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ON THREE SUMMATION EQUATIONS FOR FUNCTIONS
THAT ARE HOLOMORPHIC IN THE PLANE WITH

A CUT ALONG A POLYGONAL LINE

Abstract. We study three four-element summation equations in
the class of functions that are holomorphic outside a polygonal line
and vanish at infinity. The polygonal line is part of the boundary of
a unit square. We seek a solution in the form of a Cauchy-type in-
tegral with unknown density satisfying some additional conditions.
The regularization of the equation on the polygonal line is achieved
by introducing an involutive piecewise-linear shift that reverses the
orientation of the line. We rely on the contraction mapping method
in a Banach space to prove that the resulting Fredholm equation of
the second kind is solvable. Finally, we give the conditions for the
equivalence of the regularization and consider some applications to
interpolation problems for entire functions.
Key words: summation equation, regularization method, Carle-
man boundary-value problem
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1. Introduction. Let Γ be a polygonal line with vertices
𝑡1 “ ´𝑡3 “ 2´1p1 ´ 𝑖q, 𝑡2 “ ´𝑡4 “ 2´1p1 ` 𝑖q, and segments ℓ𝑗, 𝑗 “ 1, 3,
listed in the order they occur on the line (𝑡 P ℓ1 then Re 𝑡 “ 2´1). Let
𝐷 be a square with the indicated vertices. Define the transformation
𝜎𝑘p𝑧q “ 𝑖𝑘´1 ´ 𝑧, 𝑘 “ 1, 4, and the involutive shift 𝛼p𝑡q “

 

𝜎𝑘p𝑡q, 𝑡 P ℓ𝑘;
𝑘 “ 1, 3

(

. Obviously, 𝛼p𝑡q : ℓ𝑘 Ñ ℓ𝑘 reverses the orientation, and the mid-
points of the segments are the fixed points of the shift, discontinuous at
the vertices 𝑡2 and 𝑡3. Denote the rectangle with vertices 𝑡2, 𝑡3, 2´1p1´3𝑖q,
and ´2´1p1` 3𝑖q by 𝐷1.

Our aim in this paper is to investigate the summation equation

p𝑉 𝑓q p𝑧q ”
4
ÿ

𝑗“1

𝜆𝑗𝑓 r𝜎𝑗p𝑧qs “ 𝑔p𝑧q, 𝑧 P 𝐷, (1)
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under the following assumptions:

1) Either the coefficients 𝜆𝑗 “ p´1q𝑗`1, 𝑗 “ 1, 4 (Problem A), or
𝜆1 “ 𝜆2 “ 1, 𝜆3 “ 𝜆4 “ ´1 (Problem B), or @𝑗 𝜆𝑗 “ 1 (Prob-
lem C).

2) The solution can be expressed as the Cauchy-type integral

𝑓p𝑧q “
1

2𝜋𝑖

ż

Γ

p𝜏 ´ 𝑧q´1𝜙p𝜏q𝑑𝜏, (2)

with a density satisfying the condition

𝜙p𝜏q “ ´𝜃𝜏𝜙 r𝛼p𝜏qs , (3)

where 𝜃𝜏 “
 

𝜆𝑗, 𝜏 P ℓ𝑗, 𝑗 “ 1, 3
(

. We assume that the functions 𝜑
are defined on the entire contour Γ and are Holder continuous on
the open arcs 𝑙𝑗, 𝑗 “ 1, 3. This means that they have finite one-sided
limits at the corner points 𝑡2 and 𝑡3. However, these limits, generally
speaking, do not coincide. That is, discontinuities of the first kind
are possible at the corner points. We denote this class of solutions
by 𝐵.

3) The independent term is holomorphic in 𝐷1 and its boundary value
𝑔`p𝑡q P 𝐻𝜇pB𝐷1q.

Let us explain the problem statement. The transformation 𝜎4p𝑡q is not
involved in the definition of the shift 𝛼p𝑡q. However, when 𝜆4 “ 0, the
problem is not interesting. Consider the sets

𝐻3 “ Cz
3
ď

𝑗“1

𝜎𝑗pΓq.

The set 𝐻3 is connected. Equation (1) holds in some neighborhood of
infinity. The independent term can be analytically continued beyond the
square 𝐷 and 𝑔p8q “ 0. For details on the triviality and overdetermina-
tion of such problems, see Remark 2 in [1] or the Introduction in [2].

The paper consists of two parts. First, we regularize Equation (1).
After that, we discuss the conditions of equivalence of the regularization
and consider some applications.
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2. Regularization. Let us regularize Equation (1) using Cauchy-type
integral (2). Thus, we have

p1q ô p𝐸𝜙q p𝑧q ”
1

2𝜋𝑖

ż

Γ

𝐴p𝑧, 𝜏q𝜙p𝜏q𝑑𝜏 “ 𝑔p𝑧q, 𝑧 P 𝐷, (4)

where

𝐴p𝑧,𝜏q “
4
ÿ

𝑗“1

𝜆𝑗 r𝜏 ´ 𝜎𝑗p𝑧qs
´1 .

Let 𝑧 P 𝐷 and 𝑧 Ñ 𝑡 P Γ. Given that the transformations 𝜎𝑘p𝑧q take
the point 𝑧 to the exterior𝐷, we have p𝐸`𝜑qp𝑡q “ ´2´1𝜃𝑡𝜑r𝛼p𝑡qs`p𝐸𝜑qp𝑡q,
where 𝑡 ‰ 𝑡𝑘, 𝑘 “ 1, 4.

In view of condition (3), we obtain a formula similar to that of Sokhotski–
Plemelj, namely,

`

𝐸`𝜙
˘

p𝑡q “ 2´1𝜙p𝑡q ` p𝐸𝜙q p𝑡q, 𝑡 P Γ. (5)

The singular integral on the right-hand side of (5) is obtained by formally
replacing 𝑧 P 𝐷 in (4) with 𝑡 P Γ and should be understood in the sense
of the Cauchy principal value. Replace the variable 𝑡 in (5) with 𝛼p𝑡q
and substitute the variable of integration in the singular integral using
condition (3) one more time. Thus, p𝐸`𝜙q p𝑡q´𝜃𝑡 p𝐸`𝜙q p𝛼p𝑡qq “ p𝑇𝜙q p𝑡q,
with

p𝑇𝜙q p𝑡q ” 𝜙p𝑡q `
1

2𝜋𝑖

ż

Γ

𝐾p𝑡, 𝜏q𝜙p𝜏q𝑑𝜏 “ 𝑔`p𝑡q ´ 𝜃𝑡𝑔
`
r𝛼p𝑡qs , (6)

where the kernel

𝐾p𝑡, 𝜏q “ 𝐴p𝑡, 𝜏q ` 𝜃𝑡𝜃𝜏𝐴 r𝛼p𝑡q, 𝛼p𝜏qs (7)

is bounded. The latter assertion can be verified directly by considering
all the possible options for the relative positions of points 𝜏 and 𝑡 on the
segments of the polygonal line (see the specific estimates of the modulus
of kernel (7) in the proof of Theorem 1 below). Thus, 𝑇 is a canonical
Fredholm operator, that is, we have regularized Equation (1).

The properties of the integral equation (6) with a kernel having a
structure similar to (7) have long been well-known [3]. Let us list those of
them that will be needed later.
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1) If equation (6) is solvable, then it has a solution satisfying condi-
tion (3).

2) It is possible to choose a fundamental system of solutions (f. s. s.)
for the corresponding homogeneous equation

𝑇𝜑 “ 0 (8)

or for the adjoint equation 𝑇 1𝜓 “ 0 in such a way that some of the
functions belonging to it satisfy condition (3), and the others satisfy the
opposite condition

𝜑p𝑡q “ 𝜃𝑡𝜑p𝛼p𝑡qq. (9)

Furthermore, the following statements are valid.
3) If on some interval 𝑙𝑗 we have

𝜑p𝜏q “ ´𝜑p𝛼p𝜏qq (10)

then
ż

𝑙𝑗

𝜑p𝜏q𝑑𝜏 “ 0. (11)

To verify this, it suffices to replace the integration variable 𝜏 with 𝛼p𝜏q.
4) Any solution 𝜓p𝑡q of the adjoint equation with property (9) is au-

tomatically orthogonal to the right-hand side of equation (6). It is clear
that 𝑇 1 “ 𝑇 . The solutions 𝜓p𝑡q are defined on the entire contour Γ, are
continuous on the open arcs 𝑙𝑗, 𝑗 “ 1, 3, and have finite one-sided limits
at the corner points 𝑡2 and 𝑡3.

5) If the points 𝜏 and 𝑡 are located on opposite sides of 𝑙1 and 𝑙3, then
𝐾p𝑡, 𝜏q “ 0. This follows from the equality 𝛼p𝜏q ` 𝛼p𝑡q “ ´p𝜏 ` 𝑡q.

Let ||𝜑|| “ sup |𝜑p𝑡q|, 𝑡 P Γ.

Theorem 1. The homogeneous equation (8) has only the trivial solu-
tion.

Proof. To prove this, it is sufficient to show that the following inequality
is true:

ˇ

ˇ

ˇ

ż

Γ

𝐾p𝑡, 𝜏q𝜑p𝜏q 𝑑𝜏
ˇ

ˇ

ˇ
ă 2𝜋||𝜑||, 𝑡 P Γ. (12)

It holds if
3
ÿ

𝑗“1

sup
𝜏P𝑙𝑗

|𝐾p𝑡, 𝜏q| ă 2𝜋, @𝑡 P Γ. (13)
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A) 𝜆𝑗 “ p´1q𝑗`1, 𝑗 “ 1, 4. We should consider three cases:
1) Let 𝑡 P 𝑙1, then 𝛼p𝑡q “ 1´ 𝑡.

a) If 𝜏 P ℓ1, then 𝛼p𝜏q “ 1´ 𝜏 and

𝐾p𝑡, 𝜏q “ p𝑣 ` 1q´1 ´ p𝑣 ´ 𝑖q´1´

´ p𝑣 ` 𝑖q´1 ` p𝑣 ´ 2` 𝑖q´1 ´ p𝑣 ´ 3q´1 ` p𝑣 ´ 2´ 𝑖q´1 ,

where 𝑣 “ 𝜏 ` 𝑡 “ 1` 𝑖𝛾, |𝛾| 6 1. Therefore,

𝐾p𝑡, 𝜏q “ 𝐾p𝜃q,

𝐾p𝜃q “ 4
”

p𝜃 ` 4q´1 ´ p𝜃 ` 2q
`

𝜃2 ` 4
˘´1

ı

, 𝜃 “ 𝛾2 P r0, 1s

and |𝐾p𝑡, 𝜏q| 6 1,6, since the function |𝐾p𝜃q| increases on the inter-
val r0, 1s.

b) If 𝜏 P ℓ3, then 𝐾p𝑡,𝜏q “ 0.
c) If 𝜏 P ℓ2, then 𝛼p𝜏q “ 𝑖´ 𝜏 ,

𝐾p𝑡, 𝜏q “ p𝑣 ` 1q´1 ´ p𝑣 ` 𝑖q´1 ` p𝑣 ´ 𝑖´ 2q´1 ´ p𝑣 ´ 1´ 2𝑖q´1 .

Here 𝑣 “ 𝜏 ` 𝑡 “ 𝜇 ` 2´1p1 ` 𝑖q, where 𝜇 “ 𝛽 ` 𝑖𝛾 with |𝛽| 6 0,5
and |𝛾| 6 0,5. Then

𝐾p𝑡, 𝜏q “ 8𝜇
”́

𝜇`
3

2
`
𝑖

2

¯´

𝜇´
𝑖

2
´

3

2

¯´

𝜇`
3

2
𝑖`

1

2

¯´

𝜇´
1

2
´

3

2
𝑖
ı̄´1

and |𝐾p𝑡, 𝜏q| 6 4
?

2{5. The modulus of the kernel attains its largest
value at 𝑣 “ 0, i. e., |𝐾p𝑡, 𝜏q| ă 1,14. Since 1,6 ` 0 ` 4

?
2

5
ă 2𝜋,

inequality (12) holds.

2) Let 𝑡 P ℓ2; then 𝛼p𝑡q “ 𝑖 ´ 𝑡. From the estimates obtained above, we
see that |𝐾p𝑡, 𝜏q| ă 𝜇𝑗 if 𝜏 P ℓ𝑗 and 𝜇1 “ 𝜇3 “ 1,14, 𝜇2 “ 1,6.
3) Due to the symmetry of Γ, the case 𝑡 P 𝑙3 is analogous to the considered
case 𝑡 P 𝑙1.

For 𝑡 P 𝑙2, inequality (12) also holds, which completes the consideration
of problem A.
B) Now we have 𝜆1 “ 𝜆2 “ 1 and 𝜆3 “ 𝜆4 “ ´1. First, we assume that
equality (9) is attained for 𝑡 P ℓ1; then 𝛼p𝑡q “ 1´ 𝑡.
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C) 𝜆𝑗 “ 1, 𝑗 “ 1, 3 ñ 𝜃𝑡 ” 1. The right-hand side of Equation (6) is a
function with property (3). We need to prove that the f.s.s. of Equation (8)
does not contain any function having property (3) and, therefore, Equa-
tion (6) is solvable. Assume the opposite. For such a function, condition
(10) and therefore (11) are fulfilled if 𝑗 “ 1, 2, 3. Consider the integrals

𝐴𝑗p𝑡q “

ż

𝑙𝑗

𝐾p𝑡, 𝜏q𝜑p𝜏q𝑑𝜏 ; then |𝐴𝑗p𝑡q| 6 𝜇𝑗, 𝑗 “ 1, 3. Now, using inequal-

ity (12), we will prove that the adjoint equation has no solutions that lead
to the solvability conditions for the non-homogeneous equation (6).

Let 𝑡 P 𝑙1.
a) If 𝜏 P ℓ1, then

𝐾p𝑡, 𝜏q “ p𝑣 ´ 𝑖q´1 ` p𝑣 ` 𝑖q´1 ` p𝑣 ` 1q´1´

´ p𝑣 ` 𝑖´ 2q´1 ´ p𝑣 ´ 𝑖´ 2q´1 ´ p𝑣 ´ 3q´1 .

Since 𝑣 “ 1` 𝑖𝛾, |𝛾| 6 1, we have

𝐾p𝑡, 𝜏q “ ´4𝑓p𝜃q, 𝑓p𝜃q “ p𝜃 ` 2q
`

𝜃2 ` 4
˘´1

` p𝜃 ` 4q´1 , 𝜃 “ 𝛾2 P r0, 1s.

Therefore, 2´1 rmax 𝑓p𝜃q ´min 𝑓p𝜃qs “ 0,1.
b) If 𝜏 P ℓ2, then

𝐾p𝑡, 𝜏q “ p𝑣 ` 1q´1 ` p𝑣 ` 𝑖q´1 ´ p𝑣 ´ 2´ 𝑖q´1 ´ p𝑣 ´ 2𝑖´ 1q´1 .

Condition (11) allows us to ’adjust’ the kernel (7) by a term depending
only on 𝑡, so

ˇ

ˇ

ˇ
p𝜏 ` 𝑡` 1q´1 ´

`

𝑡` 2´1𝑖` 1
˘´1

ˇ

ˇ

ˇ
ă 0,5,

ˇ

ˇ

ˇ
p𝜏 ` 𝑡` 𝑖q´1 ´

´

𝑡`
3

2
𝑖
¯´1ˇ

ˇ

ˇ
ă 0,5,

ˇ

ˇ

ˇ
p𝜏 ` 𝑡´ 2𝑖´ 1q´1 ´

ˆ

𝑡´
3

2
𝑖´ 1

˙´1
ˇ

ˇ

ˇ
ă 0,5,

ˇ

ˇ

ˇ
p𝜏 ` 𝑡´ 2´ 𝑖q´1 ´

´

𝑡´ 2´
𝑖

2

¯´1ˇ
ˇ

ˇ
ă 0,5.

Therefore, |𝐴2p𝑡q| 6 2‖𝜙‖.
c) If 𝜏 P ℓ3, then 𝐾p𝑡, 𝜏q “ 0. Thus, inequality (12) holds for 𝑡 P 𝑙1.
Let 𝑡 P ℓ2.
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Here 𝜇1 “ 𝜇3 “ 2, 𝜇2 “ 0,1, and 𝜙 ” 0. Inequality (12) holds for
𝑡 P ℓ3; this implies that 𝜇1 “ 0, 𝜇2 “ 2, and 𝜇3 “ 0,1. This completes the
examination of case C) and the proof of the theorem. l

Remark 1. The f. s. s. of Equation (3) is empty in cases A) and B),
while it may contain some functions with property (9) in case C).

Remark 2. The kernel (7) is not only bounded, it has even «better»
properties. If the points 𝜏 and 𝑡 are distinct from the vertices 𝑡2 and
𝑡3, then any of its partial derivatives are also bounded. Moreover, it has
points of jump discontinuity at the indicated vertices for each variable.
Due to the properties of the free term, we obtain that functions 𝑓p𝑧q P 𝐵.
For more details regarding the history of problems of type (1), see the
review article [4].

3. Equivalence of the regularization. Let us determine when the
regularization we have carried out is equivalent. For this solution, we have

p6q ñ
`

𝐸`𝜙
˘

p𝑡q ´ 𝜃𝑡
`

𝐸`𝜙
˘

r𝛼p𝑡qs “ 𝑔`p𝑡q ´ 𝜃𝑡𝑔
`
r𝛼p𝑡qs , 𝑡 P Γ,

that is, if the function 𝜙p𝑧q “ p𝐸𝜙q p𝑧q ´ 𝑔p𝑧q, 𝑧 P 𝐷, we have
𝜙`p𝑡q “ 𝜃𝑡𝜓

` r𝛼p𝑡qs, 𝑡 P Γ. This is the condition of the Carleman bound-
ary problem. However, this is an underspecified problem [5], since Γ is
only a part of the boundary B𝐷. For this reason, its set of solutions has
«enough cardinality». We have obtained the following result.

Theorem 2. Summation equation (1) is solvable if and only if the count-
able set of conditions

`

𝐸p𝑘q𝜙
˘

p0q “ 𝑔p𝑘qp0q, 𝑘 “ 0, 1, 2, . . . (14)

holds.

Here 𝜙p𝑡q is the only solution to the integral equation with property (3).
The homogeneous equation (𝑔p𝑧q ” 0) has only the trivial solution.

Remark 3. Previously, we encountered a similar solvability picture
in [6] during the investigation of a certain difference equation.

Let 𝐹 p𝑧q be an entire function of exponential type Borel-associated [7,
§1, 1.1] with the lower function 𝑓p𝑧q P 𝐵. Rewrite Equation (1) in the
following equivalent form:

p𝑉1𝐹 q p𝑧q ”
4
ÿ

𝑗“1

𝜆𝑗

ż

arg 𝜏“𝜃𝑗

𝐹 p𝜏q exp r´𝜎𝑗p𝑧q𝜏 s 𝑑𝜏 “ 𝑔p𝑧q, 𝑧 P 𝐷, (15)
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where 𝜃1 “ 𝜋, 𝜃2 “ ´𝜃4 “ ´2´1𝜋, and 𝜃3 “ 0. Assume that the indepen-
dent term can be expanded as

𝑔p𝑧q “
8
ÿ

𝑘“0

𝑐𝑘𝑧
𝑘

𝑘!
,

and the radius of convergence of the power series satisfies the condition
𝑅 ą 2´1

?
10. By equating the corresponding Maclaurin coefficients of the

left and right-hand sides in (15), we obtain the following result.

Theorem 3. Interpolation problem

𝑑𝑘

𝑑𝑧𝑘
p𝑉1𝐹 q p𝑧q

ˇ

ˇ

ˇ

ˇ

𝑧“0

“ 𝑐𝑘, 𝑘 “ 0, 1, 2, . . .

is solvable in the class of entire functions of exponential type 𝐹 p𝑧q, Borel-
associated with lower functions 𝑓p𝑧q P 𝐵 if and only if the countable set
of solvability conditions (14) holds.

Remark 4. In Theorem 3, we assume beforehand that the conjugated
indicator diagram of the lower function is exactly the square 𝐷 and not a
«smaller» convex set Ω Ă 𝐷. The latter assumption immediately leads to
the trivial and overdetermined problems mentioned in the Introduction.
The set of independent terms for which Equation (1) is uninteresting can
be described explicitly.

Remark 5. We first obtained these three cases of Equation (1) in the se-
ries of papers [8], [9], [10], [11], but there they had at most a finite number
of solvability conditions. In those papers, we considered the class of func-
tions that are holomorphic outside a quadrilateral instead of a polygonal
line Γ as in the present study.

Finally, let us rewrite Equation (1) in a different form. Since
𝐷1z𝐷 “ 𝜎4p𝐷q, we can replace the point 𝑧 in (1) with 𝜎1p𝑧q and obtain
the difference equation

𝜆1𝑓p𝑧`1` 𝑖q`𝜆2𝑓p𝑧`2𝑖q`𝜆3𝑓p𝑧`1` 𝑖q`𝜆4𝑓p𝑧q “ 𝑔 r𝜎4p𝑧qs , 𝑧 P 𝐷1.

We can apply to it many of the powerful classical methods used to in-
vestigate convolution operators [12], since the quadrilateral 𝐷1 separates
the points 0 and 8. The independent term 𝑔r𝜎4p𝑧qs does not have to be
analytically continuable across a segment of the boundary B𝐷1.
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In conclusion, let us consider the problem of generalizing the obtained
results. In this article, 𝐷 is a unit square. Let now 𝐷 be an arbitrary
quadrilateral (not necessarily convex) with vertices 𝑡𝑘, 𝑘 “ 1, 4 enumerated
in the positive direction of traversing the boundary B𝐷. Then equation (6)
will still be a Fredholm equation of the second kind. But the validity of
Theorem 1 can no longer be guaranteed. Generally speaking, equation (6)
may have a finite number of solvability conditions. See, in this regard, the
works [8], [9], [10], [11]. In some cases, Theorem 1 remains valid as well.
For example, in the case when 𝐷 is an isosceles trapezoid with vertices
˘2 ´ 𝑖, ˘1 ` 𝑖 [8]. In this case, it does not matter which three sides are
included in the cut.
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