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Abstract. In this paper, we propose the concept of Meir-Keeler
(MK) condensing operators with respect to a family of measures of
noncompactness (FMN) in a Fréchet space, and present a gener-
alization of the Darbo theorem. Additionally, we state the notion
of an m-variable MK condensing operator regarding an FMN and
extend our findings to the n-variable context. To support our main
results, we demonstrate the existence of solutions for a class of sys-
tems of n-variable functional Volterra integral equations, which can
generalize many standard and couple systems.
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1. Introduction. The theory of differential and integral equations
has become a significant branch of nonlinear analysis with wide-ranging
applications in real-world problems. To date, numerous studies have ex-
plored the existence of solutions of nonlinear differential and integral equa-
tions by means of the measure of noncompactness (abbreviated MN) as
a key analytical technique [3], [4], [5], [6], [7], [8], [9], [13], [19], [23]. In
particular, several research articles have focused on the asymptotic behav-
ior of continuous solutions of certain integral and differential equations on
the real half-axis in [11], [12] and references therein. These investigations
have yielded some significant results through the application of MN and
Darbo theorem. The analyses were performed in Banach space BC(R, ),
which includes all bounded and continuous real-valued functions on R,
equipped with the standard norm. In 1980, Banas and Goebel introduced
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Definition 3. |7] Suppose that M is a class of subsets of a Fréchet space
E and Ng denotes the subfamily containing all relatively compact sets.
M is called an admissible set when Conv (Z) and Z € M for any T € M,
and Mg " M # .

Note that a Fréchet space is a locally convex space, which is complete
with respect to a translation-invariant metric. Throughout this article,
presume £ is a Fréchet space and M is an admissible set of £ with D € M.
In addition, D¢ refers to the subfamily including all relatively compact
subsets of £&. For a T < £, Z, and Conv (Z) are denoted as the closure of
7 and the closed convex hull of Z, respectively.

Definition 4. [20] Presume £ is a Fréchet space. A family of functions
{ttm }m=0, where i, : M — [0,0), is called an FMN in & if the following
properties are held:

(1) The family ker{j,,} = {Z € M : p,(Z) = 0 forall m > 0} is
nonempty and ker{iu,,} < MNg;
(2) For any T < J, p(Z) < pn(J) for all m > 0;
(3) pm(Conv(Z)) = pm(Z) for all m > 0;
(4) If {Z,,} is a sequence of closed sets in M provided that Z,,,, < I,
forn = 1,2,--- and T}l_r)gloum(In) = 0 for any m > 0, then the
0

intersection Z, = (| Z,, is nonempty.
n=1

Note that ker{su,,} mentioned in Definition 4(1) is as the kernel of
the FMN {m}m=0. Note that Z, in Definition 4(4) belongs to ker{,}.
Indeed, it follows from pi,,(Zy) < pm(Z,,) for any m > 0 and n € N that
tm(Z) = 0. Therefore, we conclude that Z,, € ker{j,,}.

In the following, a famous theorem in topology, needed in the proof of
the main theorem, is recalled.

Theorem 2. [1, Tychonoff Theorem| Presume B is a Hausdorfl locally
convex linear topological space and D is a convex subset of B. Also,
suppose H: D — B is a continuous mapping, so that H(D) < A < D, in
which A is compact. Then H possesses at least one fixed point.

This article presents several novel contributions that try to extend
and enrich the existing literature. First, we propose a generalization of
the classical MK operators by employing an FMN within the framework
of Fréchet spaces. This development significantly broadens the applica-
bility of fixed point results to a wider class of topological vector spaces,
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including those without norm structures. Second, we extend our results
on the classical MK operators to multi-variable MK condensing operators
by applying the construction of an FMN on a Fréchet finite product space.
Finally, we establish new existence results for a class of finite system of
an n-variable functional nonlinear Volterra integral equations defined on
the space C'(R,). It should be mention that while several studies have
examined single Volterra-type equations on unbounded domains or Ba-
nach spaces like BC(R,), the analysis of systems of such equations in
spaces like C'(R,) is notably scarce. Thus, this extension offers greater
flexibility, allowing for the inclusion of more general functional equations
while still maintaining solvability. The approach presented here offers a
significant improvement over past studies, which often focused on sim-
pler, more restrictive cases. Also, the potential applications of this work
extend to various fields, including physics, engineering, and economics,
where multi-variable systems are prevalent.

2. Single variable MK condensing operators. The concept of a
MK condensing operator regarding an FMN on a Fréchet space is intro-
duced here. We also present several fixed point theorems.

Definition 5. Presume D # (J is a subset of a Fréchet space £ with
D e M and {ftm}m>0 is a given FMN on €. An operator S: D — D is
called a MK condensing operator with respect to {jim,}mso, if, for each
& > 0, there is v > 0 provided that

E < um(T) <&+ 7= pm(S(T)) <¢

for every subset Z of D and each m = 0.

As Theorem 2 is applied in our main theorem, the boundedness as-
sumption on the domain is not required.

Theorem 3. Suppose D # (J is a closed and convex subset of a Fréchet
space € with D € M and {m}m>o is a given FMN on €. If S: D — D is
a continuous and MK condensing operator with respect to {ji; }m>0, then
S possesses at least a fixed point.

Proof. By induction, we construct a sequence {D,}, where Dy = D and
D,, = Conv(S8D,,_1) for n > 1. If there is a non-negative integer N pro-
vided that p,,(Dy) = 0 for all m > 0, then Dy is compact. Consequently,
Theorem 2 induces that S has a fixed point. Now, presume p,,(D,) # 0
for all n > 0 and some m > 0. Let u,(D,) = & and v, = 7,.(&)-
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Applying the definition of D,,, we get

Ent1 = m(Dny1) = pm(Conv(8D,)) = 11 (SDy) < pin(Dy) = &n-

Thus, {£,} forms a positive non-increasing sequence of R and r > 0 exists,
such that &, — r when n — 0. Now, we prove r = 0. If r # 0, there
is a Ny € N provided that r < &, < r + 7(r) for n > Ny, and by the
definition of a MK condensing operator with respect to {ft, }m>0, we have
&ne1 < 1, being a contradiction. Therefore, » = 0 and it can be deduced
that p,(D,) — 0 as n — o for any m > 0. Further, as D,.; < D,, and
e 6}
using 4(4), we deduce Dy, = () D, to be a nonempty, closed, and convex

n=1
set and Do, = D. Furthermore, Dy, € ker{yu,,} is invariant under S. By

Theorem 2, § possesses a fixed point. []

Definition 6. [17] An L-function is a function x: [0,00] — [0,00] that
satisfies the following conditions:

1) x(0) = 0;

2) x(a) > 0 for a € (0,0);

3) For any a € (0,00), there is a v > 0, provided that x(b) < a for all
bela,a+7].

These properties define the class of L-functions. Below are some ex-
amples of such functions.

Example 1. [2] Take the function y: [0,00) — [0,%0) by x(0) = 0 and
for x > 0, 0 < x(x) < x, which is continuous from the right. It is straight-
forward to verify that y satisfies the properties of an L-function. For
instances, take x(b) = kb in which 0 < k < 1.

Theorem 4. Presume D # ¢ is a subset of a Fréchet space £ with
D e M and {jiym}m>o0 is a given FMN on €. Then S is classified as a MK
condensing operator with respect to {fum }m>o Iff there is an L-function Y,
such that

#im(ST) < x(pm (1)) (1)
for each T < D with p,,(Z) # 0 for m > 0.

Proof. Sufficiency: Assume & > 0 is given. As y is an L-function, there
is 7 > 0 provided that x(b) < £ for £ < b < £ + . Now, consider a subset
Z of D provided that & < p,(Z) < € + (&) for each m > 0. Using (1),
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we get m(SZ) < x(um(Z)) < & for m > 0. This shows that S is a MK
condensing operator in respect of { um}m>0.

Necessity: Presume S is a MK condensing operator in respect of
{ftm}m=0. Then we are able to introduce a function v: (0,00) — (0, 0)
provided that

ES um(Z) <&+ 20(8) = un(S(T)) < ¢

for all £ € (0,00) and m > 0. By v, we can consider a nondecreasing
function p: (0,00) — (0,00) by p(b) = inf{&: b < &+ v ()} for b e (0,0).
It follows from b < & + v(&) that p(b) < b for all b € (0,00). Now, take
1/}1‘ [07 OO) [07 OO) by

0, b=0,
U1 (b) = p(b), b>0and min{{ > 0: b <&+ v(€)} exists,
b) +b
o )2+ , otherwise.

It is evident that ¢;(0) = 0 and 0 < ¥4 (a) < a for a € (0,00). Now, fix
a € (0,00). If 1 (b) < a for each b € (a,a+v(a)], then we are able to choose
v = v(a); otherwise, there is o € (a,a + v(a)] provided that i;(c) > a.
Since 0 < a + v(a), we conclude that p(c) < a. When p(o) = a, we get
(o) = p(o) = a = 1 (0), which is a contradiction. Therefore,

plo) + o

plo) <a <o) = 5

Now, select u € (p(0),a) so that 0 < u+ v(u) and v = a —u > 0, and fix
be [a,a+ ~]. Since

plo) +o

b<a+y=2a—u<2 —p(o) =0 <u+v(u),

we get p(b) < u. In conclusion,

p(b)+b<u+a+7:

) # 0 for each
provided that

(0,41 (km(1)))

Thus, ¢, is an L-function. Now, pick Z € M so that p,,(Z
m > 0. From the definition of vy, there is & € (0,11(t))
b < &+ () for every b € (0,00). Hence, there is & €
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provided that p,,(Z) < € + v(&) for each m > 0. Therefore, p,,(SZ) <
< & < Y1(m(Z)) and the proof ends. []

Corollary 1. Presume D # (J is a closed and convex subset of a Fréchet
space £ with D e M and §: D — D is a continuous operator satistying
pm(SZ) < x(pum(Z)) for all T < D and m > 0, where {{im}m>0 Is a given
FMN and x is an L-function. Then S possesses at least a fixed point.

Definition 7. |2, Definition 2.8] x: [0,90) — [0, ) is said to be a strictly
L-function if

1) x(0) =0;
2) k(a) >0 for a > 0;

3) for each a > 0, there exists y(a) > 0, such that k(b) < a for any
be [a,a+ v(a)].

Example 2. |2, Example 2.11| Let x: [0,00) — [0,00) be the function
defined by (t) = In(1+4¢). Then £(0) =In1 = 0 and x(a) = In(1+a) > 0
for a > 0. Moreover, for each a > 0, set y(a) = e* —1—a > 0. If
b€ [a,a+ v(a)], then b < e* — 1, so k(b) = In(1 + b) < a. Thus, k is a
strictly £-function.

Corollary 2. PresumeD # (J is a closed and convex subset of a Fréchet
space £ with D € M and §: D — D is a continuous operator provided
that 1, (SZ) < k(pm(Z)) for any T < D and m > 0 in which {fim}m>0 IS
a given FMN and k is a strictly L-function. Then S possesses at least one
fixed point.

Proof. It is sufficient to demonstrate that S is a MK condensing operator
regarding { /i, }m>0. Let € > 0 be arbitrary. As k is a strictly £-function,
there is a v > 0 provided that x(b) < & for £ < b < £ + . Now, suppose
7 is a subset of D so that £ < p,(Z) < £ + v for each m > 0. Then we
can conclude that 1,,(S(Z)) < k(um(Z)) < & Now, applying Theorem 3,
the proof ends. []

3. Multi-variable MK condensing operators. In the recent
decade, many researchers have discussed the equivalence of the existence
and uniqueness of n-tuples fixed points and usual fixed points for multidi-
mensional mappings in [15], [16], [21], [22] and references therein. Follow-
ing their ideas, we present some useful theorems regarding the construction
of an FMN on a finite product space.



106 F. Soltanpour, H. Majani, A. Shole Haghighi

Theorem 5. [10] Let {u! }mz0,-- -, {" }m=0 be families of measures of
noncompactness on Fréchet spaces &1,...,E,, respectively. Additionally,
presume H: R} — R, is a convex function fulfilling H(q,...,q,) = 0
iff g = 0 for each i = 1,...,n. Then p,(Z) = H(ul (Z1),...,u"(Z,))
defines an FMN on & x --- x &, for m > 0, where Z; represents the
natural projections (in short, NPs) of Z into &; for eachi =1,... n.

As a conclusion of Theorem 5, we present the next example.

Example 3. Presume {i,}m>0 is an FMN on a Fréchet space €. Then,
by considering

Hl(q17 SR 7qn> = maX{qla v 7%1}7
7‘[2((]17---7%) = Z q;
i=1

for (¢1,...,¢,) € RY, the conditions of Theorem 5 are held [3]. Now, pre-
sume M is an admissible set in Fréchet space & and define
Men = {T < &"|I; € M}, where Z; represents the NPs of Z for
i =1,...,n. It is evident that the conditions in Definition 3 are fulfilled.
Therefore, the mappings jil : Mgn — [0,00) and 2, : Mgn — [0, 0) are
defined as follows:

A(T) = mas {pin(T2), - (L)},
fim(I) = Zlum(fi%
which are two families of measures of noncompactness in the space £" for

m > 0 and Z; represents the NPs of Z fori =1,... n.

Next, we introduce an n-variable MK condensing operator regarding
the family {ptm, }m>0. Let D™ represent the finite product of D and M be
an admissible set in Fréchet space £ with D € M.

Definition 8. Presume D is a nonempty subset of a Fréchet space £
with D € M and {i, }m>o is a given FMN on €. An operator S: D" — D
is called a MK condensing operator with respect to {fim}m=o if, for any
¢ > 0, there is v > 0 provided that

& <max {pm(Th), - (L)} <E+7 = pn(S(T)) <&

for each subset Z of D™ and each m > 0, where Z; is the NPs of 7 into D
fori=1,...,n.
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Theorem 6. Presume D # (J is a closed and convex subset of a Fréchet
space & with D € M and {fm}m>o is a given FMN on €. If S;: D" — D
is a continuous and MK condensing operator with respect to {ftm, }m>o for
i=1,...,n, then thereis (qi, ..., q,) €D" provided that S;(q1, ..., qn) = ¢
fori=1,...,n.

Proof. First, by Example 3, an FMN on £" can be defined as follows:

fim(Z) = max {lllm(Il)v i (Z2), - - . 7ﬂm(In)} (2)

for any subset Z in an admissible set M of £" and each m > 0, where
Z; represents the NPs of 7 for ¢ = 1,...,n. Additionally, it is clear that
S: D" — D defined by

S(Qh s 7Qn> = (81<(11> s 7Q71)782(q17 tee 7Qn)7 s 7Sn<q17 s 7qn))

is continuous on D". We now claim that S fulfills all hypotheses of The-
orem 3. To show this, suppose that £ > 0 and v(£) > 0 are as in Defini-
tion 8. If Z is a subset of D" so that & < fi,,(Z) < & + (&) for m > 0,
then

§ < max {Um(zl)a EE >Nm(In)} <&+7(¢)

in which Z; represents the NPs of Z for ¢ = 1,...,n. Using Definition 4(2)
and (2), we get

in(S(D)) < fin(Si(T) x -+ x 8,(T)
= mas {1 (S1(D). .. (Su(D))} < &

Now, it follows from Theorem 3 that S possesses at least a fixed point in
D™. Therefore, there is (qi, ..., q,) € D" provided that

8(Q17"'7Qn) = (q17"'7Qn) = (Sl(q17"'7QTL)7"'J’Sn<q17'"7Q11>)~

The proof is completed. []

Definition 9. [13| (¢,p) € Z x Z is called a coupled fixed point of an
operator H : T x T — Z when H(q,p) = q and H(p,q) = p.

Theorem 7. Presume D # (J is a bounded, closed, and convex subset
of a Fréchet space € and {{i}m>0 is a given FMN on €. Suppose that
S : D xD — D is a continuous and MK condensing operator with respect
to {ftm }tm>0- Then S possesses a coupled fixed point.
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Proof. Consider S; : D x D — D for ¢ = 1,2 as follows:

Si(q,p) = S(q,p),
Sa(q,p) = S(p, q).

The proof is the conclusion of Theorem 6. []
Next, we prove several fixed-point results using strictly L£-functions.

Theorem 8. PresumeD # & is a closed and convex subset of a Fréchet
space £ with D € M and S; : D" — D are continuous operators, provided
that

i (Si(Zy x - x L)) < k(max {pim (L), - .., tm(Z0) }) (3)

for every bounded subset T of D™ and each m > 0, where {ji;}m>0 Is an
arbitrary FMN on &£, Z; represents the NPs of 7 into D for i = 1,... n,
and k is a strictly L-function. Then there is (qi,...,q,) € D", so that
Si(q1,--yqn) =qi fori=1,....n

Proof. Take a mapping S : D" — D" by

S(Qla s 7Qn) = (81(q17 s 7Qn)782(q17 s 7Qn)7 s 7Sn(q17 s 7Qn>)7

which is continuous. By Example 3, fi,,(Z) = max {gn (1), ..., tm(Zn)}
defines an FMN on £" for any subset Z in an admissible set Mgn of £"
and each m > 0 in which Z; is the NPs of Z for ¢ = 1,...,n. Using (3),

we have

fim(S(D)) < fim(S1(T) x S2(T) % -+ x Su(T))

= max {1, (S1(2)), i (S2(T)), - -, i (Su(D)) }
X /f(max ‘{Mm ) Nm(z2) "v:um(zn)})
= K([im(Z)).

Now, the proof is followed by Corollary 2. []

N

Theorem 9. Presume D # (J is a closed and convex subset of a Fréchet
space €& with D € M and §; : D™ — D are continuous operators, provided

that n
i (Si(Zy x -+ x I,)) < %'L{<Z“m(zﬁ))

for any bounded subset Z of D™ and each m > 0, where {jy,}m>0 is a
given FMN on &, I; represents the NPs of T into D for i = 1,....,n,
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and k Is a strictly L-function. Then there is (qi,...,q,) € D", such that
Si(q1, -y qn) =¢q; fori=1,...,n.

Proof. From Example 3, take an FMN on " by [i,,(Z) = >, pm(Z;) for

=1
each subset Z in an admissible set Mgn of €™ and all m > 0, where Z; is
the NPs of 7 for ¢« = 1,...,n. The proof is the same as the proof of the
Theorem 8. []

Theorem 10. Presume D # J is a closed and convex subset of a Fréchet
space £ with D € M and {pim}m>o is a given FMN on €. If S;: D' — D
is a continuous and MK condensing operator with respect to { iy, }m=o for
i =1,...,n, then there is (q1, o, - .., q;) € D', such that

Sl(q1) = C]l,Sz(qh(IQ) =42, ..., Si(Ql»-"7Qi) = q;
fori=1,...,n.

Proof. Define S: D" — D" by

S(qr, -3 qn) = (S1(q1), S2(q1,42)5 - Snlqr, - - - )

It is clear that S is continuous. The proof similarly comes after the proof
of Theorem 6. []

4. Applications. Up until now, many applications related to show-
ing the existence of solution of function Volterra integral equations have
been presented by many researchers [3], (6], [7], [19], [20], [23], [24], [25];
however, we demonstrate the existence of solutions for a class of systems
of n-variable functional Volterra integral equations, which are more use-
ful than previous problems. In fact, since we consider C'(R,) and apply
n-variable system instead of one variable or coupled systems with weaker
conditions, this section can cover former applications. Note that Volterra
integral equations, particularly those with multiple variables, play a sig-
nificant role in modeling complex phenomena in various scientific fields.
We first gather some basic definitions and facts that will be needed. Pre-
sume C(R,) = {¢: Ry — R, ¢ is continuous} is furnished with the family
of seminorms |q|,,, = sup{|q(b)|: b € [0,m]} for m > 0. Then C(R,) is a
Fréchet space when furnished with the metric

1 )
d(q,p) = sup{z—m min{l, |¢ — p|m}: m > O}.

& # I < C(Ry) is called bounded when sup{|q|,,: ¢ € Z} < oo for m > 0.
Also, let us now recall three key facts that are necessary:
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1) A sequence (g,) converges to ¢ € C(R,) iff (g,,) is uniformly conver-
gent to ¢ on a compact subset of R, .

2) A family A ¢ C(R,) is relatively compact iff, for any m > 0, the
restriction to [0,m] of each function from A constructs an equicon-
tinuous and uniformly bounded set.

3) An operator H: (C(R;))" — C(R,) is continuous on (C'(R;))™ iff
H|m: (C[0,m])™ — C[0,m] is continuous for all m > 0, where

for b € [0, m].
Moreover, let us define an FMN in C'(R, ) by
Mcew,) = {Z < C(R;): I|,, is bounded for all m > 0},

where Z|,, is the restriction of all functions from Z to [0, m]. It is obvious
that all the conditions of Definition 3 are satisfied. Fix a positive number
m > 0 and a nonempty set Z of M¢g,), which is an admissible set of
C(R,). For ¢ € Z and & > 0, the modulus of continuity of ¢ on [0, m],
denoted by w™(q, ), is

wm(Qaf) = Sup{"](b) - Q<a)‘ ra,be [O>m]’ ‘b - CL| < 5}
Additionally, take

w™(Z,€) = sup{w™(q,€) : g€ I}, wy'(Z) = limw™(Z, ).

=li
§—0

Note that {w{'}meny forms an FMN in C(R,) [20]. Now, consider

o= 5i(w®) ). [ 900 0@, @) @

with the following conditions:

(i) fi: R™"! — R are continuous functions satisfying

ceey

in which x: R, — R, is a nondecreasing strictly £-function with
k(b) < b,and M = sup f;(0,...,0).
i=1,...,m

i e
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(ii) The function g: R2 x R™ — R is continuous, and for b € [0, m] and
¢, ---,qn € C(R,), there exists positive sequence constant D, for
m > 0 that

b
f lg(b,a,qi(a), ..., qn(a))|da < Dy,

(iii) There is a positive sequence solution of k(r,,) + M + D,, < ry, for
m = 0.

Theorem 11. By conditions (i)—(iii), (4) has at least one solution in
(C(Ry))"
Proof. First take H;: (C(R;))" — C(Ry) forie {1,...,n} by

Hi(qr,- -5 qn)(D) = fz((h s (D ngaql --.,qn(a))da)

for any b € R,. It is obvious that H;(qi, ..., ¢,) is continuous on R, for
each (q1,...,¢,) € (C(R4))"™ In the following steps, we exam the validity
of all hypotheses of the Theorem 8.

Step 1. We show H,;|,,,: (C[0,m])™ — C[0,m] is continuous for m > 0
and 7 € {1,...,n}. For this, take £ > 0 and fix ¢; € C[0,m] for all
p; € C[0,m], so that |¢; — p;|,m < & for any i € {1,...,n}. For b e [0,m],
we have

Hi(qr, -5 4n) (D) = Hilpr, -, ) (D)]
<k max {|g:(6) = pi(d)})

,,,,,

b b

+'Jg(b,a,q1( )y qnla fgbapl ); - pala))da

<[ max {[g:(b) 0 >|})

+ J ‘g(b7 a,qi(a),...,qn(a)) — g(b,a,pi(a),... ,pn(a))}da

Tty
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- ‘g(b, a,qi(a),...,qn(a)) —g(b,a,pi(a),... ,pn(a))|da

m O3

<R +mV(§) <E+mV (),

where

o = sup{lg;(b)[: be [0,m],1 <i<nf,
V(f) = Sup{‘g(b7a7QI(a)> s 7Q7L(UJ)) - g(baaapl(a)a s 7pn(a)>‘:
qi,P; € [_U - 570- + 5]7 ‘Q’L _pz‘ < 57 a7b € [O’m]}

It follows from the uniform continuity of g on [0, m]|* x [—0—&, o+£]™ that
V(&) — 0 as &€ — 0. Thus, the first step of the proof has been completed.

Step 2. Let be [0,m] and ¢ = (q1,...,¢n) € (C(Ry))™ Then

‘HiQ(bﬂ =

b
filqi(b), ..., qn(b), Jg(b, a,q(a),... ,qn(a))da)‘

<

fi<q1(b),...,qn(b),fg(b,a,ql(a), o ,qn(a))da) — (0,. .. ,0)‘

+ |£:(0,...,0)|
< wl max (a®N)) + [ o a@)....anla)dal + 50O
< /{(iirllax {|q2|m}) + M + D,,.

..... n

Thus,
|Hiq|m < /<;< max {\qzlm}> + M + D,,. (5)

7777 n

Define D = {¢; € C(Ry)|¢i|m < Tm,m = 0}. It follows from (5) that H;
transforms D" into D.

Step 3. Now, fix a positive number m > 0 and assume by, by € [0, m],
by —bo| < & and ¢ = (q1,...,q,) € D". Then

|Hiq(b1) — Haiq(bs)]
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by

= /i <Q1(b1), o qu(br), fg(bl, a,q(a),... ,qn(a))da>

0
b

— fi (ql(bQ), o5 gn(D2), Jg(bg, a,q(a),. .. ,qn(a))da>‘

0

77777

by

¥ f 9000, 0(@)s . 4(0)) — g(bor @, qu(@), ., gu(a))]da

0

" f 90, 01(a), . gu(a))|da
b1

,,,,,

77777

where

Vm(g) = Sup{’g(blaavzb . '7Zn) - g(b2>aa Rly« - >Zn)’:’bl - bQ‘ < 67
a, blab2 € [Oam]}7

U™ =sup{lg(b,a,z,...,2,)|: a,be [0,m],|z] <rp}.

On the other hand, as g is uniformly continuous on [0, m]? x [, +&]",
we have V™(¢) — 0 as £ — 0. Therefore,

WP HAT %+ % T0,€)) <k max (w"(T )}) + mV 7€) + €U

=1,...

and so,

Wl (T x -+ x T,)) < m max {wf'(Z.)}).

.....

Now, by applying Theorem &, the assertion is obtained. []
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