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Abstract. The functions under approximation here have as a do-
main a finite dimensional Banach space with dimension N € N and
are with values in RY. Exploiting some topological properties of
the above we are able to perform Neural Network multivariate ap-
proximation to the above functions. The treatment is quantitative.
We produce multivariate Jackson type inequalities involving the
modulus of continuity of the function under approximation. The
established convergences are pointwise and uniform. Perturbation
and symmetrization to our operators lead to enhanced speeds of
convergence. The activation function here is the generalized logis-
tic.
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1. Introduction. The author in [1] and [2], see Chapters 2-5 was
the first to establish neural network approximation to continuous func-
tions with rates by very specifically defined neural network operators of
Cardaliaguet-Euvrard and "Squashing" types, by employing the modulus
of continuity of the engaged function or its high order derivative, and pro-
ducing very tight Jackson type inequalities. He treats there both the uni-
variate and multivariate cases. The defining these operators "bell-shaped"
and "squashing" functions are assumed to be of compact support.

Again the author inspired by [10], continued his studies on neural net-
work approximation by introducing and using the proper quasi-interpolation
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operators of sigmoidal and hyperbolic tangent type which resulted into [3],
by treating both the univariate and multivariate cases.

The author continued this trend of approximation and published the
extensive monographs [5] — [9], studying in depth and as wide as possible
the neural network approximations. Our activation function here is the
generalized logistic function.

The multivariate operators we use are: the normalized, the quasi-
interpolation, the Kantorovich and the quadrature types. Our symmetriza-
tion technique accelerates immensely the speed of convergences. Our neu-
ral networks here are from a Banach space of dimension N to RY, as they
are homeomorphic, and this is the main key to this work.

So all results here are via multivariate Jackson type inequalities, study-
ing quantitatively the rate of convergences to the unit operator.

Here we are dealing with one hidden layer feed-forward neural net-
works.

A multilayer feed-forward neural network can be defined as follows
(with m € N hidden layers):

Let z € R®% s € N, where © = (z1,...,2,); ay,¢; € R% b; € R, with
0<j<n,neN.

Here (o - z) is the inner product, thus o ((o;-z)+b;) € R; and

n

N, (z) € R®, by ¢; € R®, as it is coming from N, (z) = > ¢jo ({aj - x) + bj) .
=0
We define:

NP (z) = Z cja< aj; - N, <a:>> + bj> =

=0

<

n

Z<< (Neo((as-a)+8)))+b).

J=0

Furthermore, we can define

N}f’) (x) = Z cjo (<ozj . NT(ZQ) (w)> + bj) )

7=0

And, in general we define:

n

N{™ (z) = Z cjo ({ay - N{m=1) (z)) +b;), formeN.
=0
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For further studies in neural networks read [11] — [14].

2. Basics. Initially we follow [8], pp. 395—471.
Our activation function here to be used is the ¢-deformed and
A-parametrized function

1

ZW,I'ER,Q,/\>O,A>1. (1)
q T

P (7)

This is the A-generalized logistic function.

For more read Chapter 16 of [§8]: "Banach space valued ordinary
and fractional neural network approximation based on ¢-deformed and
A-parametrized A-generalized logistic function".

The Chapters 15, 16 of [8] motivate our current work.

The proposed "symmetrization technique" aims to use half data feed
to our neural networks.

We will employ the following density function

1
Gaa (2) 1= 5 (pup (E+ 1) =@ (2 = 1)), 2€R g A> 0. (2)

We have that
Gy (—7) = G1 (7)), (3)

q b
and

G%7/\(—x) =Gy (2), VzeR. (4)

Adding (3) and (4) we obtain

Gy (_x)"‘G%,A (—z) = Gy (:Jc)—s—G%’/\ (x), Yzel, (5)
the key to this work.
So that
Gy (2) + G, (2)
W(x) = 5 (6)

is an even function, symmetric with respect to the y-axis.
The global maximum of G, is given by (16.18), p. 401 of [8] as

logaq) = AM—1
o (5) = s e "
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And, the global max of G1 , is

o () () -

both sharing the same maximum at symmetric points.
By Theorem 16.1, p. 401 of [8], we have that

o]
Z Goa(x—i)=1, YoeR, A\ ¢g>0,A>1,

1=—00
and

a0
Z Giy(x—i)=1 VreR \g¢g>0, A>1

1=—00

Consequently, we derive that

By Theorem 16.2, p. 402 of [8], we have that
o0
J Goa(x)dr =1, \,g>0, A>1,
—00

similarly it holds

q’

0
JGl,\(x)d:vzl,

so that

TW(m)dle,

therefore W is a density function.
By Theorem 16.3, p. 402 of [8], we have:
Let 0 < o < 1, and n € N with n'=* > 2. Then

(10)

(11)

(12)

(13)
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0
Z Ggx(nx — k) <

k=—w
nx — k| > nlme

1 1 B _)\(nl—a_Q)
Zmax{q,g}m —"}/A 5 (15)

where \,q > 0, A > 1; v := Qmax{q, %}
Similarly, we get that

a0
3 G, (nz— k) < y AN e=2), (16)
k=—w0
D ne — k| = nle

Consequently we obtain that
= 1
Z W (nx —k) < WA_)‘(" 70{_2), (17)
k=—w
D ne — k| > nl

where v := 2max {q, %}

Here [-] denotes the ceiling of the number, and |-| its integral part.

We mention

Theorem 16.4 (p. 402, [8]) Let = € [a,b] = R and n € N so that
[na] < |nb|. For ¢ > 0, A > 0, A > 1, we consider the number \, > zo > 0
with G, (20) = G (0), and A, > 1. Then

1 1 1
< max , =: K (q). 18
lan {GQ’A (AQ) Gl By ()\l) } ( ) ( )
2. Gy (nz —k) 7 q
k=[na]

Similarly, we consider A1 > z; > 0, such that G'1 , (21) = G1 , (0), and
A1 > 1. Thus
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Hence
anbJ Gy ( k) > L (20)
PRI R )
k=[na]
and
|nb)] 1
> G1/\(n$*k‘)>—() (21)
k=[na] q
Consequently it holds
[nb] <Gq7A (nx — k) + G, (nr — k)) 9 1
R > = , (22)
kTnal 2 2K (q) K (q)
so that )
< K{(q), (23)
[nb] (Gq7k(n:c—k)+G%7)\(nx—k)>
2
k=[na]
that is 1
- <K (q). (24)
> Wi(nx —k)
k=[na]

We have proved

Theorem 1. Let z € [a,b] < R and n € N so that [na] < |nb|. For
¢ A >0, A>1, we consider \, > zy > 0 with G, (20) = G4 (0), and
Ag > 1. Also consider \1 > z; > 0, such that G1 , (21) = G1,(0), and

A1 > 1. Then

Q

Q=

1
> Winx —k)
k=[na]
We make
Remark.

I) By Remark 16.5, p. 402 of [8], we have

[nb]
lim Z Gy (nxy — k) # 1, for some x4 € [a,b], (26)

n—00
k=[na]
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and
[nb]
lim Z G1, (nzy — k) # 1, for some x5 € [a,b]. (27)
n—0o0 q’
k=[na]

Therefore it holds

Lnb] (Gq;\ (nxy — k) + Gé)\ (nae — k;))

lim > 5 # 1. (28)

k=[na]

Hence
[nt) (GM (nay — k) + G, (na, — k:)>

lim > 5 £ 1, (29)

k=[na]

even if
|nb]
lim DG, (nay — k) =1, (30)
k=[na]

because then

Gy (nzy — k)
lim > 5 Z 1, (31)
k=[na]
equivalently
[nb]
, Gyx(nxy — k) 1
iy 3, Gt 2
k=[na]
true by
[nb]
lim Z Gy (nzy — k) # 1. (33)
n—aoo
k=[na]

II) Let [a,b] < R. For large n we always have [na| < |nb]. Also
a < % < b, iff [na| < k < |nb]. So in general it holds

D W (ne—k) < 1. (34)

Next, we move on to the multivariate case, see Chapter 15 of [8],
pp- 365 -394, as a model of action.
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We make

Remark. We introduce

N N
1
Zy(x1,...,2N) == Z,; (2) :HW :—Nn( or + G )( i)
i=1 i=1
(35)
x=(1,...,o5) €RY N\g>0, NeN.
Properties:
(i)
Z,(x)>0,¥VreRY (36)

(i)

Y Zyx—k)y= > > ... > Z ki, xn —ky) =1
k=—00 k1=—00 ko=— kn=—
(37)
k= (ki,... .k,)eZN,VzeRY,
hence
(iii)
o0
> Zy(nw—k) =1, (38)
k=—0

VzeRYN neN,
(iv)
J Z,(x)dx =1, (39)

that is Z, is a multivariate density function.
Here denote |z, := max{|z1],..., |zn|}, 2 € RY, +o0 1= (£o0,..., £ ),

[na] = (l—nal] Yt [TL(IN]) ) [an = (lnbljv MR lnbNJ) , @ ala s 7aN);
b= (bl,...,bN).
We obviously see that
[nb] |nb| N N 72bs
Z Z,(nx — k)= Z (HW(an—k)> H Z W (nx; k‘z))
k=[na] k=[na] =1 =1 k;=[na;|
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(v) We derive that

Lnb]
3 Z, (nz — k) < YA 72 where 0 < B < 1, (41)
k = |nal
|5 —2le >
N
0<pB<l,neN:n'"F>2 xel]lab].
i=1
(vi) It holds
1 N
0< < (K@), (42
> Z,(nx —k)
k=[na]
N
Vaxe <H [(Zi,bi]>, n € N.
i=1
It is clear that
(vii)
= 1
3 Z, (nx — k) < yA A 772), (43)

k=—w
|5 =], >
n 0

N
0<B<1l,neN:n'?>2 ze]]labi].
i=1
Furthermore it holds

7}1_{130 Z (nx — k) # 1, (44)

N
for at least some x € ([ [a;, b;]).
i=1
) is a Banach space.

Let f e C IJ_V[[aZ, b, >, = (z1,...,on) € []lai,bi], n € N:
nai < [nbi], i = 1,..., N. .

Here (X, ||

/ N 2
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We introduce and define the following multivariate linear normalized

N
symmetrized neural network operator, let x := (z1,...,zy) € | ] [ai, bi]:
i=1
L
> f (%) Z, (e —k)

s s k=[nal
An('ﬂxl"""rN) =A (f,l‘) = |nb) -

S Zy(nx— k)

k=[na]

[nbyl  Inby] (o] N
Z Z . Z j"(lCT1 ,,,,, kg) (,Hl<Gq’)\(nxi_ki)+Gé’)‘(nxi_ki)>>

k1=[naj] kg=[naz] .kN:[naN] i=

. (45)
N [nd;]
I1 2 <Gq,>\(nwi*ki)+G%’>\(nzi*ki)>

i=1\ kj=[na;]

For large enough n € N we always obtain |na;| < |nb;|, i =1,...,N. Also
When f e Cpg (RN,X) or feCy (RN,X), we define

B () i= B (o) = X 1 (5) 2,000 1) =
k=—00

0

QLN]“Z _ioo.. ij(ﬁ k—N)

* Y Y
n n
=—00 kog=— kN:—

(ﬁ (Gq,A (nx; — ki) + G%’A (nz; — kz)) >, (46)

neN,VzeRY, N eN, the multivariate quasi-interpolation symmetrized
neural network.

Also for f € Cp (RN, X) or f € Cy (RN, X), we define the multivariate
Kantorovich type symmetrized neural network operator

O (f,2) = C2 (f, 1, ... an) = i (nN ff(t)dt)Zq(nxk) -

1 0 0 0 A
o X N X (o [ [ re o)
k1—700k2:700 kN:7OO ﬂ

I
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(ﬁ (GQ,A (nx; — ki) + G%A (nx; — k;) )) (47)

i=1
neN,VazeRY,

Again for f € Cp (RN, X) or f € Cy (RY, X)), we define the multivari-
ate symmetrized neural network operator of quadrature type D: (f,x),
n € N, as follows:

Let 6 := (91,...,91\]) ENN,T = (Tl,...,T’N) EZ:L_,U)T = Wrq rg,...'N = 07
such that
01 02
Z Z Z 2 Wy rg,...tn = 17
r= r1= 07‘2 0 TN= 0
keZ", and

9
Er
Ouk (£) 1= Ontr ety (F) = D e f (—+—> -
g;) n  nf
01 02 ]{?1 ’r‘l k:n TN
I () W

r1=07r2=0 rn=0
where 5 1= (%, . ,g—x) )
We set
ee}
D (f,z):=D; (f,z1,...,xN) := Z Onk (f) Zg (nx — k) =
k=—00
1 a0 o0 a0
2_N Z Z Z 571,]61 ..... N
k1 =—00 kg=— j—

V reRN,

Definition 1. ([6], p. 274) Let M be a convex and compact subset of
(RN, ]“lp), p € [1, 0], and (X, HHV) be a Banach space. Let f € C' (M, X) .
We define the first modulus of continuity of f as

wy (f.0) = sup If (@)= fWl,, 0<d<diam(M). (50)
xye M:
|z —yl, <o
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If 6 > diam (M), then
wy (f,0) = wy (f, diam (M)). (51)

Notice wy (f,d) is increasing in 6 > 0. For f € Cp (M, X) (continuous
and bounded functions) w; (f,0) is defined similarly.

Lemma 1. ([6], p. 274) We have w; (f,0) > 0asd | 0, iff f e C (M, X),
where M is a convex compact subset of (RY, H-Hp), pe[l,o].

In this study we work only for the case of p = 0.

Clearly we have also: f € Cy (RN , X ) (uniformly continuous func-
tions), iff wy (f,0) — 0 as § | 0, where w; is defined similarly to (50). The
space Cg (RN , X ) denotes the continuous and bounded functions on RY,
|||, is the supremum norm.

In this work we treat the case of (X, H||7) = (R™,|Il), N € N; where

||, is the Euclidean norm.
Next, we describe the main ideas of this work.

Remark. Let (E,|-|,) be a Banach space of finite dimension N, i.e.
dimFE = N, N e N.

It is known that any two Banach spaces of the same finite dimension
are linearly homeomorphic.

Hence (E,|-|,) is linearly homeomorphic to (R™,|-[|,): so let
¢: (E,|-],) = (RY,||,) be the linear homeomorphism.

So let y € E, then ¢ (y) = x € RN, and back toy = ¢~* (z) € E, that
is¢71: RY — E is (1 — 1) and onto map, and both ¢, ¢~ are continuous
maps.

Let now f: E — RY be a continuous map, then fo¢~! is a continuous
map from RY into RN. We call g (z) := f (¢~ (x)),V z e RV,

IEIf @)ly < M, Yy B, sois [f (67 ()], < M, V& € RY, where
M > 0.

That s |1 (5)],,, < o, implies || f o 6], < oo.

In case f is a uniformly continuous map, since (see below) ¢, ¢~ are
also uniformly continuous, we obtain that g = f o ¢! is a uniformly
continuous map.

N
If [T [as, b;] = RY, we can consider g| v o which is continuous on a
=1 a;,04

i=1

bounded set, that is a uniformly continuous map.
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It is known that every linear function on a finite dimensional normed
vector space is uniformly continuous, based on the fact that all norms
there are equivalent. Thus, ¢, $~' are uniformly continuous.

Let f: E — R" be continuous. We define the following neural network
linear operators ;L, (f) : E — RY, i=1,2,3,4; ye E, as follows:

I)
1Ly () () = 1La (f) (07" () = A5 (foo2) =

Inb)
(f o6 (£) Z, (n — )
k=[na] _
[nb] = (52)
> Zy(nx —k)
k=[na]
[nbq] [nbNJ N
fop~t koo En ( Gyr(nxi—k;)+G1 | (nxi—k; >
kl—%%a11 szgiaN]( )< ' "/> g] ( 3 )+ gvA( )>
N (bl

i=1 ki_[nai]<Gq,>\(nx¢ki)JrG}]’/\(nmikﬁ))
O N
V= (21,...,on) € [ [a;,b] cRY, ¥ y e ¢! <H [ai,bi]> < E,neN.
i=1 il

II) When f € C5 (E,RY) or f & Cyy (ERY) we define:
2Ln () (y) = 2L (f) (67" (@) := B (fo o™ x) =

(ﬁ <Gq,A (nx; — k;) + G%A (na; — kl)>> ,

VeeRY, Vye E,neN.
I1T) When f € Cg (E,RY) or f € Cy (ERY) we define:

Lo (f) () = 3La (f) (07" (2)) :=C5 (foo ™ 2) =

= (”

k=—00

Ed
+

[ (oo )qu—m:

:\»% ‘
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B
=
+
=
&
+
=

n

(foo™) (tl,...,tN)dtl...dtN)

Bl
| D78
8 .
. :
s
8
/N
sFe— .

35

VzeRY,YVye E,neN.
IV) Again, when f € Cp (E,]RN) or feCy (E,]RN) we define:

1L (f) (y) = 4Lu (f) (07" (2)) =Dy (fo o™ 2) =

D buk (foo™) Zy(nx — k) =

VeeRY, Vye E, neN.
We want to study quantitatively the multivariate approximation of
iLn (f) (y) = f(y),asn — o0, fori=1,2,3,4; y € E.

3. Main Results
We present our first approximation result.

Theorem 2. Let (E,| - |1) be a Banach space, dimE = N € N, and
¢ be the corresponding homeomorphism from E onto (]RN7 HHQ) Here

N
f e C’(E,]RN), 1L (f) is as in (52), * € [][ab;] = RY, and

i=1

N
ye ot (]_[ [ai,bi]) cE;0<pB<1,neN withn'? > 2. Then

1)
L () (9) = f )], < (K (0))" %

(o6 5) 20l 0o a0 = A ), (56)

and
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2)
L () = Fllalloe < Aa(n) (57)

We see that lim 1L, (f) I> f, pointwise and uniformly.
n—o0

Above w; is with respect to p = 0.

Proof. We have that

WL (f) () = f ()], =
|1 Lo () (67" (@) = f (67" (2))], =

|45 (foo™ha) = f (o7 ()], = (58)
[nb] [nb]
B G B 4w —h fE7 @) 3 2k
|nb) N nb]
>, Z,(nx—k) > Z,(nx—k) 2
k=[na] k=[nal
" (K (@)
[nb] [nb|
Y (eo) (B) -0 -7 @) X Ziwe—b)| -
k=[na] k=[nal 2
Ny [nb] L
(K () (roo) () = (o0 @] Zutna = 11| <
k=[na] 2
r bl
K@) | 3 (oo (£) = (oo @) Zino- k)] -
k=[na] 2
[nb] L
@) | oo (2) - (reo@zne - )
kk = [nal 1
|2 2], <35
[nb] by (38
b X aeen(B) - eei] zune - k)] <
{ kk’ = [nal 1
k- $Hoo = B
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(5 @) e (Fo07 ) w2007,

<~

(K @) [on (F0671.35) 2]l 067,02
]

It follows the next result all over E.

Theorem 3. Let (E,||,) be a Banach space with dim £ = N € N, and
¢ be the corresponding homeomorphism from E onto (RY,|-|,). Here
feCp(E,RY), oL, (f) is asin (53), x € RY, andy € E; 0 < 8 < 1,
neN with n'=? > 2, wy is for p = 0. Then

1)
loLn (f) (v) = f W), <

<fo¢_ >+2HH Foo ) vA ) = g (n), (60)

and
2)
l2Ln (f) = fllall < A2 (n). (61)

Given that f € (Cy(E,RY)nCp(ERY)), we obtain
lim oL, (f) = f, uniformly.
n—aoo

Proof. We have that
2L (f) () = £ (9], =
oL () (67" (2)) = [ (7" (@), =
|B; (fooa) = f (67 (@)], ™2
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3 oo () -teo @] e - o
i H (Foo™) (%) —(fod™) (@) QZq (nz — k)
N
) ) HUO¢4)(§>_«fO¢4)@0QZQMx—k{rg)
Ve s

a(reat B)ealreatl (% ae-n)t

k= —w
=l > 5

o (£oo ) w2l oo ] 1402,

proving the claim. ]
It follows the result for the Kantorovich type operator on F.

Theorem 4. Let (E,|-|,) be a Banach space with dim £ = N € N, and
¢ be the corresponding homeomorphism from E onto (RN, |:|,). Here
feCp (E,RN), 3L, (f) asin (54), re RN andye E;0< B <1,neN
with n'=# > 2, w, is for p = co. Then

1)
[3Ln (f) (y) = f (W) <

b ) 2l oo A0 <o),
(64)

S|

w1 (f o ¢_17

and
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lsLn () = Fllolle < As(n)- (65)

Given that f € (Cy(E,RY)nCp(E,RY)), we obtain
lim 3L, (f) = f, uniformly.
n—aoo

Proof. We observe that

fl(f ¢~

kl kN+1
J f tl,...,tN)dtl...dtNZ
k1 7N
11
kn
O¢ t1+_t2+— tN+7 dtldtNI
0 0 0
n » k,
(foo™) 1t+E dt. (66)
0

Therefore we can write

IsLo (F) () = £ ()], =
lsLn (f) (67" (2)) = f (67" (2)) ], =
[Cs (foo ) - f (67 ()], E

1

H ki (nNJn (foo™) (t + %)dt) Z, (nx — k) —

| i ((an(f0¢—l)<t+§>dt)—(fod) Y (@) Zy (e = k)| = (67)

2
0
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k=—o0

i <nN Jn H (foo™) (t + S) —(foo ) (x)Hth) Z, (nx — k) =

: ’ Ly (nx — k) +
3 nNE (foo) (¢ k —(foo™)(2) dt)
e ([l () Hz
|5 ==, >
(68)
Zy (nx — k)
(by (50), (43))

1 1 _ A(ni8_
< (Foom T w ) w2l o A ),
proving the claim. ]

The final result is for the Quadrature type operator on F.

Theorem 5. Let (E,|-|,) be a Banach space with dimE = N € N, and
¢ be the corresponding homeomorphism from E onto (RY,|-|,). Here
feCp(E,RY), 4L, (f)isasin (55), ze RN andye E;0 <3 <1,neN
with n'=? > 2, w, is for p = co. Then

1)
laLn () () = F (W), <

ar(fo07, Lt 5) +211F 0 67,7470 =), (69)
and
2)
Lo () = £l < A (). (70)
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Given that f € (OU (E’RN) N Cp (E,RN)) , we obtain lim 4L, (f) = f,

. n—0o0
uniformly.

Proof. We have
laLn () (y) = f W)y =

H4Ln (f) ((bil ($)) f (qbfl (x>)H2 _
HDZ (f o qb_l,x) — f (¢—1 (x)) H2 (55)

(_i Zy(nz = R)) (Fo™) (@) |, = (71)
Hé@((iwrﬁoaﬁ ) (%+%))—(fo¢—l) () ) 2y (na— k) | =
)E@(iw ((foo™) (§+%)—(fo¢1) (@)))Zi(na k)| <

S (Suluer) o) -0eoio] Yaos-n-
S (Sufeen (Be ) - oo m])
k= —w =0
Lt es
(72)
Z, (nx — k) +
S (Yuleee (F) - veen @l
Leese
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(by (50), (43))

< (fosns ) 2flf oo A, (ry

proving the claim. []
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