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ON SOME CLASS OF FUNCTIONS WITH AN INTEGRAL
REPRESENTATION INVOLVING COMPLEX MEASURES

DOROTA BARTNIK

In this paper we obtain some properties of functions extremal
with respect to Fréchet-differentiable functionals defined on P.
(see defifnition 1) and, in consequence, estimates of the functional
Re{e*p(2)},0# z € K, A€ [-m,7), p € Pi,.

§ 1. Introduction

Let P denote the well-known class of all functions of the form
pz)=1+a1z+...+apz"+ ... (1)

holomorphic and satisfying the condition Rep(z) > 0 in the disc K =
{z € C:|z] < 1}. Asis known (e.g. [5], p. 4), a function p € P if and
only if

21
p(z) = / P(e™i, 2)du(t), 7 € K, @)
0
where 1+
EZ
(2= o, k=1, z €K, 3)

1991 Mathematics Subject Classification: 30 C 45

Key words and phrases: Carathéodory functions, functions generated by complex
functions with bounded variation, universal linearly invariant family, estimates of
functionals.

© Dorota Bartnik, 1996



4 Dorota Bartnik

w€ M, M ={u: pis anondecreasing real function defined on the interval
[0,27], and [ dp(t) = 1}.

V. Starkov ([9], see also [6]), introduced the class U,,, & > 1 of functions
of the form

27

f(z) = exp —2/L0g(1 —e ")du(t)|, z€ K, (4)
0

where p € I,. I, denotes the family of all complex functions u with
bounded variation, satisfying the condition

27

aut)—1|+ [ 1au) < . (5)
oot |

The classes U/, appear in a natural way in the question of approximat-
ing the derivatives of functions of a universal linearly invariant family of
order a by powers of the derivatives of convex functions (see [4], [9]).

Of course, if in (4) p € M, we obtain the class S° of convex univa-
lent functions. I; is a family of nondecreasing real functions such that

27
o du(t) < 1.

Definition 1 Let P!, a > 1, denote the class of functions given by for-
mula (2) where p are elements of the class I,.

Evidently P C P’;. The class P!, was introduced and its basic properties
were studied in [3] (see also [1], [2]). In particular, we obtain

THEOREM 1. The set of functions p of form (2), generated by piecewise
constant functions p € I, is dense in P.,.

It has also been shown that the class P!, is compact in the topology
of almost uniform convergence in K, convex and connected.

THEOREM 2. ([3]) Let {p}x, k = 0,1,..., denote the k-th coefficient of
the function p. If p € P.,, a > 1, then the set V}, of values of the functional
H(p) = {p}x, k = 1,2,..., is the closed disc with centre at the point 0
and with radius 2a. If a > 1, then the set Vy of values of the coefficient
{p}o is the ellipse

(Red—1)?  (Im A)?2
a? + aZ—1
4 T4

<1 (6)
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If a =1, then Vo =[0,1].
THEOREM 3. ([3]) If p € P.,, @ > 1, then

1+r 1—« 1+ 1+«
: <R < :
1, 3 SReple) <15

Estimate (7) is sharp.

|z| =7, z € K. (7

In the proof of Theorem 2, use was made of the definition and the
elementary properties of the class P/, and, in particular, of conditions (2),
(3), (5). To prove Theorem 3, we use Theorem 1, condition (5) as well as
certain classical inequalities.

There arises a natural question concerning the possibility of obtaining
a general characterization of functions extremal with respect to a rather
wide class of functionals defined on the class P.,.

§ 2. General properties of extremal functions

Let p € P/, ao > 1. Of course, the function u corresponding to p
belongs to I,,. From (5) it follows that there can exist an o, 1 < a <
o, such that u € I,. The best characterization of the function y and,

consequently, of p is given by the number a, for which

7du(t) —1)+ 7|du(t)l = a.
0 0

Definition 2 Let p € P,,,. The number a. < ag such that p € P, and
p & P, _. for any e > 0 is called a degree of the function p. The degree

of the function p is denoted by degp.

Since P’y CPla, if 1 < ay < s, we have
Property 1 If degp = a., a. > 1, then p € P!, for a > a. and p ¢ P.,
for1<a <oy Ifdegp=1, thenp € P!, for a > 1.

We shall prove

THEOREM 4. Let F' be a Fréchet-differentiable functional defined on P/, ,
L, its differential at the point p, and py the extremal function for the

problem

max Re{F(p™)}, 1<ag<oo, n=0,1,2,.... (8)
PEPL,
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If there exists k > n such that Lp(n)(zk_") # 0, then degpy = ay.
0

PROOF. From Definition 2 it is evident that degpg < ap. Assume that
degpo = a and a < ag. Let us consider the function

pr(2) = po(z) + khz* + Elh| = po(z) + k|h|(1 4 efar8 P 2F)

where k € N and h # 0 is a sufficiently small complex number. Note that
1+ o02* |o| =1, is a function of the class P for any k € N. So, we have

2m

p(2) = / Ple, 2)dpo(t) + || / Ple, 2)du(t),

0
to € In, v € M, and P is defined by formula (3). Consequently,

2m

pr(z) = /P(e_“,z)d(po(t) + k|h|v(t)).

0

We shall demonstrate that the function p, € P, for |h| < “94z<.
Indeed, condition (5) is satisfied because

27

| [ dtwate) + Winlo(e) 1] + [ lduo(t) + Ko
0

0

| / do(t) + k|| / av(t) - 1] + / (o (t) + ElRJw(0))]
0 0 0

2m 2w

< | [ duo® = 1|+ kinl + [ iduo(o)] + ki
0 0

< a+2kh <a+26 % =g,

2k

The derivative of order n of the function pj, is expressed by the formula

P (2) =p\M(2) + Wk (k—1) ... (k—n+1)z"", z€ K.
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Calculating the value of the functional F' at the point p%"), we get

FO) = P +hk2(k—1)...(k—n+1)z*")
= F) + Ly (W3 (k = 1) (k =+ 1)25") + o(| ]

= Fpy") +hk> (k= 1)... (k= n+ 1)L, (") + o(|A])

where lim,|_,g 0%‘) = 0. By the assumption, the function p; is extremal

for problem (8), therefore, for all k > n,
k—n\ __
Lp’gn) (Z ) =0

must take place, which contradicts the assumption. Thereby, the theorem
has been proved.

To estimate some functional defined on the family P/, we shall make
use of the method described by V. Starkov in paper [6] (compare also
[71—19D).

Let G, be the class of functions of the form

2m

o(z) = / oz )du(t), €K,

0

where p € I, g(z,t) is a fixed function holomorphic with respect to z in
the disc K and 2m-periodical and of the class C' with respect to ¢. The
family G, is compact in the topology of almost uniform convergence in
the disc K.

Let F' be a Fréchet-differentiable functional defined on the set B de-
scribed above. Consider the problem

F
max Re {F(p)) ©)
and denote by g (z fo (z,t)duo(t) an extremal function for (9) (not

necessarily the only one).

Denote by I,(n) a subset of the family I,, of piecewise constant func-
tions which have not more than n points of discontinuity. Let us al-
S0 deﬁne a suitable subset of the family Ga, G, (n o) = {p € Gq

fo (z,t)du(t), p € In(n), f du(t) fo duo(t)}. The class
G (n o) is compact to0o.
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Let us consider the following problem:

max Re{F(p)} (10)
‘PEGa(n’MO)
and let @, (z fo (z,t)dpn (t) denote an extremal function for (10).

From the sequence (<pn) one can choose a subsequence almost uniformly
convergent in K to the function ¢(® € G, with that ¢(® is an extremal
function for problem (9). In order to get any information about the ex-
tremal functions in the full class G, we may first consider analogous
problems in the classes G (n, wo).

Let, for a fixed n € N, problem (10) be given and let ¢;, j = 1,...,k,
k < n, be points of discontinuity of the function u,. Denote arg du,(t;) =
©;. If £ > 2 and if there exist at least two different values of ©;, then
the points L, [g(z,t;)] lie on the circle with centre ¢, and radius s,.
L, denotes here a differential of the functional F' at the point ¢,. If,
moreover, s, > 0, then

|Lo, [9(2,t:)] — enl? = |Ly, [9(2,t;)] —cal®  for ij=1,..k,
(g, lo(z, 0] = eal)i]_ =0 for j=1,..k (D
=t;
In the above case, the equalities
(Lo, [9(2,t))] — cn)e® = +s,, j=1,....k, (12)

are true, too, with that the sign preceding s, is the same for all j’s.
As s, =0, we get

L‘/’n [g(z7tl)] = L‘/’n [g(z7tj)] fOI' 17.] = ]-7' . 7k7 (13)
Re{e®L, [gi(z,t))]} =0  for j=1,..k.

Whereas if at all points ¢; of discontinuity of the function u, we have
arg dpy (t;) = ©, then

Re{eleL%[gt( ~)]}_0 for j=1,...k, u
{Re{e“% Lo [g(st)] — Lo lg(st;))} =0 for ij=1,..k Y

with that the first of equalities (14) is true at each point ¢; in all the cases
under consideration.

We shall give a simple application of Theorem 4, exemplified by the
following problem.
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Let p € P, a > 1, and let {p}r, kK = 0,1,..., denote, as before, the
k-th coeflicient of an expansion of the function p in the power series with
centre at the point z = 0.

Consider the problem

. =1,2,.... 1
]I)IGI%)EHP}H for k s 4y ( 5)

LEMMA 1. If po(z) = 02" P(e™® 2)duo(t), z € K, and P defined by

formula (3) is an extremal function for problem (15), then f027r dpo(t) =1
27

and [ |duo(t)| = a.

PROOF. Since, for p € P!, © € R, p(e'®z) € P!, therefore problem (15)
is equivalent to
max Re{p}r fork=1,2,.... (16)
pEP,

Consider the function

where p (1) = po(t) + Apa(?),

(o0 for t € [0, to),
p(t) = { —m for t € [to, 27],

and

27
m:/duo(t)—l.
0

Of course, py € P}, and

2m

pa(z) = /P(e*“,z)d,uo(t) — mAP(e_itO,z),
0

0 < A < 1. If pg is extremal for problem (16), then

1 —ito
Re {—my} <0, k=1,2,....
k

1 — e itoy
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Consequently, .
Re (—2me~ %) <0, k=1,2,....

The above inequality is true for m = 0 only. Then

/ dpio(t) = 1. (17)
0

Let @ > 1. From (5) and (17) it follows that f |du0 t) < a. If
fo% |dpo ()| < a, then there would exist 8 < « such that f |dpo (t)| =
and ‘ f02" duo(t) 1‘+f |dpo (t)| = B, which would mean that degpy < .
This contradicts Theorem 4, so, indeed,

7|dﬂo(t)| =a.

If @ = 1, then from (5) we get at once f02" |duo(t)] = 1, which concludes
the proof.

§ 3. Estimation of the functional Re {e"p(2)},p € P/,
At present, we shall make use of the method described in the second
section of this paper. We shall prove

THEOREM 5. Ifpe P!, a>1, X € [-m,x), then the estimate

Re [e?p(2)] < ﬁ [(147%)cos A+ 2ra + z] , (18)

T = \/[a(l +72) cos A + 2r]2 + (1 4 r2)2(a® — 1) sin’ A,

|z| = r, z € K, takes place. The equality in (18) is obtained for functions
of form (2) where p is a piecewise constant function with one jump point
to defined by the conditions

(1 —7r%)sin A
(14+7r2)a+2rcos)’

sin tg =
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(a? —1)(1 —1r?)?

t 19
costo [(1+72)cos A+ 2ra + vz |[(1 + r2)a + 2r cos A] (19)
(1+7%)cos A + 2ra
(1+72)a + 2rcos A
with that
27
2 2 2Y( 2 _ 1) i
/du(t):l 1+a(1+r)cos)\+2ra_i(1+r)(a 1)sin A
2 N3 N
0
(20)
PROOF. Let us determine
max Re [e"p(2)] (21)

PEP,

where z is any fixed point of the disc K, and A € [—m, 7). Since if p € P},
then p(e'z) € P!, for § € R, thus one may adopt 2 = |z| =7, 0 <r < 1.
Consequently, one should examine

2T

max Re [/ erP(e™ r)du(t)]. (22)

pEla
0

As can be seen, this is a problem of type (9) for Flp(z)] = ¢(|z|) where
fo (z,t)du(t), p € I, while g(z t) = e“‘P( ~it 7). The ex-
tremal function will be denoted by @o(z fo (z,t)dpo(t).

First, let us deal with the problem of type (10) For any fixed n € N,

determine
27

max / o, D)dpt) (23)

0

with respect to p1 € I,(n) such that f27r f27r dpo(t). The extremal
function in (21) will be denoted by ¢, (z fo (z,t)dpn(t).
Let us still notice that L, (-) = F(-) because the functional F'is linear.
It is known from the definition of the class I,(n) that the function
I has not more than n points of discontinuity. Suppose that it has at
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least two such points. Then one of conditions (11), (13) or (14) must be
satisfied. In the problem under consideration

al+e ir

PR T j:17"'7k7 2Sk§n
1—e ir

Ly, [9(z,t))] =
So, it is evident that conditions (13) can not be satisfied. Assume that
conditions (11) take place. Then all points L, [g(z,t;)] lie on the circle
with centre at some point ¢, and with radius s,, > 0. It is easy to see

ix 1412 _ 2r
== and s, = 1=.

Consider Re [ fo t)dpn(t )] The function p, belongs to the class
I,(n) of piecewise constant functions, and

that ¢, = e

27

k
[ ot te) = Zgrt =3 Lolgtia (20)

0
= lajle®® = dun(tj), j=1,...,k 1<k<n.

Moreover, from condition (12) we have

ZLW[gztlaJ—e*”’;Zﬁ 2Z|aj| (25)

j=1
Denote ZJ 1 a; = A. From (5) we get that ijl laj| < a—|A—1|. Thus
2
Re | [ g0, 0dn(t)| < W
0
where
W= iJ_”' Re (e iAA)+1i—r72(a—|A—1|).

It remains to determine the greatest value of the expression W.

Note that A = {p,}o where p, is the function of the class P!, corre-
sponding to pu,, in the integral representation. In virtue of Theorem 2 A is
a point of the domain Vj described by inequality (6). So, we may assume
that A lies on some ellipse contained in Vj, with foci at the points 0 and
1. Consequently,

1+ n(a—1)+1] cost/) \/17 a—1)2 4+ 2np(a—1)siny

A=
2 2 ’

(26)
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P €[0,27], n€][0,1].

Hence
2 —
W 1+7% (14 [n(a 1)+1]cosz/;cos)‘
1—1r2 2
(o —1)2 “ 1) si
3 V2 (a—1)2 + 2n(a 1)smwsin)\>
2
2r (e —1) + 1] cosyp — 1
+ 1—1r2 (a ‘ 2
/M (a—1)% + 2n(a — 1) sine D
+
2
1

= m{(1+r2)COS)‘+2r[2a_77(a—1)—1]

+ [(1+7r?)[n(a —1) + 1] cos X + 2r] cos¢p
— (14+r?)y/n%(a —1)2 + 2n(a — 1) sin Asin ¢ }.

W is a function of the variables n and 1 defined on the set [0, 1] %[0, 27].
Using an elementary method, one can demonstrate that its greatest value
is equal to

1

W(l,90) = m{(l+r2)cos)\+2ra (27)

+ \/[a(l +72)cos A + 2r]2 4 (1 4+ 72)2(a? — 1) sin® )\} ,

where g is defined by conditions
—(1+1r%)y/a® —1sin A
\/[a(l +72)cos A + 272 + (1 +72)2(a? — 1) sin? A
a(l+7r2)cos A + 2r
\/[a(l +7r2)cos A + 272 + (1 +72)2(a? — 1) sin? N

sinyg =

cosypy =

The reasoning carried out implies that the maximum of W is attained
at the boundary point of ellipse (6) from Theorem 2. From the proof of
this theorem included in paper [3], it follows that to the boundary points
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of the set Vp there correspond functions u,, € I, such that arg du,(t) =
const. = @ for all ¢ for which du,(t) # 0. Hence we infer that, for the
extremal functions ¢,,, the functions pu, cannot have two distinct values
0;.

However, if all §; = 6 = const., then the jump points of the function
un(t) satisfy conditions (14). The first of these equations is an algebraic
equation of the second degree with respect to e*. The application of the
other equation from (14) and of Rolle’s theorem lessens the number of
the roots twice. So, in consequence, we have that, in all the cases, the
function u,(t) corresponding to the extremal function ¢, has only one
jump to. Note that L, [g(2,t0)] lies on the circle described earlier with
centre ¢, and with radius s,, and the estimate obtained is true in this
case, t00. Moreover du,(to) = Ao where Ag is defined by formula (26)
in which 7 = 1, ¢ = 1; hence condition (20) follows. It can easily be
verified that the point to satisfies conditions (19).

As has been observed earlier, from the sequence (¢,,) of extremal func-
tions one may choose a subsequence almost uniformly convergent in K to
the extremal function in problem (22). Thereby, estimate (18) is true. Of
course, to the functions ,, there correspond functions p,, = e~**¢,, of the
class P,.

Remark 1 We were first seeking for the forms of the extremal functions
in the subclasses of the family P.,, generated by piecewise constant func-
tions p. Of course, they are extremal in the full class P.,, as well.

Remark 2 It turns out that Theorem 5 can be proved also in the way
which was applied in paper [3].

Since the class P/, a > 1, is convex and, for each z; € K, there exists a
function p; € P!, such that p1(z1) = 0, with that Re p1(z1) > i—ji—:ll - 1_70‘
(see (7)), therefore Theorem 5 implies

COROLARY 1. L

et z # 0 be a fixed point of the disc K. Then the set A,, a > 1, of
values of the functional H(p) = p(z), p € P., is a set of the plane (w)
whose boundary is given by the equation
i)

_ 2
w = 30 =17 [(147?)cos A+ 2ra

+ le+72) cos A+ 202 + (1 +12)°(a® = Dsin? M|, (28)
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|z| =7, A € [-m,n], with that 0 € A,.
Putting A = 0 and A = —7 in (18), we evidently obtain Theorem 3,
whereas substituting A = &7, we have

COROLARY 2. I

fpe P, a>1, then the sharp estimate

- ited v 2—2—1Ti 7"2) S ek <Im p(z) (29)
24+ a+/(1+1r2)2a% — (1—12)?2 3
= 2(1—7"2) el =r

holds.
Whereas Corollary 1 and the form of equation (28) imply

COROLARY 3. I

n the class P, @ > 1, the sharp estimate

1+r 14+«
1—7r 2

Ip(2)| < , |z|=r z€K, (30)

takes place.

Remark 3 Passing to the limit with oo — 17 in the estimate from above
of (7) as well as in (27) and (28), we obtain estimates of the corresponding
functionals in the class Py, the bounds of these functionals being, as can
be seen, analogous to those in the class P. For obvious reasons, we have
lost the estimates of Re p(z) and |p(z)| from below. Of course, the formal
justifications can be carried out by using, for instance, the fact that for
a =1, the set Vo =[0,1].

The present paper has been written within the framework of Professor
7. Jakubowski’s seminar conducted in the University of Lodz.
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