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ON REMOVING RESTRICTIONS IN THE BERNSTEIN
THEOREM AND ITS MODIFICATIONS

Abstract. In 1930, S. N. Bernstein proved the following theorem:
Let f and F  be complex polynomials such  that
1) degf < degF = n; 2) F has all its zeros in closure of the
disc A = {z € C: |z| < 1}; 3) |f(2)| < |F(2)| for |z| = 1. Then
If(2)] < |F'(2)] in C\A. In a huge number of papers that ap-
peared after 1930 and related to this theorem, the restrictions on
the geometry of domains and conditions 1) and 2) of the theorem
usually remained unchanged. In this article, we consistently re-
move these restrictions and find out how this will affect the final
inequality |f'(z)| < |F'(2)| of the Bernstein theorem and many of
its modifications, generalizations, and consequences.

Key words: differential inequalities for polynomials, differential
operator, LP inequalities, conver sets

2020 Mathematical Subject Classification: 30C10, 30A10

1. Introduction. In 1887, the scientific studies [19, ch. TV, § 86|
(see also |20, ch. IV, § 86]) led the famous chemist D. I. Mendeleev to the
following problem:

Let f(x) be a real polynomial and suppose that |f(z)| < M for all
x € [a,b]. Give the best estimate for |f'(z)| on [a,].

This problem was solved in 1890 by A. A. Markov [16] (see also
[17, p. 51-75]). In 1892, his brother V. A. Markov found the analogous
estimate for the k-th order derivative of f(z) [18].

Further, the "Mendeleev problem" was considered and solved for trigo-
nometric and complex polynomials. For more details, see introduction
of [12]. The main achievement of research conducted before 1930 in the
case of complex polynomials is probably the following theorem due to
S. N. Bernstein. Let A stand for the open unit disc {z € C: |z| < 1}.

(©) Petrozavodsk State University, 2025

[G) ev-rc |


http://creativecommons.org/licenses/by/4.0/

24 E. G. Kompaneets, V. V. Starkov, E. S. Shmidt

Theorem A. [6] (see also [4, p. 497], [23, p. 510]). Consider polynomials
f(2) and F(z) such that:

1) deg f < deg F' = n,
(¥)  2) F has all its zeros in A,
3) |f(2)| < |F(z)| for z € A.

Then for |z| > 1 we have
f'(2)] < [F'(2)]- (1)
For z € C\A, in (1) equality holds only if f = e"F, v € R.

In 1964, in the book of V. I. Smirnov and N. A. Lebedev |27, ch. V,
§ 1, 3°, Theorem 1, p. 356], Theorem A was generalized. The differential
operator f(z) — f’(z) from Theorem A was changed by the differential
operator S,: f(z) — (zf'(z) — af(z)), where « is a complex number.
The parameter o gave additional opportunities to obtain new differential
inequalities for polynomials.

For a fixed p > 1 and n € N, denote by D, ,, the image of the disc
nt

{t e C: |t| < p} under the mapping ¢(t) = 1

Theorem B. [27, ch. V, § 1, 3°, Theorem 1, p. 356]. Let p > 1 be a
fixed number. Let f(z) and F'(z) be polynomials satisfying conditions ().
Then for |z| = p

1Sal F1(2)] < [Sa[F](2)] (2)

for all a« € D, ,,.
For|z| > p>1landa€ D,,, in (2) equality holds iff f = e"F, v € R.

Inequality (2) with o = 0 gives inequality (1).

In fact, in [27], for a € dD,, ,, or z € A a more complex study of the
equality sign in (2) was also conducted.

After Theorem A was proved, a large number of articles devoted to
differential inequalities for polynomials were published, see, for example,
[23], [15], [27], [10], [9], [1] and the references therein. For most of these
results, conditions (x) or their modifications are the key point.

In the article we consistently remove restrictions in the theorems of
S. N. Bernstein and V. I. Smirnov, exploring the effect of this removing
of restrictions on the final inequalities.
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2. Removing conditions 1) and 2) of (). Naturally, the following
question arises: how important are conditions 1) and 2) of () from The-
orem A for proving inequality (1) or its analogues? If 1) or 2) in (x) are
not true, is it possible to obtain an analogue of inequality (1), preserving
the sharpness in this analogue? We pose the same question with respect
to Theorem B.

These questions are not new. Probably, the first result in this direction
was obtained by S. N. Bernstein [5, p. 168]. He considered the case when
in Theorem A conditions 2) and 3) of () are true, but condition 1) is not
satisfied, i.e. deg f = m > deg F' = n. He noted that in this case the
following inequality takes place

[F < IE"TF (), 1221

In [13], [14], an analogue of inequality (2) for the Smirnov operator
was obtained in the case, when condition 2) of (*) is waived. This means
that the polynomial I can have zeros in C\A. Here the set of variation of
the parameter « in a rather complicated way depends on location of the
zeros of F, lying in C\A.

Theorem C. Let p > 1. Let f(z) and F(z) be polynomials, such that
1) deg f < deg F = n,

2) z1,. .., 2, are all the zeros of F lying in C\A, dy, . .., dj, are their orders,
correspondingly, 1 <d=dy +---+di <n—1,

3) |f(2)] < |F(2)|, for z e C\A.

Then
1Salf1(2)] < [SalF](2)]| (3)

for |z| = p and for o € D(p, k,n), where D(p, k,n) is one of the sets:
a) complement to the disc

{aeC: |a—c|l <r},

where

T 2 W’

le—

k
+p2 d|Z]‘

= lz?
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if p> 1 and all the zeros zi, ..., z, do not belong to the circle |z| = p;
b) complement to the strip

{ae@: Rea —w| < (n—d) P }7

where

w=(n-—d)

ifp>1and|z|=- =z =p;
¢) complement to the strip

{aeC: |Rea —z| <y},

where .
Z':( +p Z |Z |2 % Z d]7
j= 1p J j=s+1
o dylzl
e N
j
if p>1and |zl ...,z # p, |2s21| = -+ = |zx| = p, for some s € N,

s<k—1,1<di+ - +ds; <n—2;
d) the half-plane

o
/N
—_

\
3
S~—

-

{aeC: Rea <

itp=1.
For z = zj for one of j = 1,...,k and d; > 1, in (3) equality holds for
every o € C and all pairs of f and F', satisfying the theorem conditions.
If 2=z foroneof j = 1,...k,dj =1, a € C, or z € C\A, z # 2,
j=1,...,k, a € int D(p,k,n), then equality in (3) takes place only if
f=e"F veR.

Let us note that condition 3) in Theorem C is much stronger than
condition 3) in Theorems A and B. However, if for a pairs of polynomi-
als {f, F} conditions (x) are satisfied, then, by the maximum modulus
principle, conditions 3) from Theorem C and Theorem A are equivalent.
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In the following theorem, we remove restriction 2) of () on localization
of zeros of the polynomial F'.

Theorem 1. Let p > 1 be a fixed number. Let f(z) and F(z) be
polynomials, such that:

1) deg f < deg F' = n;

2) z1,...,2, 1 < k < n, are all zeros of F, lying in C\A, with their
multiplicity taking into account;

3) 1£()] < |F(2)] on 0A.

Then for |z| = p

1Salf1(2)] < [SalFal(2)], (4)
for all o« € D, ,,, where S, is the Smirnov operator, D, ,, is the set from
kE1—-7%;
Theorem B, q(z) = ] iz
j=1 7%

For |z| > p > 1 and a € D, ,,, equality in (4) holds only if f(z) =
— F(2)g(2), 7 € R

The advantage of Theorem 1 in comparison with Theorem C is not only
the laconism of its statement and the universality of the set of variation
of the parameter «. This set in Theorem 1 does not depend on mutual
location of the points z and z;, 7 = 1,...,k. The main advantage lies
in the conditions 3): |f(2)] < |F(2)]. In Theorem C, this inequality
should be true in C\A. In Theorem 1, this should be fulfilled on the circle
|z] = 1, as in the classical cases of Theorem A and Theorem B. This fact
substantially extends the possibility of applying Theorem 1 in comparison
with Theorem C.

Let us compare inequalities (3) and (4). As it follows from Theorem C
and Theorem 1, both inequalities are sharp. To compare these inequali-
ties, we should take an ordered pair of polynomials {f, F'} satisfying the
conditions of Theorem C. We need to find out which of the inequalities

1Sal[1(2)] < [SalF1(2)] or  [Salf1(2)] < [Sa[Fdl(2)]

gives better result for the same o € U := int[D, ,, n D(p, k,n)], p = |z,
for the fixed p > 1. Note that U # &.

Denote Fy(z) = F(2)q(z). All the zeros of Fy belong to A. On 0A,
we have |Fi(z)| = |F(z)|. Therefore, applying Theorem B to the pair of
polynomials {F, F;}, we obtain

1SalF](2)] < |SalFA](2)] 2] = p ()
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In (5), the equality does not hold. Indeed, assuming the converse, by
Theorem B, we have F(z) = ¢ F}(z), v € R. The last equality contradicts
the fact |¢(z)| # 1 for |z| = p > 1. Consequently,

1Salf1(2)] < [SalF1(2)] < |SalFql(2)]-

So, under the conditions of Theorem C, for the pair of polynomials { f, F'},
inequality (3) is better than inequality (4). However, the set of all pairs
of polynomials {f, F'}, such that 3) from Theorem C is true, is very poor
in comparison with the set of polynomials, that satisfy conditions of The-
orem 1.

Proof of Theorem 1. Let

Fi(z) = F(2)q(z) = F<Z>ﬁ (Z_ - '_) = oF(z ]ﬁf

Zj

k 5= 1

where 0 = [] Z—], lo| =1, a; = =€ A, j =1,...,k Then, by condi-
J=1%j Zj

tion 2) of Theorem 1, it follows that F} is a polynomial of degree n, having

all zeros in A, and |f(2)| < |Fi(z)] on dA. Hence, by Theorem B, for all

a€ D, , we have:

Sl A1) < [SalE1](2)5 - [2] = p. (6)

Thus, we obtain (4). By Theorem B, for |2| > p>1and a€ D, ,, in (6)
equality holds only if f = eV Fy = " Fq, ve R. [

There is a large number of differential inequalities for polynomials,
using the condition: all zeros of polynomials lie in A or in C\A. Using
the simple technique, given in the proof of Theorem 1, it is possible to
remove the condition on the zeros of polynomials in such inequalities and
prove sharp generalizations.

As an application, consider several examples.

1. In [8, Theorem 1], for a polynomial F(z) of degree n, having all
zeros in A, the following inequality is proved:

np

min [2F(z) + —F(z)‘ > n‘l + =

min ; n|F(:) u

|2|=1

for all 3 € A. The inequality is sharp, the equality holds for F/(z) = uz",
pe C.
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Remark 1. Every polynomial F', with all its zeros in A can be uniformly
approximated in A by polynomials Fj, deg F; = deg F, having zeros in A.
Hence, (7) is also true if all zeros of a polynomial F' belong to A.

Removing the condition on zeros of a polynomial F' from (7), we get

Proposition 1. Let F' be a polynomial, deg F' = n. By A denote the set
{z1,..., 2z} # @ of all zeros of F, lying in C\A, taking into account their

1—7; _
multiplicity; q(z) = | | %% Then for all BeA

ZjGA S Z]

i |- (F()a(2)) + 5 F(a(2)| > nft + 5

min [F(z).  (8)

|z[=1

In (8), equality holds for F(z) = c¢(z — )", y e R, c e C\{0}, all B € A
form>2or 3 =—-1forn=1.

Proof. Under conditions of Proposition 1, Fi(2) = F(2)q(2) is a poly-
nomial having all its zeros in A. Taking into account Remark 1, apply
inequality (7) to Fy. Since |¢(z)] =1 on 0A, we have

nf

min |<F(2) + 7F1(z)‘ > n‘l + 2

5| min A (2)]| = nf+ 2 3| min |F(2)]

So, we have proved (8).
The statement about the equality sign is checked by direct calcula-
tion. [

2. Also in [8, Theorem 2|, for a polynomial F'(z) of degree n, having
all its zeros in C\A, the following sharp inequality was obtained: for all
felAand|z| =1

‘zF’(z) + ?F(z)‘ < 9)
<5l (e 31+ [ meiren = o+ 5 - |5) mniren]
2 |z|=1 |z]=1
In (9), equality holds for the polynomials F(z) = a + bz", where
la| = |b] = 1/2. In particular, with the same conditions on a polyno-

mial F(z) as in (8) and § = 0, from (8), the following known result by
Aziz and Dawood [2]| holds:

|F'(2)| < (ma |[F(z)| — min |[F(z)]), forall zedA. (10)

|2|=1 |2[=1

MIS
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Using still the same method from the proof of Theorem 1, we obtain
a corresponding statement for an arbitrary polynomial F'.

Proposition 2. Let F' be a polynomial of degree n. By A_ denote the
set of all zeros of F', lying in A, taking into account their multiplicity. Let
s € [0, n] be order of the zero z = 0 of F. If A_ = {z,...,2z} # @,

1—7z _
denote q(z) = 1_[ EOIFA = @, put q(z) = 1. Then for all f € A
ZjEA, S Z]

and |z| =1

(FGy + B

< 5+ ) metren = (s 5= 5]) ]
Inequality (11) is sharp. For A_ # &, equality holds for F(z) = cz",
c e C\{0}.

Proof. In the case A_ = @ inequality (11) is identical to (9). If A_ # @,
then Fi(z) = F(z)q(z) is a polynomial of degree (n—s). All its zeros lie in
C\A. Therefore, applying (9) to Fj, we obtain (11), taking into account
|¢(2)] = 1 on dA. It remains to be noted that for all 3 € A the polynomial
F(z) = ¢z™ transforms inequality (11) to the identity for z € 0A. []

F(2)q(2)| < (11)

Corollary 1. Using the notations of Proposition 2, from (11) with 5 = 0,
we obtain an analogue of (10):

(P < 5 (max 1) - i #(2)

for |z| = 1 and for arbitrary polynomial F.
3. For a polynomial F'(z) and 0 < p < oo, denote

2T 1 2T
. 1 it\|p » . 1 it
171, = (55 [1rera), 171 = exp (5 [1os17eir)
0 0

R. P. Boas and Q. I. Rahman [7] proved the following inequality for a
polynomial F' of degree n with all zeros in C\A:

12+ B[l

F f R>1 d > 1. 12
|’z+1||p || (Z)Hp or > an p ( )

1F(R2)|], <
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Inequality (12) is sharp. The equality holds for F'(z) = az" + b, |a| = |b].
Later, Q. I. Rahman and G. Schmeisser [24] proved that (12) is also true
for p e [0,1). About L inequalities for polynomials, see also [25].

We again use the method from the proof of Theorem 1. We obtain an
analogue of (12) for arbitrary polynomial F' without restrictions on the
location of the zeros of F.

Proposition 3. For a polynomial F, denote by A_ the set of all zeros
of F lying in A, taking into account their multiplicity. Let s € [0, n]
be order of the zero z = 0 of F. If A_ = {z,...,2.} # &, denote

1 -7
q(z) = H L - @, put q(z) = 1. Then forp > 0 and R > 1
ZjGA,Z_Zj

||z + R"*

[lp
|F(R2)q(R2)||, < IEESTE [1E(2)]]p- (13)

Inequality (13) is sharp. The equality holds for F(z) = cz", c € C\{0}.

Proof. If A_ = @, then inequalities (13) and (12) are the same. If
A_ # @, then Fi(z) = F(2)q(z) is a polynomial of degree (n — s), having
all zeros in C\A. Apply (12) to F; with p € [0, 00):

[F1(R2)]], = |[F(Rz)q(Rz)]], <

||z + R™| Iz + R"]
p

12+ 1l
We have proved (13). [J

~X

In this paper, we do not set an impossible goal to reformulate all
known statements about differential inequalities for complex polynomials,
removing restriction on the zeros of polynomials. There are too many such
results. We just want to point out a way to achieve this goal.

Theorem 2. Let p > 1 be a fixed number. Let f(z) and F(z) be
polynomials, deg f = m, deg F' = n, such that |f(z)| < |F(z)| on 0A.
Let the set D, ,, of variation of the parameter a be as in Theorem 1. Let
A = {z,..., 2} denote the set of all zeros of F, Iying in C\A, taking into
account their multiplicity. Let q(z) be as Theorem 1, if A = & we put
q(z) = 1. Then for |z| = p

2f'(2) = af(2)] < [2[']2(F(2)a(2)) = (@ = DF(2)a(z)]  (14)
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fora€ D, ., ifl = m —n > 0;

2f'(2) — af(2)] < [2(F(2)q(2)) — aF(2)q(2)] (15)

foraem, ifm < n.

For |z2| > p>1 and a € D,, ,,, equality in (14) holds only for polyno-
mial f(z) = €"72'F(2)q(z). For |z| > p>1and a € D, ,,, equality in (15)
holds only for f(z) = e"F(2)q(z), v € R.

Proof. In the case m < n and A = &, the statement of Theorem 2 equals
to the statement of Theorem B. If m < n and A # @, then condition of
Theorem 1, including the statement about the equality sign, are fulfilled.
So, we obtain (15).

Now let m > n. Consider new polynomial F5(2) = 2'F(z), deg Fy =
and |f(z)| < |Fa(z)| on dA. Then we can apply Theorem 1 to the pair of
polynomials {f, F»}. Consequently, for [2] > p > 1 and all « € D, ,,, we
get

1Salf1(2)] < [SalF2q](2)],

|2f'(2) — af (2)] < [2(2'F(2)q(2)) — az'F(2)q(2)| =
= [22(F(2)q(2))" — (a = ) F(2)q(2)].
Moreover, from Theorem 1, for [z| > p > 1 and o € D, ,,,, in (14)
equality holds only for f(2) = e Fy(2)q(2), i.e. f(2) = €72 F(2)q(2),

yeR. [

3. On geometry of domains in the theorems of S. N. Bernstain
and V. I. Smirnov. In most classical results on differential inequalities
for polynomials, condition 2) of (*) is often used: it is required that a
polynomial F has all its zeros in the unit disc A. However, there are
a number of studies, where the condition that the zeros of a polynomial
F belong to A (or C\A) is replaced by the condition that the zeros are
localized in a compact set with certain restrictions on its geometry, see,
for example [22], [26], [27, ch. V, § 1, 2°, 3°, p. 351, 352, 365, 366]. In this
section, we continue the research of these authors.

In [27, ch. V, § 1, 3°, Theorem 2, p. 362|, Theorem B was generalized.
Here, instead of A (in Theorem B), an arbitrary open disc A(w, R) of
center w and radius R was considered, or exterior of this disc.

Further in this section we will denote by [£,n] the segment in C with

endpoints § and 7. Forn e N, 0 < p <1, by D7, denote the complement
np ﬂ]

to the closed disc with diameter [_fp’ T4l
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Theorem D. [27, ch. V, § 1, 3°, Theorem 2, p. 362]. Let f(z) and F(z)
be polynomials such that:

1) deg f < deg F' = n,

2) F has all its zeros in a disc A(w, R) (or in C\A(w, R)),

3) 1£(2)] < |F(2)] on 0A(w, R).

Suppose p, p = 1 (or 0 < p < 1, correspondingly) be a fixed number.
Then for z, |z — w| = Rp (or |z — w| < Rp, correspondingly), we have

(2 = w) f'(2) = arf(2)] < |(z = w) F'(2) — an F(2)] (16)

for ay € D, ,, (or ay € D% ., correspondingly).

For z, |z —w| > Rp, p> 1, and oy € D, ,, (or z, |z —w| < Rp, p < 1,
and oy € D¥ | correspondingly), in (16) equality holds only for f = e"'F,
v e R.

psm?

In 27, ch. V, § 1, 3°, p. 366|, an analogue of Theorem B was obtained
for a convex set. In particular, the following theorem was proved.

Theorem E. Let B < C be a bounded strictly convex domain. For a
fixed point ¢ € 0B, let A(w¢, R¢) be a closed disc of minimal radius,
containing B, such that ¢ € 0A(w¢, R¢). Fix wg € B, wy # w¢. Denote

ps = min C — ‘ For the function 1(() = arg ¢~ o continuous on 0B,
Ce&B < W
denote 0, = gegg w<< ), 02 = maxyp(().

Consider the po]ynomia]s f(2) and F(z) such that:
1) deg f < deg F' = n,
2) F has all its zeros in B,
) [f(2)] < [F(2)] on 0B.
Then for z ¢ B

|(z = wo) f'(2) = Bf ()] < [(z = wo) F'(2) = BF(2)] (17)

for all B from the closet set ) 3 0, bounded by the smooth curve, which
consists of the arc of a circle

n .
L= {5pe’: 00 <0<}
and two rays, passing from the endpoints of the curve I.

The following theorem complements Theorem E.
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Theorem 3. Let E < C be a compact set, B = conv E be the convex
hull of E. Consider polynomials f(z) and F(z), such that:

1) deg f < deg F' = n,

2) F has all its zeros in E,

3) |£(2)] < |F(2)| on OF.

Fix a point z ¢ B. Consider a supporting line | to B, z ¢ [, separating
B and z. Take a disc A(v,, R.), v, # z, such that A(v,,R,) nl = &,
z € Av,, R,), and the segment |z,v,] that is orthogonal to l. Then

(2 = 02) f'(2) = o f(2)] < [(2 = 02) F'(2) — n F'(2)] (18)
for all a; € Dp ., where p; = |2 ]—%sz|
For ay € D3, in (18) equality holds only if f = ¢ F, v € R.

Remark 2. For all pairs of polynomials { f, F'}, from Theorem 3, for fixed
z,v,, R, from Theorem 3 and wy from Theorem E, neither (17) nor (18) is
a consequence of the other. This means that there is no A € C, such that

Mz —wy) =2z—v, and M)c D* (19)

p1,1M

(where () is the set from Theorem E) and there is no j € C such that

wz—wv,)=2z—wy and pD* <. (20)

pL,M

Indeed, the inclusion A} < D* n 1s not fulfilled, because 0 € €, but
0¢ Dp ., Hence, for all A there ex1sts a neighborhood U, of the origin

such that Uy ¢ D% . Thus, (19) does not take place for all X e C.
By conditions of Theorem E, B 3wy # z ¢ B. Therefore, if (20) is
true, then p # 0. Consider the set

np: it np:
CA(O, ): ly, wh zz{ , [ , )}
\ - U g, where Iy se’. s e — o0

0e[61,0, +27]

0, is a constant from Theorem E. Obviously, C\A( np ; ) c D* . Since

p1,m°
Q does not contain the rays Ly = {36“9. S € (np* +oo)} for 6 € (04, 65),

then € does not contain the domain | J Ly. Consequently, for all p # 0
96(91,92)
and sufficiently large T > 1 the set

NP«
{1 € C: || > T|,u|%,argoz1 € (61,6,)}
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is a subdomain of uD7 . but does not intersect (2.
Therefore, Theorem E and Theorem 3 complement each other.

Proof of Theorem 3. By condition 2) of Theorem 3, all zeros of F
lie in C\A(v,, R,). By conditions 1), 3), and the maximum modulus
principle, we have |f(z)| < |F(z)| for all z € C\B. In particular, the last
inequality takes place on 0A(v,, R.). Then we apply Theorem D to f and
F| inequality (16) takes the form

(€= v)f'(2) = f(2)| < |(C = 02) F'(2) — n F(2)), (21)

for all ¢ € A(v,, R,), such that |( —v,| < R.p; for the fixed p; € (0,1) and
all ay € D# . In particular, (21) takes place for ( = z, where 2 is the
|z — v,
R,
By Theorem D, for ¢ = z, [z —v.| = R.p1, p1 <1, and a; € D}, in
(21) equality holds only in the case f = ¢ F, ye R. [

point from the statement of Theorem 3, with p; =

Corollary 2. Let conditions of Theorem 3 be satisfied, B = conv F,
2z ¢ B be a fixed point. Then

|f'(2) = Bf(2)| < |F'(2) = BF(2)] (22)
p(z,nB)'

p(z, B)
Proof. Let ¢ be the projection of the point z onto B, i.e. c¢ is the nearest
point to z, lying on dB. By h denote the straight line, passing through z
and c. Let [ be the straight line, passing through ¢ orthogonal to A. Then
(see [21, p. 81, Theorem 1.9.1|) [ is a supporting line to B, separating
B and z. Therefore we can write inequality (18) from Theorem 3 for the

polynomials f and F. Here we take the open disc A(v,, R,), such that
ce 0A(v, R,), R, = p(z,B) + |z — v,]. Rewrite (18) in the form (22),

for all B, |8] >

For 3, 8] >

, in (22) equality holds only if f = ¢7F, v € R.

where 8 = ,ap € DE oy = |2 - UZ|. Note that
- Uz z
n _
{OéleCZ ‘Oél‘ } il }CD;hn'

L—p
Consequently, in (22) we can take /3, such that
np; n n

8l > - -2
e s emry Rl oy Py Il Py
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Consider the question about equality in (22) for g, |3| > ﬁ By
p(z,
Theorem 3, for ay € D% . in (18) equality holds iff f = ¢ F, v € R.
. npq1 n
Tak > h e D d > .
aking aq, |a| — we have o o and 3, B 2. B)

Therefore, for the point z and such 3, in (22) equality holds only in the
case f = e"F, veR. [

Corollary 2 gives us an opportunity to take 8 from (22) outside a disc
centered at the origin. The following theorem states that we can also take
[ inside some disc centered at the origin.

Theorem 4. Let E be a compact set in C, B = convE be a strictly
convex set, f, F,z be as in Theorem 3. Then

[f'(2) = Bf(2)| < |F'(2) — BF(2) (23)
for all g, |p| < m, where R is radius of the smallest disc

A(w, R), containing B, such that 0A(w, R) contains the projection ¢ of z
onto B, w belongs to the straight line, passing through z and c.

For 3, |B| < , in (23) equality holds only if f = e"F,
veR.

n
p(z,B) + 2R
Proof. Consider the disc A(w, R) from the statement of Theorem 4. This
disc always exists, because B is a strictly convex set, i.e. 0B does not
contain segments. By h denote the straight line, passing through the
points z, ¢, and w. The supporting line [ to B, passing through the point
¢ orthogonally to the straight line h, separates B and z (see |21, p. 81,
Theorem 1.9.1]). Since ¢ € dA(w, R) and [ is a tangent to 0A(w, R), we
have z ¢ A(w, R).
All zeros of F' belong to A(w, R) by condition 2) of Theorem 3. By
1) and 3), and the maximum modulus principle, on dA(w, R) we have
|f(2)] < |F(z)|. Applying Theorem D, we obtain the inequality
(z = w) f'(2) = arf(2)| < [(z = w)F'(2) = an F(2)], (24)
where |z — w| = Rp1,p1 > 1, oy € D,, ,,. Rewriting (24) we have (23),
Y Take all aj € D, ,, such that |a;| < e

zZ—w p1+
(23) we can use all 3, satisfying the condition

where g = T Hence, in

\041| n
lz—w| ~ (p+ 1R

16| =
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Since |z —w| = |z — | + |c — w| = p(z,B) + R, we have (p; + 1)R =
= |z —w|+ R = p(z,B) + 2R. Hence, in (23), it is possible to take all

The statement about equality sign follows from Theorem D,
n
because to obtain 3, |3

np1
L+p1
Multiplying both sides of (22) and (23) by |z| and taking 7 = 23, we
obtain the following corollary.

Corollary 3. Let E, B, f, F, z be as in Theorem 4. Then

< —— we can take e D, n,
p(z,B) + 2R’ we e o -

[

jou| <

S [1(2)] < [S-[F](2)] (25)
n|z|
forall 7, |T| > ————.
I p(z, B)
For 1, || > p(Z‘Z|B)’ in (25) equality holds only if f = e"F, v € R.

If, in addition, B is a strictly convex set, then (25) takes place for all
7 from the complement to the annulus

P el }
=<7 T
p(zB) + 2R (= B)J

where R is the constant from Theorem 4.
For 7 € C\A, in (25) equality holds only in the case f = ¢"F, v € R.

Remark 3. If in Corollary 3 we take E = A, then p(z,B) = |z| — 1,
the constant R from Theorem 4 equals 1. Therefore, by Corollary 3, (25)
takes place for T from the complement Y|, of the annulus

{ el < }
T: T .
|z] +1 2] — 1

The set X, is contained into the set m from Theorem B. However,
Yz # m This is rather expected, because in Corollary 3 we consider
much more wider class of sets E compared with Theorem B, where A is
taken. In addition, it is interesting to note that boundary circles of 3.,
are tangent to 0D\.| ,.
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The Jung theorem [11] states that every compact set E < C can be
diam E

V3

Definition 1. [21, p. 297] For a compact set E < C, R >

placed into a closed disc of radius

diam F

, the

R-strictly convex hull of E is the intersection of all closed discs of radius
R, containing F. This set is denoted by strcog E.

The following corollary allows us to remove the restriction on the com-
pact set E in Theorem 4: conv F is a strictly convex set, and to obtain
an inequality of type (23).

Corollary 4. Let E < C be a compact set, B = convFE, z ¢ B. Suppose
f(z) and F(z) be polynomials such that:

1) deg f < deg F = n,

2) F has all its zeros in E,

3) |(2)] < |F(2)] on OF.

Then
[f'(2) = Bf(2)] < |F'(2) = BF(2)], (26)
for all B,
n
<
Bl < p(z, strcop«E) + 2R*’
where )
diam F diam” FE
R* = max , )
{ V3 7 p(z B) }
n .
F in (2 lity holds iff f = ¢V F
or 3, |B] < (2. strcoms E) + 21 in (26) equality holds iff f = e"'F,
v e R.

Proof. Fix R > R* and construct the R-strictly convex hull of E. It is
known |21, p. 306] that the Hausdorff distance h between B and strcor £
satisfies the inequality

diam® E
h(B,strcorE) < —1ar; : (27)
diam® £
Inequalities R > % and (27) imply the inequality h(B,strcogrFE) <
p(z,

< p(z, B). Therefore, z ¢ strcorE.
Apply Theorem 4 to the polynomials f and F, point z, and the strictly
convex compact set strcor . We obtain (26) for all § such that

n
< .
141 p(z,strcorE) + 2R
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From |21, p. 359, Theorem 4.4.5], (see also [3]), for R > R*, the fol-
lowing inequality holds

h(strcogpF, strcogs E) < (4 / Z t g* - 1> (R— R").

Therefore, h(strcorE, strcogx F) e 0. Since (see [21, p. 34])

plz,strcorly) — p(z, strco < h(strcorty, strcops £ ),
E RrE)| < h E E

we have p(z, strcor ) e p(z,strcogs F), and the function p(z, strcog F)

is continuous at the point R = R*. Hence, in (26), it is possible to take

all 8 such that
n

p(z,strcog«E) + 2R*

6] <

n
(z,strecog=E) + 2R*’

For 3, |B| = ; we obtain (26) by passing to the limit

by 5.
Take 3, |6] <

R*, such that

n
p(z,strecop«E) + 2R*’

Choose R > R*, R is close to

n
< :
181 p(z,strcorE) + 2R

By Theorem 4, for this 3, in (26) equality holds iff f = e F, v e R. [

Remark 4. Note that Theorem 4 and Corollary 4 complement each other
even in the case of a strictly convex compact set E.

1) Take E = A. The set of variation of the parameter 5 from Theo-

rem 4 is the disc A(O, L)
|z| + 1

Note that strcor«F = A, where the constant R* from Corollary 4
® _ 2 4
equals R* = max{jg, |Z|—_1}

For |z| > 2v/3 + 1, we have R* = %, and, by Corollary 4, we can

take [ € A(O, %) This disc is contained in A(O, L)
2| =1+ 5 || + 1

For |z| < 2v/3 + 1, we obtain R* =|Z|4_1. In (26), it is possible to take

n

[ from the disc A(O, S > And again, this disc is contained

2| =1+ 77
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n
G

variation of parameter 3 in comparison with Corollary 4.

). Therefore, for E = A, Theorem 4 gives a wider set of

2) Consider the compact set E, bounded by the arc v of the circle
0A with endpoints (1 — e, £4/2e —¢2), 0 < e < 1, 1 € 7, and the arc v/,
symmetric to v with respect to the straight line Rez = 1 —¢. Take z > 1.

In Theorem 4, projection of z onto F is the point ¢ = 1, the disc

A(w,R) = A. So, for all 0 < ¢ < 1, in Theorem 4 we obtain

n
A( ).
geald z+1
In Corollary 4,

2/2 — 2 8 — 452}

R zmax{ 73 o1

— 0.
e—0

Here we can take

n
A :
Be (O’ p(z,strcop« F) + 2R*>

By Definition 1, we have E < strcog«E. Therefore, p(z,strcogsE) <
< p(z,E) = z — 1. Also we note that R* < 1 for sufficiently small e.
Consequently, p(z,strcog«FE) + 2R* < z + 1. Hence, in the case of such
compact set, it is better to use Corollary 4 (not Theorem 4), because the
set of variation of the parameter 3 in Corollary 4 contains A(O, %)
z

Acknowledgment. The authors thank Prof. E. S. Polovinkin for care-
fully reading of the manuscript and for his comments on Theorem 4, which
led to the important Corollary. The authors are grateful to the referees
for suggestions.

References

[1] Aziz A. Inequalities for the derivative of a polynomial. Proc. Amer. Math.
Soc., 1983, vol. 89, pp. 259 —266.
DOL: https://doi.org/10.2307/2044913

[2] Aziz A., Dawood Q. M. Inequalities for a polynomial and its derivative.
J. Approx. Theory, 1988, vol. 54, no. 3, pp. 306 —313.
DOI: https://doi.org/10.1016/0021-9045(88)90006-8

[3] Balashov M. V., Polovinkin E. S. M-strongly convex subset and their ge-
nerating sets. Sb. Math., 2000, vol. 191, no. 1, pp. 27—64. (in Russian)


https://doi.org/10.2307/2044913
https://doi.org/10.1016/0021-9045(88)90006-8

On removing restrictions in the Bernstein theorem 41

[4]

[5]

(6]
7]

18]

9]

[10]

[11]

[12]

[13]

[14]

DOI: https://doi.org/10.4213/sm447
English version: Sb. Math., 2000, vol. 191, no. 1, pp. 25—60.
DOL: https://doi.org/10.1070/sm2000v191n01ABEH000447

Bernstein S. N. Collected works. Vol. 1 Constructive function theory (1905—
1930). Izv. AN SSSR, Moscow, 1952. (in Russian)

Bernstein S. N. Extremal properties of polynomials and the best approxi-
mation of continuous functions of one real variable. ONTI, Moscow, 1937.
(in Russian)

Bernstein S. N. Sur la limitation des derivees des polynomes. C. R. Acad.
Sci., 1930, vol. 190, pp. 338—341. (in French)

Boas R. P., Rahman Q. I. LP inequalities for polynomials and entire func-
tions. Arch. Rational Mech. Anal., 1962, vol. 11, pp. 34—39.
DOI: https://doi.org/10.1007/BF00253927

Dewan K. K., Hans S. Generalization of certain well known polynomial
inequalities. J. Math. Anal. Appl., 2010, vol. 363, no. 1, pp. 38—41.
DOLI: https://doi.org/10.1016/j.jmaa.2009.07.049

Dubinin V. N. Distortion theorems for polynomials on a circle. Math. Sb.,
2000, vol. 191, no. 12, pp. 51-60. (in Russian)

DOI: https://doi.org/10.4213/sm528

English version: Sb. Math., vol. 191, no. 12, pp. 1797—1807.

DOI: https://doi.org/10.1070/sm2000v191n12ABEH000528

Dubinin V. N. Methods of geometric function theory in classical and
modern problems for polynomials. Uspekhi Mat. Nauk, 2012, vol. 67,
no. 4 (406), pp. 3—88. DOI: https://doi.org/10.4213/rm9488

English version: Russian Math. Surveys, 2012, vol. 67, no. 4, pp. 599—684.
DOI: https://doi.org/10.1070/RM2012v067n04ABEH004803

Jung H. W. E. Uber die kleinste Kugel, die eine riumliche Figur ein-
schliesst. J. Reine Angew. Math., 1901, vol. 123, pp. 241—257.

Kompaneets E. G., Zybina L. G. Smirnov and Bernstein type inequalities,
taking into account higher-order coefficients and free terms of polynomials.
Probl. Anal. Issues Anal., 2024, vol. 13 (31), no. 1, pp. 3—23.

DOI: https://doi.org/10.156393/j3.art.2024.14270

Kompaneets E. G., Starkov V. V. On the Smirnov type inequality for poly-
nomials. Math. Notes, 2022, vol. 111, no. 3, pp. 388—397.
DOI: http://dx.doi.org/10.1134/50001434622030063

Kompaneets E. G., Starkov V. V. Smirnov’s inequality for polynomials with
zeros outside the unit disc. Probl. Anal. Issues Anal., 2021, vol. 10 (28),
no. 3, pp. 71-90.

DOI: http://dx.doi.org/10.15393/3j3.art.2021.10970


 https://doi.org/10.4213/sm447
https://doi.org/10.1070/sm2000v191n01ABEH000447
https://doi.org/10.1007/BF00253927
https://doi.org/10.1016/j.jmaa.2009.07.049
https://doi.org/10.4213/sm528
https://doi.org/10.1070/sm2000v191n12ABEH000528
https://doi.org/10.4213/rm9488
https://doi.org/10.1070/RM2012v067n04ABEH004803
https://doi.org/10.15393/j3.art.2024.14270
http://dx.doi.org/10.1134/S0001434622030063
http://dx.doi.org/10.15393/j3.art.2021.10970

42

E. G. Kompaneets, V. V. Starkov, E. S. Shmidt

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

Marden M. The geometry of the zeros of a polynomial in a complex variable.
Math. Surveys, No. 3, Amer. Math. Soc., Providence R. 1., 1949.
Geometry of polynomials. Math. surveys, No 3, Amer. Math. Soc., 1966.

Markov A. A. On a problem posed by D. I. Mendeleev. Notes of the Imperial
Academy of Sciences, 1890, vol. 62, pp. 1-24. (in Russian)

Markov A. A. Selected works on theory of continued fractions and theory of
functions deviating least from the zero. OGIZ, Moscow, Leningrad, 1948.
(in Russian)

Markov V. A. On functions that deviates least from zero at the given in-
terval. Tip. Imperatorskoi AN, St. Petersburg, 1892. (in Russian)
Markoff W. A. Uber Polynome die in einen gegebenen Intervalle méglichst
wenig von Null adweichen. Math. Ann., 1916, vol. 77, pp. 213—258.
(in German)

Mendeleev D. 1. Investigation of aqueous solutions by specific gravity. Tip.
V. Demakova, St. Petersburg, 1887. (in Russian)

Mendeleev D. 1. Selected works. Vol. I1I: Investigation of aqueous solutions
by specific gravity. ONTI — Goshimtehizdat, Leningrad department, 1934.
(in Russian)

Polovinkin E. S., Balashov M. V. Elements of conver and strictly convex
analysis. Moscow: Fizmatlit, 2007. (in Russian)

Pommerenke Ch. On the derivative of a polynomial. Michigan Math. J.,
1959, vol. 6, no. 4, pp. 373—-375. DOI: 10.1307/mmj/1028998284

Rahman Q. I., Schmeisser G. Analytic theory of polynomials. Oxford Uni-
versity Press, New York, 2002.

Rahman Q. I., Schmeisser G. LP inequalities for polynomials. J. Approx.
Theory, 1988, vol. 53, no 1, pp. 26—32.
DOI: https://doi.org/10.1016/0021-9045(88)90073-1

Rather N. A., Wani N., Bhat A. Integral mean estimate for polynomials
with restricted zeros. Probl. Anal. Issues Anal., 2024, vol. 13 (31), no. 3,
pp. 101-117. DOI: https://doi.org/10.15393/j3.art.2024.16050

Szego G. Uber eimen Satz von A. Markoff. Math. Z., 1925, vol. 23, pp. 45—
61. (in German) DOI: https://doi.org/10.1007/BF01506220

Smirnov V. L., Lebedev N. A. Constructive theory of functions of a complex
variable. Nauka, Moscow, Leningrad, 1964. (in Russian)

English version: M.I.T. Press, Massachusetts Institute of Technology,
Cambridge, MA, 1968.


10.1307/mmj/1028998284
https://doi.org/10.1016/0021-9045(88)90073-1
https://doi.org/10.15393/j3.art.2024.16050
https://doi.org/10.1007/BF01506220

On removing restrictions in the Bernstein theorem

43

Received September 20, 2025.
In revised form, November 03, 2025.
Accepted November 03, 2025.
Published online November 10, 2025.

Petrozavodsk State University
33 Lenina pr., Petrozavodsk 185910, Russia

E. G. Kompaneets
E-mail: g ek@inbox.ru,

V. V. Starkov
E-mail: vstar@petrsu.ru

E. S. Shmidt
E-mail: shmidt@petrsu.ru



