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SCHWARZ PROBLEM FOR THE INHOMOGENEOUS
POLY-ANALYTIC EQUATION IN A HALF-LENS

Abstract. In this paper, we consider the Schwarz boundary-value
problem for the poly-analytic equation in the half-lens domain.
First, using the parqueting-reflection principle, we construct the
Poly-Schwarz and T-type operators in the half-lens domain, and
then we study the properties of these operators. Furthermore, we
establish solvability conditions and examine the Schwarz boundary-
value problem for the inhomogeneous poly-analytic equation in a
half-lens.
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1. Introduction. Boundary-value problems are fundamental in both
mathematical analysis and mathematical physics, with significant appli-
cations in such areas as complex analysis, the theory of partial differential
equation, potential theory, fluid dynamics, wave theory, quantum mechan-
ics, thermodynamics, and electromagnetism [1]—[18]. These problems in-
volve finding solutions to partial differential equations subject to specific
boundary conditions on the domain boundary, enabling accurate model-
ing of physical phenomena. In particular, boundary-value problems for
complex partial differential equations focus on the existence, uniqueness,
and qualitative behavior of solutions under various boundary conditions
applied to different classes of these equations. The Schwarz problem is a
classical and important example in this context, arising in complex anal-
ysis, potential theory, and mathematical physics, where the goal is to find
a solution to a complex partial differential equation that satisfies given
boundary conditions on a domain. Polyanalytic equations form an impor-
tant class of complex partial differential equations that extend the concept
of analytic functions by involving higher-order derivatives with respect to
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the complex conjugate variable. Analytic functions satisfy the classical
Cauchy-Riemann equations, whereas polyanalytic functions generalize this
concept by involving higher-order derivatives with respect to the complex
conjugate variable, which gives rise to a richer mathematical structure
and necessitates more sophisticated analytical techniques. Solving the
equations associated with polyanalytic functions often requires advanced
techniques, such as the reflection principle and integral operators, making
them a rich and active area of research in complex analysis.

In recent years, many researchers have studied boundary-value prob-
lems for complex partial differential equations in various domains [1]—[18].
In 2014, Begehr and Vaitekhovich examined the Schwarz problem within
a lens domain formed by the intersection of two circles with different
radii [3]. In 2024, Darya and Taghizadeh studied the Schwarz boundary-
value problem in a lens domain formed by the intersection of two circles
with equal radii [4]. In [5], Darya and Taghizadeh solved the Dirichlet
problem for the inhomogeneous Poisson equation and the homogeneous
Cauchy-Riemann equation in the same domain. Furthermore, in [6], Darya
and Taghizadeh investigated the Schwarz problem for the polyanalytic
equation in the lens domain. Additionally, in |7], Darya and Taghizadeh
studied the Schwarz problem for the poly-analytic equation in the partial
eclipse domain.

In this paper, we extend the boundary conditions and investigate
the Schwarz boundary-value problem for the inhomogeneous poly-analytic
equation in the half-lens domain. First, we introduce the half-lens domain.
Then, using the parqueting-reflection principle, we construct a covering
for the complex plane. We also derive the Cauchy-Schwarz representa-
tion formula using reflection points. This representation formula provides
a solution to the Schwarz problem for the Cauchy-Riemann equation in
the half-lens domain. In the second section, we define integral opera-
tors of the Schwarz-type and the Pompeiu-type in the half-lens domain
and study their properties. Finally, we examine the Schwarz boundary-
value problem for the Cauchy-Riemann equation. In the third section, we
introduce the poly-Schwarz operator and the T-type operator in the half-
lens domain and analyze their properties. Finally, we study the Schwarz
boundary-value problem for the poly-analytic equation and present an
explicit solution.

Let © be a half-lens domain in the complex plane, defined by

Q:{zeC: lz—1] <V2, |24+ 1] < 2,Imz>0},
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where Oy = {z€C: |z —1] =2} andCy = {z€C: |z + 1| = /2} are
two circles with same radii. The boundary of €2 is denoted by 02, and the
points

a=—-(V2-1), aa=(2-1), azg =i

are the corner points of 2. The boundary of this domain consists of three
components: two circular arcs, each belonging to one of the intersecting
circles and spanning between the intersection points, and one straight line
segment that connects these points.

The aim of this paper is to present an explicit solution and solv-
ability conditions for the higher-order Schwarz problem in the half-lens
domain. Integral operators are fundamental tools in solving boundary-
value problems. The construction of integral operators necessitates effi-
cient techniques, with the parqueting-reflection principle being recognized
as one of the most significant and powerful approaches [2]-[12]. The
parqueting-reflection principle plays a significant role in constructing inte-
gral operators for solving boundary-value problems, especially in domains
bounded by circular arcs and straight lines. We reflect a domain across
its boundaries to create parqueted structure. The cover can be achieved
by a single reflection, several consecutive reflections, or infinitely many
repetitive reflections. The points obtained through these reflections are
subsequently used to construct integral operators. At this stage, we apply
the parqueting-reflection principle to the half-lens domain, resulting in a
covering of the complex plane.

Reflecting any z with respect to the real axis gives z* = z, and reflect-
ing any z with respect to a circle gives

az —aa + r?
lz—al=r=(z-a)(z-a)=r"=2"= "
Z—a
The point z € 2 is reflected at C onto 2] = %1, and both these points
are reflected at Cy onto the points 25 = %, 2§ = —1. The reflection of

these four points across the real axis is as follows:

_ z4+1 —z+1 1
z;f:z,z;‘:z_l,zg: porar] ,z;“:—%.

These reflections generate a parqueting of the entire complex plane,
and the corresponding points will also be essential for constructing integral
operators.
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Based on Vekua’s method [18], if w is a solution of inhomogeneous
Cauchy-Riemann equation, then we have

= oz z :L w dC _l dﬁdn
wl(2) = 6() + TUE) = 5= | WO 7= Wff(oC—Z

211
0 Q

where f e L,($;C), p > 2, ( = +1in, ¢(z) is analytic, and T'[f](2) is the
Pompeiu integral operator. When dealing with inhomogeneous Cauchy-
Riemann equations or boundary-value problems, such as the Schwarz
problem, the Cauchy-Schwarz representation formula provides an explicit
integral solution. It is often derived using the Cauchy-Pompeiu formula,
which generalizes the Cauchy integral formula to functions that are not
necessarily analytic. In the following, we derive the Cauchy—Schwarz rep-
resentation formula in the half-lens domain.

Theorem 1. Any function w € C'(Q;C) () C(€;C) can be represented

as
V2-1

1 2 2z

S Rew(t

wiz) = o5 f ew()[t—z+tz+1

-(V2-1)
20> — 1) 2(z + 1) t
t(z—1)—2z—-1 tlz+1)+2z-1

tom | Reat [ =

20N Ch
DYy 2o ) &
((z—1)—2—-1 Cz+1)+2-1 ¢(—1
1 2(C+1) 22(C+1)

o Jopney ) [ﬁ‘“w !
2(z—=1)(C+1) 14 2z+1)(C+ 1) _1] d¢
((z—=1)—2-1 ((z+1)+2z—-1 ¢+1
2 d 2 d

—i—; f Imw(()g—fl—k— f Imw(()c—fl

2M0C, 20N Ca

_H{“’f(o [ciz s

Q
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N z+1 N —z+1 ]
((z+1)—2z4+1 ((—2+1)—2z—-1
— 1 z

MR el

z—1 z+1

. ]}-dfdn, 1)

(z=1)+2—-1 C(lz+1)+z2-1
where ( = £ + in.
Proof. The points that are obtained by parqueting-reflection method are

z e Qand zf, 23, 25, zf, 25, 25, 25, ¢ Q. So, by the CauchyPompeiu
formula 3], [4], [16], we have:

1 d¢ L(_ . dédnp  Jw(z), z€Q,
- w@k_z—;f%@k_z—{a e ®
o0

Substituting the points into the Cauchy-Pompeiu formula (2), taking the
complex conjugate of the resulting expressions (where Z appears), and
summing eight relations, leads to the Cauchy—-Schwarz representation for-
mula. []

Formula (1) presents the solution to the Schwarz boundary-value prob-
lem for the inhomogeneous Cauchy—Riemann equation in the half-lens do-
main.

2. Integral operators for the half-lens. Integral operators play
a crucial role in solving boundary-value problems for complex partial dif-
ferential equations [1], [6], [7], [18]. In this section, we introduce integral
operators in the half-lens domain and investigate their properties.

We define the Schwarz-type operator on half-lens domain as

V2-1

O RO P
—(VE-1)

20z — 1) 2z + 1)

dt
tz—1)—2z—-1 tlz+1)+2z-1

1 2(¢C—-1) 22(¢C—1)
o | 0TS B
o02nCq
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Gy ) Her oD ) &

((z=1)—z2—1 = ((z+1)+z-1 |¢—-1
1 2(C+1) 2z2(C+1)
o | 0T B
00NCy
2(z—-1)(C+1) 20z+1)(C+1) d¢
((z—1)—2-1 S ((z+1)+2—-1 _1] C+1 )
where v € C(0Q,R), z € Q. By the by direct computation,
06[~]

W(Z’) :O, ZEQ,

which imply that the Schwarz-type operator is analytic in the half-lens
domain. Next, we discuss boundary behavior of the Schwarz-type operator
on half-lens domain.

Theorem 2. If the given function v € C(0€);R), then

lim Re §[v](2) = v(¢), ¢ €.

z—(

Proof. To verify the boundary behavior, the real part of §[v](z) must be
studied. In fact,

V2-1
1 1 1 z z
Re § = t - -
ol = 55 J 7()[t—z f—z 4l 14l
~(V2-1)
z—1 z—1
tz—1)—2—-1 tz—-1)—-2z-1
z+1 z+1
— dt
tz+1)+2z—-1 tz+1)+z-1

2mi (—2 (-2 Cz+1 (z+1
02nC1
-DE-1) = E-DHE-1) _
g(z—1)—z—1+g‘(——1)—z—1 !
(z+1)(¢-1) | (Z+1)(C—1) dg¢
+C(z+1)+z—1+C_(Z+1)+Z—1_1] 1
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1 J (C)[C+l+% +z(g+1)+z(§+1)_

2mi (—2 (—2z Cz+1 (z+1
002nCy
-1+ | E-1EC+1)
NG Py R g
2+ D¢+ | E+DE+D ]L
(z+1)+z-1 ¢+1

(
+C(z—l—l)—l—z—l +§
)

1 (—er C—eg g
Red = — —
001 - 3 [ 20 [F22 e ] 2
0QNCy,
1 C—er  C—¢k d¢
- - -1
2mi <<)lg—z+g“—z ]C—Ek
Ck
where
T(C) _ ’7(§)a CeaQﬁCk’a
0, ¢ e Cp\(0Q N Ck).
and €1 = 1, e = —1. By considering the properties of the Poisson kernel
for Ck, [10]

lim Re 6[v](2) = 7(¢),

z—(
follows for ( € 02 n C), up to the corner points a; and az of the domain
2, because T fails to be continuous there if not accidentally v vanishes at

these points.
Also, Red[v](2) on (—(v/2 —1),4/2 — 1) could be written as

V2-1 -
Redhle) = 5e [ 20 [ﬁ]dt
~(E-1)

oo
:LJT [Z—Z]du
2 t—z|
—Q0

7(C)7 te <_(\/§_ 1)7\/5_ 1)7
0, te R\(—(v2—1),v/2—1).

where

T(¢) =
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From the properties of the Poisson kernel, we have

lin% Rew(z) = ~(t).

We now consider the boundary behavior at the tip as

. We represent
the constant function 1 as

V2—1
1 1 J [ 1 1 z z
o t—z t—z tz+1 tz+1
-(v2-1)
z—1 z—1
tz—1)—2—-1 tz—1)—-2z-1
z+1 +1

(
1 (-1, ¢-1 A=) 2=
"o f [C—z+<_—2_1+ Gl lzil

T e e !
+¢((::3(i;i)1 - Eit: ?)(ft;i)l a 1]gd—g1
| [ e TR

e e g
e ae s U

Multiplying this relation by 7(i) and subtracting the resulting quantity
from Red[7v](2), for z € 0Q n Cy, we get

Red[y](2) — (i) = 5— f N(C)[C o 1]<d_cl,
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where ¥(¢) = 7(¢) — (i) and 5(z) = 0. So,

limRed[v](z) = v(4).

z—1

Similarly, for z € 022 n Cs,

C+1 (+1 d¢
g—z+§—2_1]g+1’

Red[v](z) — 7(i) = = f ﬁ(é)[

QNCy
where 5(¢) = v(¢) — () and (i) = 0. So,

lim Re d[v](2) = ~(4).

z2—1

By repeating the above trend for a; and a, repeatedly, the proof is com-
pleted. [J

The classical Pompeiu operator is a well-known and widely studied ob-
ject in complex analysis and partial differential equations. Its significance
stems from its foundational role in integral representation formulas and
its versatility in solving partial differential equations. Next we are going
to define Pompeiu operator in the half-lens domain.

We define the Pompeiu-type operator for the half-lens domain as

Talle) = -3 [{r0] =+ 5
Q
z—1 z+1
+C(z—1)—z—1+C(z+1)+z—1]
+f(C)[—C_Z—<Z+1
z—1 z+1

_ — = déd 4
((z=1)—2z-1 C(z—l—l)%—z—l”gm 4)
where f € L,(22,C), p > 2, and ( = & + in. By the properties of the

classical Pompeiu operator T [15], for z € €2, one has

dTolf](2)

L feey 9

thus, it remains to verify that the boundary conditions are satisfied.
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Theorem 3. If fe L,(QC), p> 2, then

{ReTo[]} (¢) =0, Cedf

Proof. The boundary of the half-lens consists of three distinct compo-
nents. To study the boundary behavior of the integral, one must perform
computations on each segment of the boundary 0f2.

For z € (—/2 —1,4/2 — 1), i.e., z = Z, we obtain

[Talv](2)
1 1 z z—1 z+1
:_%J{f(g)[g“—z+gz+1+§(z—1)—z—1+((z+1)+z—1]
Q
1 z z—1 Z+1
_f(<>[§—z+gz+1+C(z—1)—z—1+C(Z+1)+z—1]}d€dn’

which implies that

{ReTa[y]} (€) =0, (e

Similarly, for z € 02 n C1, and z € 02 n Cs, we have

{ReTa[y]} (¢) =0, (e

This completes the proof. []

In the following, we study the Schwarz boundary-value problem for the
inhomogeneous Cauchy-Riemann equation in the half-lens domain.

Theorem 4. The Schwarz boundary-value problem

ng in Q, Rew=v on 09, (6)
oz
2 a2 i
— f Imw(()a +— f Imw(C)m =, (7)
2NC, 20NCy
with given f € L,(2;C), p > 2, ve C(09Q,C), c € R is uniquely solved by
w(z) = 0[7](z) + ic + Ta[f](2), (8)

where 0[v](z), Ta[f](z) are the Schwarz-type operator and the Pompeiu-
type operator, respectively.
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Proof. Using the properties of the Schwartz-type and Pompeiu-type
operators, and applying Theorems 2 and 3, we see that the function
[(z) = d[v](2) + ic + Ta[f](2) satisfies condition (13). Let ®(z) =
w(z) — T'(2); then ®(z) satisfies
éi{jzo in Q, Re®=0 on 0. 9)
0z
Then, from Theorem 1, we know that ®(z) = ic. Thus, the proof is
completed. []

3. Poly-Schwarz operator and T-type operator for the half-lens.
Poly-Schwarz operators play a crucial role in solving boundary-value prob-
lems for polyanalytic equations. In the following, we introduce the poly-
Schwarz operator associated with the half-lens domain and investigate its
properties. For n € N, we define the the poly-Schwarz operator S, on
the half-lens domain as

‘nzl(_l)k : 71 (t-z+T=2)" %) S
Tk \ 2m © OO T e
~(vV3-1)
2(z—1) 2(z+1) ]dt
tz—1)—2z—-1 tlz+1)+2z-1

T f @—z+?fﬁk%@w%£12—l+gﬁilﬁ—1

2mi ¢—z2 tz+1
oQnCy
2 -1DC-1) . 2+DEC-1) _1] d¢
((z=1)—2-1 Cz+1)+2—1 (-1
1 ——\k 2(¢C+1) 2:(C + 1)
tom [ TR o B o EE LD,
o0QNCy
2z+1)(¢C—1) 2z+1)(C+1) d¢
C(Z—l)—z—l_l C(Z+1>+2_1_1]C 1)7 z €], (10)

with 70,71, - - ., 7 € C(0€;R). Then S; = 0, where ¢ is the Schwarz-type
operator defined by (5). Since
)

Sn[’}/O? Y5 e 7771—1] (Z
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V2-1
L | bk o 2
S5 e [ B() e e e
k=0 _(va-1) =0
2z 2(z—1) 2(z+1)
+752’%—1+75(2’—1)—,z—1 t(z+1)+z—1]dt

+% f i (?) (C+0) (—z =) %(C)[z(f__zl) ~1

BEECY e | 2D ) K

tz+1 ((z—1)—2—1 = ((z+1)+2-1 (-1
k-1 2(C+1)
o | ;}() ¢+0)! (=2 =2 o[ -
0Q2nCo
22(C+1) 2(z—-1)(C+1) 20z+1)(C+1) d¢
e ! g(z—l)—z—1_1+g“(z+1)+z—1_1]§+1’
we have

5[707’717"'5’)% 1 :2

Z( ) — 2= 2" S[Aal(2), 2 € Q,

(11)
with 4¢,(¢) = (C+Z)l’)/k(C), (e dfor k =0,1,2,...,n — 1 and
1=0,1,2,... k.

Next we investigate the boundary behavior of the poly-Schwarz oper-
ator.

Theorem 5. If the given functions o, V1, ..., Ya—1 € C(0Q, R), then

8lSn[70, Y1, -
0z

,%—1]}(2):%(07 CE 697 | = 0’172’...,71— 1.
(12)

lim {Re

z—(

Proof. Let [ = 0; then, from Theorem 2 and (11), we have

B_)Hé {Re Sn[fYOar)/ly s 7771,—1]} (Z)
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n—1 (_1)k k k ke
-5 th)tﬁ—() GalQ) = 0(Q), Ceon,  (13)

and, hence, (12) is true. Let [ > 0; then
alSn[’Y(h ITEEE 7771—1]
(2)

oz
(=) e 2 2
k-l z
k2=l <2m J (t—z—l—t—z) fyk(t)[t—z+tz+1
—(v2-1)
N 2(z—1) 2(z+1) ]
tz—1)—2z—-1 tlz+1)+2-1

b [ e [ e B

21 (—z tz+1
20nCh
S I CA NS
((z—=1)—2—-1 Cz+1)+2-1 ¢(—1
1 kl 2(¢C+1) 22(¢C+ 1)
tom | e TR o[ -1 ZE
00NCo

2(z+1)(C=1) 2z +1)(C + 1) d¢
C(Z—l)—2—1_1+C(z+1)+z—1_ ]§+1)’ ze ), (14)
Hence, we similarly get (12). []

One of the important properties of the Poly-Schwarz operator in solv-
ing the Schwarz boundary-value problem is its differentiability property.
Next, we examine the differentiability property of the Poly-Schwarz oper-
ator.

Theorem 6. If the given functions o, V1, .- ., Va1 € C(0Q, R), then

" Sl Y0s Y1y -+ - s V1] (2)
ozn

=0, zef. (15)

Proof. The Schwarz-type operator is analytic in the half-lens domain.
Thus, by (11), we obtain

ansn['yo; BATREE 7’}/77/—1](2)
ozn
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I ol () [ i P RS

Therefore, the proof of Theorem 6 is completed. []

The T-type operator is indeed an extension of the Pompeiu operator.
In the following, we introduce this operator in the half-lens domain and
investigate its properties. We define the T-type operator as

6 = 0 e ) {0+
G +Z1)+jz 1= 121;_—1z = 1]
+W[— fiz B 5211
(= —Zl)_Jrlz 1z +Zl)++1,z - 1]}d§d’7’ (17)

where z€ Q,1=1,2,3,..., fe L,(2;C),p > 2, and T\ [f](2) = Talf](2),
which satisfies

o1 [ f1(2)
oz f(2). (18)
Let To[f](2) = f(2), z € ©; then (18) is equivalent to
% = Tolf](2), z € Q. (19)

Next, we investigate an important property of the T-type operator in
the half-lens domain.

Theorem 7. If f € L,(2;C), p > 2, then

%:Tl_l[f](z), 2eQ l=12,.... (20)

Proof. If we assume that [ = 1, then (20) is equivalent to (19). For [ > 1,
we have

R G T
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with
RO =€+ O, k=0,1,2,...,1—1.

Hence,

OTIF(z) (1)1 1= 1\ (0 (=2 —2)
oz (-4 ( k ){ 7z T fil(2)

k1 0T fi](2) }

0z
qy\l—2 =2 _
((z i) )! 2. (l k 2) (=2 =2) " RA()
I—

2 =
T f1(2).

Therefore, the proof is complete. []

+

—~

—z—2)

Next we check the boundary behavior of the T-type operator in €.
Theorem 8. If f e L,(2;C), p > 2, then

lim ReT)[f](z) =0, CedQ, [=1,2,.... (22)

z—(, zeQ

Proof. From (21), we have

_1\i—1 =1 -
Re{TIfN) = (5 3 () (2= ReTAI} 2 € 0

k=0
(23)
According to Theorem 3, we obtain
lém QRe Ti[fx(2)] =0, (e . (24)
z—(, z€
Thus, from (23) and (24), we have
lim ReTj[f](z) =0, CedQ, [=1,2,.... (25)

z—(, zeQ)

This completes the proof. []

4. Schwarz problem for poly-analytic equation in the half-
lens. In this section, we examine the Schwarz boundary-value problem
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for the poly-analytic equation in the half-lens domain. Using the prop-
erties of the poly-Schwarz operator and the T-type operator, we discuss
the Schwarz boundary-value problem for the poly-analytic equation and
explicitly obtain its solution.

Theorem 9. The Schwarz boundary-value problem for the poly-analytic
function

(Gzw) (2) =0, in Q,
{{36(55W)}(<)=0, on o, k=012 -1, 20

is solvable and its solution can be written as

n—1 \k
w(z) = Y] 2 Z!Z) ic, (27)

with ¢, € R, for k =0,1,2,...,n— 1.

Proof. Suppose that 0Zw(z) = 0; then w is a poly-analytic function.
Based on results in [1], the poly-analytic function w can be written as
follows:

o) = 2 EE ), s 29

where 1 (2) is analytic on Q. The boundary conditions in (26) are equiv-
alent to

lim Reyp(z) =0, (€dQ, k=0,1,2,...,n—1. (29)

z—(, 202

Thus, by Theorem 4, we have
Ui(2) = icg, ¢ € R. (30)

This completes the proof of Theorem 9. []

Next, using the Schwarz problem for poly-analytic function, we solve
the Schwarz boundary-value problem for the inhomogeneous poly-analytic
equation in the half-lens domain.
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Theorem 10. The Schwarz problem for the inhomogeneous poly-analytic
equation in the half-lens domain

(Pw) (2) = f(2), 2€Q, [feL,(%C), p>2,
Re (0fw) (¢) = (), (€09, e C(09;C), (31)
Im*w() =cp, C€0Q, k=1,2,....,n—1,

is solvable and its solution can be represented as

w(z) = Su[v0, 715 s 1] (2) + Tl f](2) + Z_] < ;'Z) ic, (32)

where ¢, € R, for k = 0,1,2,...,n—1 and the operators S, T,, are defined
by (10) and (17), respectively.

Proof. Let us denote

wo(2) = Sulv0, 71, -, Yuo1](2) + Thlf](2), z2€ 9, (33)

where the operators S,, T, are defined by (10) and (17), respectively.
From Theorem 6, and Theorem 7, we obtain

"wo(2)
ozn

= f(z), ze€qQ. (34)

By Theorem 5 and Theorem 8, we also have

0zk

{Re@}(g):%(g), Ced, k=01,...,n—1. (35)

Thus, wy is a special solution to the Schwarz problem for the poly-analytic
equation (31). Now let

w(z) = wo(2) + 1(2). (36)
Taking (36) into the equation of (31),

{(azw (2) =0, in - Q

37
{Re (%)} (¢) =0, on 00 k=0,1,2,...,n— 1. (37)
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which is just the Schwarz boundary-value problem for the poly-analytic
function (26). Based on Theorem 9,

n—1 —\k
vz = Y B, (38)
k=0 ’

with ¢, € R, for £ =0,1,...,n — 1. Hence, the proof is completed. []
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