. Soltanpour, H. Majani, A. Shole Haghighi

Theorem 5. [10] Let t𝜇1
𝑚u𝑚>0, . . . , t𝜇

𝑛
𝑚u𝑚>0 be families of measures of

noncompactness on Fréchet spaces ℰ1, . . . , ℰ𝑛, respectively. Additionally,
presume ℋ : R𝑛

` Ñ R` is a convex function fulfilling ℋp𝑞1, . . . , 𝑞𝑛q “ 0
iff 𝑞𝑖 “ 0 for each 𝑖 “ 1, . . . , 𝑛. Then 𝜇𝑚pℐq “ ℋp𝜇1

𝑚pℐ1q, . . . , 𝜇
𝑛
𝑚pℐ𝑛qq

defines an FMN on ℰ1 ˆ ¨ ¨ ¨ ˆ ℰ𝑛 for 𝑚 > 0, where ℐ𝑖 represents the
natural projections (in short, NPs) of ℐ into ℰ𝑖 for each 𝑖 “ 1, . . . , 𝑛.

As a conclusion of Theorem 5, we present the next example.

Example 3. Presume t𝜇𝑚u𝑚>0 is an FMN on a Fréchet space ℰ . Then,
by considering

$

&

%

ℋ1p𝑞1, . . . , 𝑞𝑛q “ maxt𝑞1, . . . , 𝑞𝑛u,

ℋ2p𝑞1, . . . , 𝑞𝑛q “
𝑛
ř

𝑖“1

𝑞𝑖

for p𝑞1, . . . , 𝑞𝑛q P R𝑛
`, the conditions of Theorem 5 are held [3]. Now, pre-

sume ℳ is an admissible set in Fréchet space ℰ and define
ℳℰ𝑛 “ tℐ Ă ℰ𝑛|ℐ𝑖 P ℳu, where ℐ𝑖 represents the NPs of ℐ for
𝑖 “ 1, . . . , 𝑛. It is evident that the conditions in Definition 3 are fulfilled.
Therefore, the mappings 𝜇̃1

𝑚 : ℳℰ𝑛 Ñ r0,8q and 𝜇̃2
𝑚 : ℳℰ𝑛 Ñ r0,8q are

defined as follows:
$

&

%

𝜇̃1
𝑚pℐq “ max

 

𝜇𝑚pℐ1q, . . . , 𝜇𝑚pℐ𝑛q
(

,

𝜇̃2
𝑚pℐq “

𝑛
ř

𝑖“1

𝜇𝑚pℐ𝑖q,

which are two families of measures of noncompactness in the space ℰ𝑛 for
𝑚 > 0 and ℐ𝑖 represents the NPs of ℐ for 𝑖 “ 1, . . . , 𝑛.

Next, we introduce an 𝑛-variable MK condensing operator regarding
the family t𝜇𝑚u𝑚>0. Let 𝒟𝑛 represent the finite product of 𝒟 and ℳ be
an admissible set in Fréchet space ℰ with 𝒟 Pℳ.

Definition 8. Presume 𝒟 is a nonempty subset of a Fréchet space ℰ
with 𝒟 Pℳ and t𝜇𝑚u𝑚>0 is a given FMN on ℰ . An operator 𝒮 : 𝒟𝑛 Ñ 𝒟
is called a MK condensing operator with respect to t𝜇𝑚u𝑚>0 if, for any
𝜉 ą 0, there is 𝛾 ą 0 provided that

𝜉 6 max
 

𝜇𝑚pℐ1q, . . . , 𝜇𝑚pℐ𝑛q
(

ă 𝜉 ` 𝛾 ùñ 𝜇𝑚p𝒮pℐqq ă 𝜉

for each subset ℐ of 𝒟𝑛 and each 𝑚 > 0, where ℐ𝑖 is the NPs of ℐ into 𝒟
for 𝑖 “ 1, . . . , 𝑛.
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Theorem 6. Presume 𝒟 ‰ H is a closed and convex subset of a Fréchet
space ℰ with 𝒟 Pℳ and t𝜇𝑚u𝑚>0 is a given FMN on ℰ . If 𝒮𝑖 : 𝒟𝑛 Ñ 𝒟
is a continuous and MK condensing operator with respect to t𝜇𝑚u𝑚>0 for
𝑖 “ 1, . . . , 𝑛, then there is p𝑞1, . . . , 𝑞𝑛q P𝒟𝑛 provided that 𝒮𝑖p𝑞1, . . . , 𝑞𝑛q“ 𝑞𝑖
for 𝑖 “ 1, . . . , 𝑛.

Proof. First, by Example 3, an FMN on ℰ𝑛 can be defined as follows:

𝜇̃𝑚pℐq “ max
 

𝜇𝑚pℐ1q, 𝜇𝑚pℐ2q, . . . , 𝜇𝑚pℐ𝑛q
(

(2)

for any subset ℐ in an admissible set ℳ of ℰ𝑛 and each 𝑚 > 0, where
ℐ𝑖 represents the NPs of ℐ for 𝑖 “ 1, . . . , 𝑛. Additionally, it is clear that
𝒮 : 𝒟𝑛 Ñ 𝒟 defined by

𝒮p𝑞1, . . . , 𝑞𝑛q “ p𝒮1p𝑞1, . . . , 𝑞𝑛q,𝒮2p𝑞1, . . . , 𝑞𝑛q, . . . ,𝒮𝑛p𝑞1, . . . , 𝑞𝑛qq

is continuous on 𝒟𝑛. We now claim that 𝒮 fulfills all hypotheses of The-
orem 3. To show this, suppose that 𝜉 ą 0 and 𝛾p𝜉q ą 0 are as in Defini-
tion 8. If ℐ is a subset of 𝒟𝑛 so that 𝜉 6 𝜇̃𝑚pℐq ă 𝜉 ` 𝛾p𝜉q for 𝑚 > 0,
then

𝜉 ă max
 

𝜇𝑚pℐ1q, . . . , 𝜇𝑚pℐ𝑛q
(

ă 𝜉 ` 𝛾p𝜉q

in which ℐ𝑖 represents the NPs of ℐ for 𝑖 “ 1, . . . , 𝑛. Using Definition 4(2)
and (2), we get

𝜇̃𝑚p𝒮pℐqq 6 𝜇̃𝑚p𝒮1pℐq ˆ ¨ ¨ ¨ ˆ 𝒮𝑛pℐqq
“ max

 

𝜇𝑚p𝒮1pℐqq, . . . , 𝜇𝑚p𝒮𝑛pℐqq
(

ă 𝜉.

Now, it follows from Theorem 3 that 𝒮 possesses at least a fixed point in
𝒟𝑛. Therefore, there is p𝑞1, . . . , 𝑞𝑛q P 𝒟𝑛 provided that

𝒮p𝑞1, . . . , 𝑞𝑛q “ p𝑞1, . . . , 𝑞𝑛q “ p𝒮1p𝑞1, . . . , 𝑞𝑛q, . . . ,𝒮𝑛p𝑞1, . . . , 𝑞𝑛qq.

The proof is completed. l

Definition 9. [13] p𝑞, 𝑝q P ℐ ˆ ℐ is called a coupled fixed point of an
operator ℋ : ℐ ˆ ℐ Ñ ℐ when ℋp𝑞, 𝑝q “ 𝑞 and ℋp𝑝, 𝑞q “ 𝑝.

Theorem 7. Presume 𝒟 ‰ H is a bounded, closed, and convex subset
of a Fréchet space ℰ and t𝜇𝑚u𝑚>0 is a given FMN on ℰ . Suppose that
𝒮 : 𝒟ˆ𝒟 Ñ 𝒟 is a continuous and MK condensing operator with respect
to t𝜇𝑚u𝑚>0. Then 𝒮 possesses a coupled fixed point.
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Proof. Consider 𝒮𝑖 : 𝒟 ˆ𝒟 Ñ 𝒟 for 𝑖 “ 1, 2 as follows:
#

𝒮1p𝑞, 𝑝q “ 𝒮p𝑞, 𝑝q,
𝒮2p𝑞, 𝑝q “ 𝒮p𝑝, 𝑞q.

The proof is the conclusion of Theorem 6. l

Next, we prove several fixed-point results using strictly ℒ-functions.

Theorem 8. Presume 𝒟 ‰ H is a closed and convex subset of a Fréchet
space ℰ with 𝒟 Pℳ and 𝒮𝑖 : 𝒟𝑛 Ñ 𝒟 are continuous operators, provided
that

𝜇𝑚p𝒮𝑖pℐ1 ˆ ¨ ¨ ¨ ˆ ℐ𝑛qq 6 𝜅
`

max
 

𝜇𝑚pℐ1q, . . . , 𝜇𝑚pℐ𝑛q
(˘

(3)

for every bounded subset ℐ of 𝒟𝑛 and each 𝑚 > 0, where t𝜇𝑚u𝑚>0 is an
arbitrary FMN on ℰ , ℐ𝑖 represents the NPs of ℐ into 𝒟 for 𝑖 “ 1, . . . , 𝑛,
and 𝜅 is a strictly ℒ-function. Then there is p𝑞1, . . . , 𝑞𝑛q P 𝒟𝑛, so that
𝒮𝑖p𝑞1, . . . , 𝑞𝑛q “ 𝑞𝑖 for 𝑖 “ 1, . . . , 𝑛.

Proof. Take a mapping 𝒮 : 𝒟𝑛 Ñ 𝒟𝑛 by

𝒮p𝑞1, . . . , 𝑞𝑛q “ p𝒮1p𝑞1, . . . , 𝑞𝑛q,𝒮2p𝑞1, . . . , 𝑞𝑛q, . . . ,𝒮𝑛p𝑞1, . . . , 𝑞𝑛qq,

which is continuous. By Example 3, 𝜇̃𝑚pℐq “ max
 

𝜇𝑚pℐ1q, . . . , 𝜇𝑚pℐ𝑛q
(

defines an FMN on ℰ𝑛 for any subset ℐ in an admissible set ℳℰ𝑛 of ℰ𝑛

and each 𝑚 > 0 in which ℐ𝑖 is the NPs of ℐ for 𝑖 “ 1, . . . , 𝑛. Using (3),
we have

𝜇̃𝑚p𝒮pℐqq 6 𝜇̃𝑚p𝒮1pℐq ˆ 𝒮2pℐq ˆ ¨ ¨ ¨ ˆ 𝒮𝑛pℐqq
“ max

 

𝜇𝑚p𝒮1pℐqq, 𝜇𝑚p𝒮2pℐqq, . . . , 𝜇𝑚p𝒮𝑛pℐqq
(

6 𝜅
`

max
 

𝜇𝑚pℐ1q, 𝜇𝑚pℐ2q, . . . , 𝜇𝑚pℐ𝑛q
(˘

“ 𝜅p𝜇̃𝑚pℐqq.

Now, the proof is followed by Corollary 2. l

Theorem 9. Presume 𝒟 ‰ H is a closed and convex subset of a Fréchet
space ℰ with 𝒟 Pℳ and 𝒮𝑖 : 𝒟𝑛 Ñ 𝒟 are continuous operators, provided
that

𝜇𝑚p𝒮𝑖pℐ1 ˆ ¨ ¨ ¨ ˆ ℐ𝑛qq 6
1

𝑛
𝜅
´

𝑛
ÿ

𝑖“1

𝜇𝑚pℐ𝑖q

¯

for any bounded subset ℐ of 𝒟𝑛 and each 𝑚 > 0, where t𝜇𝑚u𝑚>0 is a
given FMN on ℰ , ℐ𝑖 represents the NPs of ℐ into 𝒟 for 𝑖 “ 1, . . . , 𝑛,
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and 𝜅 is a strictly ℒ-function. Then there is p𝑞1, . . . , 𝑞𝑛q P 𝒟𝑛, such that
𝒮𝑖p𝑞1, . . . , 𝑞𝑛q “ 𝑞𝑖 for 𝑖 “ 1, . . . , 𝑛.

Proof. From Example 3, take an FMN on ℰ𝑛 by 𝜇̃𝑚pℐq “
𝑛
ř

𝑖“1

𝜇𝑚pℐ𝑖q for

each subset ℐ in an admissible set ℳℰ𝑛 of ℰ𝑛 and all 𝑚 > 0, where ℐ𝑖 is
the NPs of ℐ for 𝑖 “ 1, . . . , 𝑛. The proof is the same as the proof of the
Theorem 8. l

Theorem 10. Presume 𝒟 ‰ H is a closed and convex subset of a Fréchet
space ℰ with 𝒟 P ℳ and t𝜇𝑚u𝑚>0 is a given FMN on ℰ . If 𝒮𝑖 : 𝒟𝑖 Ñ 𝒟
is a continuous and MK condensing operator with respect to t𝜇𝑚u𝑚>0 for
𝑖 “ 1, . . . , 𝑛, then there is p𝑞1, 𝑞2, . . . , 𝑞𝑖q P 𝒟𝑖, such that

𝒮1p𝑞1q “ 𝑞1,𝒮2p𝑞1, 𝑞2q “ 𝑞2, . . . , 𝒮𝑖p𝑞1, . . . , 𝑞𝑖q “ 𝑞𝑖

for 𝑖 “ 1, . . . , 𝑛.

Proof. Define 𝒮 : 𝒟𝑛 Ñ 𝒟𝑛 by

𝒮p𝑞1, . . . , 𝑞𝑛q “ p𝒮1p𝑞1q,𝒮2p𝑞1, 𝑞2q, . . . ,𝒮𝑛p𝑞1, . . . , 𝑞𝑛qq.

It is clear that 𝒮 is continuous. The proof similarly comes after the proof
of Theorem 6. l

4. Applications. Up until now, many applications related to show-
ing the existence of solution of function Volterra integral equations have
been presented by many researchers [3], [6], [7], [19], [20], [23], [24], [25];
however, we demonstrate the existence of solutions for a class of systems
of 𝑛-variable functional Volterra integral equations, which are more use-
ful than previous problems. In fact, since we consider 𝐶pR`q and apply
𝑛-variable system instead of one variable or coupled systems with weaker
conditions, this section can cover former applications. Note that Volterra
integral equations, particularly those with multiple variables, play a sig-
nificant role in modeling complex phenomena in various scientific fields.
We first gather some basic definitions and facts that will be needed. Pre-
sume 𝐶pR`q “ t𝑞 : R` Ñ R, 𝑞 is continuousu is furnished with the family
of seminorms |𝑞|𝑚 “ supt|𝑞p𝑏q| : 𝑏 P r0,𝑚su for 𝑚 > 0. Then 𝐶pR`q is a
Fréchet space when furnished with the metric

𝑑p𝑞, 𝑝q “ sup
! 1

2𝑚
mint1, |𝑞 ´ 𝑝|𝑚u : 𝑚 > 0

)

.

H ‰ ℐ Ă 𝐶pR`q is called bounded when supt|𝑞|𝑚 : 𝑞 P ℐu ă 8 for 𝑚 > 0.
Also, let us now recall three key facts that are necessary:
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1) A sequence p𝑞𝑛q converges to 𝑞 P 𝐶pR`q iff p𝑞𝑛q is uniformly conver-
gent to 𝑞 on a compact subset of R`.

2) A family 𝒜 Ă 𝐶pR`q is relatively compact iff, for any 𝑚 ą 0, the
restriction to r0,𝑚s of each function from 𝒜 constructs an equicon-
tinuous and uniformly bounded set.

3) An operator ℋ : p𝐶pR`qq𝑛 Ñ 𝐶pR`q is continuous on p𝐶pR`qq𝑛 iff
ℋ|𝑚 : p𝐶r0,𝑚sq𝑛 Ñ 𝐶r0,𝑚s is continuous for all 𝑚 > 0, where

ℋ|𝑚p𝑞1, . . . , 𝑞𝑛qp𝑏q “ ℋp𝑞1, . . . , 𝑞𝑛qp𝑏q

for 𝑏 P r0,𝑚s.

Moreover, let us define an FMN in 𝐶pR`q by

ℳ𝐶pR`q “ tℐ Ă 𝐶pR`q : ℐ|𝑚 is bounded for all 𝑚 > 0u,

where ℐ|𝑚 is the restriction of all functions from ℐ to r0,𝑚s. It is obvious
that all the conditions of Definition 3 are satisfied. Fix a positive number
𝑚 ą 0 and a nonempty set ℐ of ℳ𝐶pR`q, which is an admissible set of
𝐶pR`q. For 𝑞 P ℐ and 𝜉 ą 0, the modulus of continuity of 𝑞 on r0,𝑚s,
denoted by 𝑤𝑚p𝑞, 𝜉q, is

𝑤𝑚
p𝑞, 𝜉q “ supt|𝑞p𝑏q ´ 𝑞p𝑎q| : 𝑎, 𝑏 P r0,𝑚s, |𝑏´ 𝑎| 6 𝜉u.

Additionally, take

𝑤𝑚
pℐ, 𝜉q “ supt𝑤𝑚

p𝑞, 𝜉q : 𝑞 P ℐu, 𝑤𝑚
0 pℐq “ lim

𝜉Ñ0
𝑤𝑚
pℐ, 𝜉q.

Note that t𝑤𝑚
0 u𝑚PN forms an FMN in 𝐶pR`q [20]. Now, consider

𝑞𝑖 “ 𝑓𝑖

´

𝑞1p𝑏q, . . . , 𝑞𝑛p𝑏q,

𝑏
ż

0

𝑔p𝑏, 𝑎, 𝑞1p𝑎q, . . . , 𝑞𝑛p𝑎qq𝑑𝑎
¯

(4)

with the following conditions:

(i) 𝑓𝑖 : R𝑛`1 Ñ R are continuous functions satisfying

|𝑓𝑖p𝑞1, . . . , 𝑞𝑛, 𝑢q ´ 𝑓𝑖p𝑝1, . . . , 𝑝𝑛, 𝑣q| 6 𝜅
´

max
𝑖“1, ..., 𝑛

t|𝑞𝑖 ´ 𝑝𝑖|u
¯

` |𝑢´ 𝑣|

in which 𝜅 : R` Ñ R` is a nondecreasing strictly ℒ-function with
𝜅p𝑏q 6 𝑏, and 𝑀 “ sup

𝑖“1, ..., 𝑛
𝑓𝑖p0, . . . , 0q.
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(ii) The function 𝑔 : R2
` ˆ R𝑛 Ñ R is continuous, and for 𝑏 P r0,𝑚s and

𝑞1, . . . , 𝑞𝑛 P 𝐶pR`q, there exists positive sequence constant 𝐷𝑚 for
𝑚 > 0 that

𝑏
ż

0

|𝑔p𝑏, 𝑎, 𝑞1p𝑎q, . . . , 𝑞𝑛p𝑎qq|𝑑𝑎 ă 𝐷𝑚

(iii) There is a positive sequence solution of 𝜅p𝑟𝑚q `𝑀 `𝐷𝑚 6 𝑟𝑚 for
𝑚 > 0.

Theorem 11. By conditions (i)–(iii), (4) has at least one solution in
p𝐶pR`qq𝑛.

Proof. First take ℋ𝑖 : p𝐶pR`qq𝑛 Ñ 𝐶pR`q for 𝑖 P t1, . . . , 𝑛u by

ℋ𝑖p𝑞1, . . . , 𝑞𝑛qp𝑏q “ 𝑓𝑖

´

𝑞1p𝑏q, . . . , 𝑞𝑛p𝑏q,

𝑏
ż

0

𝑔p𝑏, 𝑎, 𝑞1p𝑎q, . . . , 𝑞𝑛p𝑎qq𝑑𝑎
¯

for any 𝑏 P R`. It is obvious that ℋ𝑖p𝑞1, . . . , 𝑞𝑛q is continuous on R` for
each p𝑞1, . . . , 𝑞𝑛q P p𝐶pR`qq𝑛. In the following steps, we exam the validity
of all hypotheses of the Theorem 8.

Step 1. We show ℋ𝑖|𝑚 : p𝐶r0,𝑚sq𝑛 Ñ 𝐶r0,𝑚s is continuous for 𝑚 > 0
and 𝑖 P t1, . . . , 𝑛u. For this, take 𝜉 ą 0 and fix 𝑞𝑖 P 𝐶r0,𝑚s for all
𝑝𝑖 P 𝐶r0,𝑚s, so that |𝑞𝑖 ´ 𝑝𝑖|𝑚 6 𝜉 for any 𝑖 P t1, . . . , 𝑛u. For 𝑏 P r0,𝑚s,
we have

ˇ

ˇℋ𝑖p𝑞1, . . . , 𝑞𝑛qp𝑏q ´ℋ𝑖p𝑝1, . . . , 𝑝𝑛qp𝑏q
ˇ

ˇ

6 𝜅
´

max
𝑖“1,...,𝑛

t|𝑞𝑖p𝑏q ´ 𝑝𝑖p𝑏q|u
¯

`

ˇ

ˇ

ˇ

ˇ

𝑏
ż

0

𝑔p𝑏, 𝑎, 𝑞1p𝑎q, . . . , 𝑞𝑛p𝑎qq𝑑𝑎´

𝑏
ż

0

𝑔p𝑏, 𝑎, 𝑝1p𝑎q, . . . , 𝑝𝑛p𝑎qq𝑑𝑎

ˇ

ˇ

ˇ

ˇ

6 𝜅
´

max
𝑖“1,...,𝑛

t|𝑞𝑖p𝑏q ´ 𝑝𝑖p𝑏q|u
¯

`

𝑏
ż

0

ˇ

ˇ𝑔p𝑏, 𝑎, 𝑞1p𝑎q, . . . , 𝑞𝑛p𝑎qq ´ 𝑔p𝑏, 𝑎, 𝑝1p𝑎q, . . . , 𝑝𝑛p𝑎qq
ˇ

ˇ𝑑𝑎

6 𝜅
´

max
𝑖“1,...,𝑛

t|𝑞𝑖 ´ 𝑝𝑖|𝑚u
¯
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`

𝑚
ż

0

ˇ

ˇ𝑔p𝑏, 𝑎, 𝑞1p𝑎q, . . . , 𝑞𝑛p𝑎qq ´ 𝑔p𝑏, 𝑎, 𝑝1p𝑎q, . . . , 𝑝𝑛p𝑎qq
ˇ

ˇ𝑑𝑎

6 𝜅p𝜉q `𝑚𝑉 p𝜉q 6 𝜉 `𝑚𝑉 p𝜉q,

where

𝜎 “ supt|𝑞𝑖p𝑏q| : 𝑏 P r0,𝑚s, 1 6 𝑖 6 𝑛u,

𝑉 p𝜉q “ sup
 

|𝑔p𝑏, 𝑎, 𝑞1p𝑎q, . . . , 𝑞𝑛p𝑎qq ´ 𝑔p𝑏, 𝑎, 𝑝1p𝑎q, . . . , 𝑝𝑛p𝑎qq| :

𝑞𝑖, 𝑝𝑖 P r´𝜎 ´ 𝜉, 𝜎 ` 𝜉s, |𝑞𝑖 ´ 𝑝𝑖| 6 𝜉, 𝑎, 𝑏 P r0,𝑚s
(

.

It follows from the uniform continuity of 𝑔 on r0,𝑚s2ˆr´𝜎´𝜉, 𝜎`𝜉s𝑛 that
𝑉 p𝜉q Ñ 0 as 𝜉 Ñ 0. Thus, the first step of the proof has been completed.

Step 2. Let 𝑏 P r0,𝑚s and 𝑞 “ p𝑞1, . . . , 𝑞𝑛q P p𝐶pR`qq𝑛. Then

|ℋ𝑖𝑞p𝑏q| “
ˇ

ˇ

ˇ
𝑓𝑖p𝑞1p𝑏q, . . . , 𝑞𝑛p𝑏q,

𝑏
ż

0

𝑔p𝑏, 𝑎, 𝑞1p𝑎q, . . . , 𝑞𝑛p𝑎qq𝑑𝑎q
ˇ

ˇ

ˇ

6
ˇ

ˇ

ˇ
𝑓𝑖

´

𝑞1p𝑏q, . . . , 𝑞𝑛p𝑏q,

𝑏
ż

0

𝑔p𝑏, 𝑎, 𝑞1p𝑎q, . . . , 𝑞𝑛p𝑎qq𝑑𝑎
¯

´ 𝑓𝑖p0, . . . , 0q
ˇ

ˇ

ˇ

` |𝑓𝑖p0, . . . , 0q|

6 𝜅
´

max
𝑖“1,...,𝑛

t|𝑞𝑖p𝑏q|u
¯

`

𝑏
ż

0

|𝑔p𝑏, 𝑎, 𝑞1p𝑎q, . . . , 𝑞𝑛p𝑎qq𝑑𝑎| ` |𝑓𝑖p0, . . . , 0q|

6 𝜅
´

max
𝑖“1,...,𝑛

t|𝑞𝑖|𝑚u
¯

`𝑀 `𝐷𝑚.

Thus,
|ℋ𝑖𝑞|𝑚 6 𝜅

´

max
𝑖“1,...,𝑛

t|𝑞𝑖|𝑚u
¯

`𝑀 `𝐷𝑚. (5)

Define 𝒟 “ t𝑞𝑖 P 𝐶pR`q|𝑞𝑖|𝑚 ă 𝑟𝑚,𝑚 > 0u. It follows from (5) that ℋ𝑖

transforms 𝒟𝑛 into 𝒟.
Step 3. Now, fix a positive number 𝑚 ą 0 and assume 𝑏1, 𝑏2 P r0,𝑚s,

|𝑏1 ´ 𝑏2| 6 𝜉 and 𝑞 “ p𝑞1, . . . , 𝑞𝑛q P 𝒟𝑛. Then

|ℋ𝑖𝑞p𝑏1q ´ℋ𝑖𝑞p𝑏2q|
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“

ˇ

ˇ

ˇ
𝑓𝑖

´

𝑞1p𝑏1q, . . . , 𝑞𝑛p𝑏1q,

𝑏1
ż

0

𝑔p𝑏1, 𝑎, 𝑞1p𝑎q, . . . , 𝑞𝑛p𝑎qq𝑑𝑎
¯

´ 𝑓𝑖

´

𝑞1p𝑏2q, . . . , 𝑞𝑛p𝑏2q,

𝑏2
ż

0

𝑔p𝑏2, 𝑎, 𝑞1p𝑎q, . . . , 𝑞𝑛p𝑎qq𝑑𝑎
¯
ˇ

ˇ

ˇ

6 𝜅
´

max
𝑖“1,...,𝑛

t|𝑞𝑖p𝑏1q ´ 𝑞𝑖p𝑏2q|u
¯

`

𝑏1
ż

0

|𝑔p𝑏1, 𝑎, 𝑞1p𝑎q, . . . , 𝑞𝑛p𝑎qq ´ 𝑔p𝑏2, 𝑎, 𝑞1p𝑎q, . . . , 𝑞𝑛p𝑎qq|𝑑𝑎

`

𝑏2
ż

𝑏1

|𝑔p𝑏2, 𝑎, 𝑞1p𝑎q, . . . , 𝑞𝑛p𝑎qq|𝑑𝑎

6 𝜅
´

max
𝑖“1,...,𝑛

t|𝑞𝑖p𝑏1q ´ 𝑞𝑖p𝑏2q|u
¯

`𝑚𝑉 𝑚
p𝜉q ` |𝑏1 ´ 𝑏2|𝑈

𝑚

6 𝜅
´

max
𝑖“1,...,𝑛

t𝑤𝑚
pℐ𝑖, 𝜉qu

¯

`𝑚𝑉 𝑚
p𝜉q ` 𝜉𝑈𝑚,

where

𝑉 𝑚
p𝜉q “ sup

 

|𝑔p𝑏1, 𝑎, 𝑧1, . . . , 𝑧𝑛q ´ 𝑔p𝑏2, 𝑎, 𝑧1, . . . , 𝑧𝑛q| : |𝑏1 ´ 𝑏2| 6 𝜉,

𝑎, 𝑏1, 𝑏2 P r0,𝑚s
(

,

𝑈𝑚
“ sup

 

|𝑔p𝑏, 𝑎, 𝑧1, . . . , 𝑧𝑛q| : 𝑎, 𝑏 P r0,𝑚s, |𝑧𝑖| 6 𝑟𝑚
(

.

On the other hand, as 𝑔 is uniformly continuous on r0,𝑚s2 ˆ r´𝜉,`𝜉s𝑛,
we have 𝑉 𝑚p𝜉q Ñ 0 as 𝜉 Ñ 0. Therefore,

𝑤𝑚
pℋ𝑖pℐ1 ˆ ¨ ¨ ¨ ˆ ℐ𝑛, 𝜉qq 6 𝜅p max

𝑖“1,...,𝑛
t𝑤𝑚

pℐ𝑖, 𝜉quq `𝑚𝑉
𝑚
p𝜉q ` 𝜉𝑈𝑚,

and so,
𝑤𝑚

0 pℋ𝑖pℐ1 ˆ ¨ ¨ ¨ ˆ ℐ𝑛qq 6 𝜅p max
𝑖“1,...,𝑛

t𝑤𝑚
0 pℐ𝑖quq.

Now, by applying Theorem 8, the assertion is obtained. l
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[12] Banaś J., Rzepka R. An application of a measure of noncompactness in the
study of asymptotic stability. Appl. Math. Lett., 2003, vol. 16, pp. 1 – 6.
DOI: https://doi.org/10.1016/S0893-9659(02)00136-2

[13] Chang S. S., Cho Y. J., Huang N. J. Coupled fixed point theorems with
applications. J. Korean Math. Soc., 1996, vol. 33, no. 3, pp. 575 – 585.
URL: https://jkms.kms.or.kr/journal/view.html?uid=1258

[14] Darbo G. Punti uniti in trasformazioni a codominio non compatto. Rend.
Sem. Mat. Univ. Padova., 1955, vol. 24, pp. 84 – 92.
URL: https://www.numdam.org/item/?id=RSMUP_1955__24__84_0

[15] Ghasab E. L., Majani H., Karapinar E., Soleimani Rad G. New fixed point
results in ℱ-quasi-metric spaces and an application. Adv. Math. Phys.,
2020, vol. 2020, no. 9452350.
DOI: https://doi.org/10.1155/2020/9452350

[16] Ghosh S., Saha P., Roy S., Choudhury B. S. Strong coupled fixed points and
applications to fractal generalizations in fuzzy metric spaces. Probl. Anal.
Issues Anal., 2023, vol. 12(30), no. 3, pp. 50 – 68.
DOI: https://doi.org/0.15393/j3.art.2023.13473

[17] Lim T. C. On characterizations of Meir-Keeler contractive maps. Nonlinear
Anal., 2001, vol. 46, pp. 113 – 120.
DOI: https://doi.org/10.1016/S0362-546X(99)00448-4

[18] Meir A., Keeler E. A theorem on contraction mappings. J. Math. Anal.
Appl., 1969, vol. 28, pp. 326 – 329.
DOI: https://doi.org/10.1016/0022-247X(69)90031-6

[19] Mursaleen M., Mohiuddine S. A. Applications of measures of noncompact-
ness to the infinite system of differential equations in 𝑙𝑝 spaces. Nonlinear
Anal., 2012, vol. 75, pp. 2111 – 2115.
DOI: https://doi.org/10.1016/j.na.2011.10.011

[20] Olszowy L. Fixed point theorems in the Fréchet space 𝐶pR`q and functional
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