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ON REMOVING RESTRICTIONS IN THE BERNSTEIN
THEOREM AND ITS MODIFICATIONS

Abstract. In 1930, S. N. Bernstein proved the following theorem:
Let 𝑓 and 𝐹 be complex polynomials such that
1) deg 𝑓 6 deg𝐹 “ 𝑛; 2) 𝐹 has all its zeros in closure of the
disc Δ “ t𝑧 P C : |𝑧| ă 1u; 3) |𝑓p𝑧q| 6 |𝐹 p𝑧q| for |𝑧| “ 1. Then
|𝑓 1p𝑧q| 6 |𝐹 1p𝑧q| in CzΔ. In a huge number of papers that ap-
peared after 1930 and related to this theorem, the restrictions on
the geometry of domains and conditions 1) and 2) of the theorem
usually remained unchanged. In this article, we consistently re-
move these restrictions and find out how this will affect the final
inequality |𝑓 1p𝑧q| 6 |𝐹 1p𝑧q| of the Bernstein theorem and many of
its modifications, generalizations, and consequences.
Key words: differential inequalities for polynomials, differential
operator, 𝐿𝑝 inequalities, convex sets
2020 Mathematical Subject Classification: 30C10, 30A10

1. Introduction. In 1887, the scientific studies [19, ch. IV, § 86]
(see also [20, ch. IV, § 86]) led the famous chemist D. I. Mendeleev to the
following problem:

Let 𝑓p𝑥q be a real polynomial and suppose that |𝑓p𝑥q| 6 𝑀 for all
𝑥 P r𝑎, 𝑏s. Give the best estimate for |𝑓 1p𝑥q| on r𝑎, 𝑏s.

This problem was solved in 1890 by A. A. Markov [16] (see also
[17, p. 51 – 75]). In 1892, his brother V. A. Markov found the analogous
estimate for the 𝑘-th order derivative of 𝑓p𝑥q [18].

Further, the "Mendeleev problem" was considered and solved for trigo-
nometric and complex polynomials. For more details, see introduction
of [12]. The main achievement of research conducted before 1930 in the
case of complex polynomials is probably the following theorem due to
S. N. Bernstein. Let ∆ stand for the open unit disc t𝑧 P C : |𝑧| ă 1u.
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Theorem A. [6] (see also [4, p. 497], [23, p. 510]). Consider polynomials
𝑓p𝑧q and 𝐹 p𝑧q such that:

p˚q

$

’

&

’

%

1q deg 𝑓 6 deg𝐹 “ 𝑛,

2q F has all its zeros in ∆,

3q |𝑓p𝑧q| 6 |𝐹 p𝑧q| for 𝑧 P B∆.

Then for |𝑧| > 1 we have

|𝑓 1p𝑧q| 6 |𝐹 1p𝑧q|. (1)

For 𝑧 P Cz∆, in (1) equality holds only if 𝑓 “ 𝑒𝑖𝛾𝐹 , 𝛾 P R.

In 1964, in the book of V. I. Smirnov and N. A. Lebedev [27, ch. V,
§ 1, 3˝, Theorem 1, p. 356], Theorem A was generalized. The differential
operator 𝑓p𝑧q ÝÑ 𝑓 1p𝑧q from Theorem A was changed by the differential
operator 𝑆𝛼 : 𝑓p𝑧q ÝÑ p𝑧𝑓 1p𝑧q ´ 𝛼𝑓p𝑧qq, where 𝛼 is a complex number.
The parameter 𝛼 gave additional opportunities to obtain new differential
inequalities for polynomials.

For a fixed 𝜌 > 1 and 𝑛 P N, denote by 𝐷𝜌, 𝑛 the image of the disc

t𝑡 P C : |𝑡| ă 𝜌u under the mapping 𝜑p𝑡q “
𝑛𝑡

𝑡` 1
.

Theorem B. [27, ch. V, § 1, 3˝, Theorem 1, p. 356]. Let 𝜌 > 1 be a
fixed number. Let 𝑓p𝑧q and 𝐹 p𝑧q be polynomials satisfying conditions p˚q.
Then for |𝑧| > 𝜌

|𝑆𝛼r𝑓 sp𝑧q| 6 |𝑆𝛼r𝐹 sp𝑧q| (2)

for all 𝛼 P 𝐷𝜌, 𝑛.
For |𝑧| > 𝜌 ą 1 and 𝛼 P 𝐷𝜌, 𝑛, in (2) equality holds iff 𝑓 “ 𝑒𝑖𝛾𝐹 , 𝛾 P R.

Inequality (2) with 𝛼 “ 0 gives inequality (1).
In fact, in [27], for 𝛼 P B𝐷𝜌, 𝑛 or 𝑧 P B∆ a more complex study of the

equality sign in (2) was also conducted.
After Theorem A was proved, a large number of articles devoted to

differential inequalities for polynomials were published, see, for example,
[23], [15], [27], [10], [9], [1] and the references therein. For most of these
results, conditions p˚q or their modifications are the key point.

In the article we consistently remove restrictions in the theorems of
S. N. Bernstein and V. I. Smirnov, exploring the effect of this removing
of restrictions on the final inequalities.
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2. Removing conditions 1) and 2) of p˚q. Naturally, the following
question arises: how important are conditions 1) and 2) of p˚q from The-
orem A for proving inequality (1) or its analogues? If 1) or 2) in p˚q are
not true, is it possible to obtain an analogue of inequality (1), preserving
the sharpness in this analogue? We pose the same question with respect
to Theorem B.

These questions are not new. Probably, the first result in this direction
was obtained by S. N. Bernstein [5, p. 168]. He considered the case when
in Theorem A conditions 2) and 3) of p˚q are true, but condition 1) is not
satisfied, i. e. deg 𝑓 “ 𝑚 ą deg 𝐹 “ 𝑛. He noted that in this case the
following inequality takes place

|𝑓 1p𝑧q| 6 |p𝑧𝑚´𝑛𝐹 p𝑧qq1|, |𝑧| > 1.

In [13], [14], an analogue of inequality (2) for the Smirnov operator
was obtained in the case, when condition 2) of p˚q is waived. This means
that the polynomial 𝐹 can have zeros in Cz∆. Here the set of variation of
the parameter 𝛼 in a rather complicated way depends on location of the
zeros of 𝐹 , lying in Cz∆.

Theorem C. Let 𝜌 > 1. Let 𝑓p𝑧q and 𝐹 p𝑧q be polynomials, such that
1) deg 𝑓 6 deg𝐹 “ 𝑛,
2) 𝑧1, . . . , 𝑧𝑘 are all the zeros of 𝐹 lying in Cz∆, 𝑑1, . . . , 𝑑𝑘 are their orders,
correspondingly, 1 6 𝑑 “ 𝑑1 ` ¨ ¨ ¨ ` 𝑑𝑘 6 𝑛´ 1,
3) |𝑓p𝑧q| 6 |𝐹 p𝑧q|, for 𝑧 P Cz∆.
Then

|𝑆𝛼r𝑓 sp𝑧q| 6 |𝑆𝛼r𝐹 sp𝑧q| (3)

for |𝑧| “ 𝜌 and for 𝛼 P 𝐷p𝜌, 𝑘, 𝑛q, where 𝐷p𝜌, 𝑘, 𝑛q is one of the sets:
a) complement to the disc

t𝛼 P C : |𝛼 ´ 𝑐| ă 𝑟u,

where

𝑐 “ p𝑛´ 𝑑q
𝜌2

𝜌2 ´ 1
` 𝜌2

𝑘
ÿ

𝑗“1

𝑑𝑗
𝜌2 ´ |𝑧𝑗|2

,

𝑟 “ p𝑛´ 𝑑q
𝜌

𝜌2 ´ 1
` 𝜌

𝑘
ÿ

𝑗“1

𝑑𝑗|𝑧𝑗|

|𝜌2 ´ |𝑧𝑗|2|
,
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if 𝜌 ą 1 and all the zeros 𝑧1, . . . , 𝑧𝑘 do not belong to the circle |𝑧| “ 𝜌;
b) complement to the strip

!

𝛼 P C : |Re𝛼 ´ 𝜔| ă p𝑛´ 𝑑q
𝜌

𝜌2 ´ 1

)

,

where
𝜔 “ p𝑛´ 𝑑q

𝜌2

𝜌2 ´ 1
`
𝑑

2
,

if 𝜌 ą 1 and |𝑧1| “ ¨ ¨ ¨ “ |𝑧𝑘| “ 𝜌;
c) complement to the strip

 

𝛼 P C : |Re𝛼 ´ 𝑥| ă 𝑦
(

,

where

𝑥 “ p𝑛´ 𝑑q
𝜌2

𝜌2 ´ 1
` 𝜌2

𝑠
ÿ

𝑗“1

𝑑𝑗
𝜌2 ´ |𝑧𝑗|2

`
1

2

𝑘
ÿ

𝑗“𝑠`1

𝑑𝑗,

𝑦 “ p𝑛´ 𝑑q
𝜌2

𝜌2 ´ 1
` 𝜌

𝑠
ÿ

𝑗“1

𝑑𝑗|𝑧𝑗|

|𝜌2 ´ |𝑧𝑗|2|
,

if 𝜌 ą 1 and |𝑧1|, . . . , |𝑧𝑠| ‰ 𝜌, |𝑧𝑠`1| “ ¨ ¨ ¨ “ |𝑧𝑘| “ 𝜌, for some 𝑠 P N,
𝑠 6 𝑘 ´ 1, 1 6 𝑑1 ` ¨ ¨ ¨ ` 𝑑𝑠 6 𝑛´ 2;
d) the half-plane

!

𝛼 P C : Re𝛼 6
𝑘
ÿ

𝑗“1

𝑑𝑗
1´ |𝑧𝑗|

`
𝑛

2

´

1´
𝑑

𝑛

¯)

,

if 𝜌 “ 1.
For 𝑧 “ 𝑧𝑗 for one of 𝑗 “ 1, . . . , 𝑘 and 𝑑𝑗 ą 1, in (3) equality holds for

every 𝛼 P C and all pairs of 𝑓 and 𝐹 , satisfying the theorem conditions.
If 𝑧 “ 𝑧𝑗 for one of 𝑗 “ 1, . . . 𝑘, 𝑑𝑗 “ 1, 𝛼 P C, or 𝑧 P Cz∆, 𝑧 ‰ 𝑧𝑗,

𝑗 “ 1, . . . , 𝑘, 𝛼 P int 𝐷p𝜌, 𝑘, 𝑛q, then equality in (3) takes place only if
𝑓 “ 𝑒𝑖𝛾𝐹, 𝛾 P R.

Let us note that condition 3) in Theorem C is much stronger than
condition 3) in Theorems A and B. However, if for a pairs of polynomi-
als t𝑓, 𝐹 u conditions p˚q are satisfied, then, by the maximum modulus
principle, conditions 3) from Theorem C and Theorem A are equivalent.
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In the following theorem, we remove restriction 2) of p˚q on localization
of zeros of the polynomial 𝐹 .

Theorem 1. Let 𝜌 > 1 be a fixed number. Let 𝑓p𝑧q and 𝐹 p𝑧q be
polynomials, such that:
1) deg 𝑓 6 deg𝐹 “ 𝑛;
2) 𝑧1, . . . , 𝑧𝑘, 1 6 𝑘 6 𝑛, are all zeros of 𝐹 , lying in Cz∆, with their
multiplicity taking into account;
3) |𝑓p𝑧q| 6 |𝐹 p𝑧q| on B∆.
Then for |𝑧| > 𝜌

|𝑆𝛼r𝑓 sp𝑧q| 6 |𝑆𝛼r𝐹𝑞sp𝑧q|, (4)

for all 𝛼 P 𝐷𝜌, 𝑛, where 𝑆𝛼 is the Smirnov operator, 𝐷𝜌, 𝑛 is the set from

Theorem B, 𝑞p𝑧q “
𝑘
ś

𝑗“1

1´ 𝑧𝑗𝑧

𝑧 ´ 𝑧𝑗
.

For |𝑧| > 𝜌 ą 1 and 𝛼 P 𝐷𝜌, 𝑛, equality in (4) holds only if 𝑓p𝑧q “
= 𝑒𝑖𝛾𝐹 p𝑧q𝑞p𝑧q, 𝛾 P R.

The advantage of Theorem 1 in comparison with Theorem C is not only
the laconism of its statement and the universality of the set of variation
of the parameter 𝛼. This set in Theorem 1 does not depend on mutual
location of the points 𝑧 and 𝑧𝑗, 𝑗 “ 1, . . . , 𝑘. The main advantage lies
in the conditions 3): |𝑓p𝑧q| 6 |𝐹 p𝑧q|. In Theorem C, this inequality
should be true in Cz∆. In Theorem 1, this should be fulfilled on the circle
|𝑧| “ 1, as in the classical cases of Theorem A and Theorem B. This fact
substantially extends the possibility of applying Theorem 1 in comparison
with Theorem C.

Let us compare inequalities (3) and (4). As it follows from Theorem C
and Theorem 1, both inequalities are sharp. To compare these inequali-
ties, we should take an ordered pair of polynomials t𝑓, 𝐹 u satisfying the
conditions of Theorem C. We need to find out which of the inequalities

|𝑆𝛼r𝑓 sp𝑧q| 6 |𝑆𝛼r𝐹 sp𝑧q| or |𝑆𝛼r𝑓 sp𝑧q| 6 |𝑆𝛼r𝐹𝑞sp𝑧q|

gives better result for the same 𝛼 P 𝑈 :“ intr𝐷𝜌, 𝑛 X 𝐷p𝜌, 𝑘, 𝑛qs, 𝜌 “ |𝑧|,
for the fixed 𝜌 ą 1. Note that 𝑈 ‰ ∅.

Denote 𝐹1p𝑧q “ 𝐹 p𝑧q𝑞p𝑧q. All the zeros of 𝐹1 belong to ∆. On B∆,
we have |𝐹1p𝑧q| “ |𝐹 p𝑧q|. Therefore, applying Theorem B to the pair of
polynomials t𝐹, 𝐹1u, we obtain

|𝑆𝛼r𝐹 sp𝑧q| 6 |𝑆𝛼r𝐹1sp𝑧q|, |𝑧| “ 𝜌. (5)
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In (5), the equality does not hold. Indeed, assuming the converse, by
Theorem B, we have 𝐹 p𝑧q “ 𝑒𝑖𝛾𝐹1p𝑧q, 𝛾 P R. The last equality contradicts
the fact |𝑞p𝑧q| ‰ 1 for |𝑧| “ 𝜌 ą 1. Consequently,

|𝑆𝛼r𝑓 sp𝑧q| 6 |𝑆𝛼r𝐹 sp𝑧q| ă |𝑆𝛼r𝐹𝑞sp𝑧q|.

So, under the conditions of Theorem C, for the pair of polynomials t𝑓, 𝐹 u,
inequality (3) is better than inequality (4). However, the set of all pairs
of polynomials t𝑓, 𝐹 u, such that 3) from Theorem C is true, is very poor
in comparison with the set of polynomials, that satisfy conditions of The-
orem 1.

Proof of Theorem 1. Let

𝐹1p𝑧q “ 𝐹 p𝑧q𝑞p𝑧q “ 𝐹 p𝑧q
𝑘
ź

𝑗“1

ˆ𝑧 ´ 1
𝑧𝑗

1´ 𝑧
𝑧𝑗

¨
𝑧𝑗
𝑧𝑗

˙

“ 𝜎𝐹 p𝑧q
𝑘
ź

𝑗“1

𝑧 ´ 𝑎𝑗
1´ 𝑎𝑗𝑧

,

where 𝜎 “
𝑘
ś

𝑗“1

𝑧𝑗
𝑧𝑗

, |𝜎| “ 1, 𝑎𝑗 “
1

𝑧𝑗
P ∆, 𝑗 “ 1, . . . , 𝑘. Then, by condi-

tion 2) of Theorem 1, it follows that 𝐹1 is a polynomial of degree 𝑛, having
all zeros in ∆, and |𝑓p𝑧q| 6 |𝐹1p𝑧q| on B∆. Hence, by Theorem B, for all
𝛼 P 𝐷𝜌, 𝑛 we have:

|𝑆𝛼r𝑓 sp𝑧q| 6 |𝑆𝛼r𝐹1sp𝑧q|, |𝑧| > 𝜌. (6)

Thus, we obtain (4). By Theorem B, for |𝑧| > 𝜌 ą 1 and 𝛼 P 𝐷𝜌, 𝑛, in (6)
equality holds only if 𝑓 “ 𝑒𝑖𝛾𝐹1 “ 𝑒𝑖𝛾𝐹𝑞, 𝛾 P R. l

There is a large number of differential inequalities for polynomials,
using the condition: all zeros of polynomials lie in ∆ or in Cz∆. Using
the simple technique, given in the proof of Theorem 1, it is possible to
remove the condition on the zeros of polynomials in such inequalities and
prove sharp generalizations.

As an application, consider several examples.
1. In [8, Theorem 1], for a polynomial 𝐹 p𝑧q of degree 𝑛, having all

zeros in ∆, the following inequality is proved:

min
|𝑧|“1

ˇ

ˇ

ˇ
𝑧𝐹 1p𝑧q `

𝑛𝛽

2
𝐹 p𝑧q

ˇ

ˇ

ˇ
> 𝑛

ˇ

ˇ

ˇ
1`

𝛽

2

ˇ

ˇ

ˇ
min
|𝑧|“1

|𝐹 p𝑧q| (7)

for all 𝛽 P ∆. The inequality is sharp, the equality holds for 𝐹 p𝑧q “ 𝜇𝑧𝑛,
𝜇 P C.
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Remark 1. Every polynomial 𝐹 , with all its zeros in ∆ can be uniformly
approximated in ∆ by polynomials 𝐹𝑗, deg𝐹𝑗 “ deg𝐹, having zeros in ∆.
Hence, (7) is also true if all zeros of a polynomial 𝐹 belong to ∆.

Removing the condition on zeros of a polynomial 𝐹 from (7), we get

Proposition 1. Let 𝐹 be a polynomial, deg𝐹 “ 𝑛. By Λ denote the set
t𝑧1, . . . , 𝑧𝑘u ‰ ∅ of all zeros of 𝐹 , lying in Cz∆, taking into account their

multiplicity; 𝑞p𝑧q “
ś

𝑧𝑗PΛ

1´ 𝑧𝑗𝑧

𝑧 ´ 𝑧𝑗
. Then for all 𝛽 P ∆

min
|𝑧|“1

ˇ

ˇ

ˇ
𝑧p𝐹 p𝑧q𝑞p𝑧qq1 `

𝑛𝛽

2
𝐹 p𝑧q𝑞p𝑧q

ˇ

ˇ

ˇ
> 𝑛

ˇ

ˇ

ˇ
1`

𝛽

2

ˇ

ˇ

ˇ
min
|𝑧|“1

|𝐹 p𝑧q|. (8)

In (8), equality holds for 𝐹 p𝑧q “ 𝑐p𝑧 ´ 𝑒𝑖𝛾q𝑛, 𝛾 P R, 𝑐 P Czt0u, all 𝛽 P ∆
for 𝑛 > 2 or 𝛽 “ ´1 for 𝑛 “ 1.

Proof. Under conditions of Proposition 1, 𝐹1p𝑧q “ 𝐹 p𝑧q𝑞p𝑧q is a poly-
nomial having all its zeros in ∆. Taking into account Remark 1, apply
inequality (7) to 𝐹1. Since |𝑞p𝑧q| ” 1 on B∆, we have

min
|𝑧|“1

ˇ

ˇ

ˇ
𝑧𝐹 11p𝑧q `

𝑛𝛽

2
𝐹1p𝑧q

ˇ

ˇ

ˇ
> 𝑛

ˇ

ˇ

ˇ
1`

𝛽

2

ˇ

ˇ

ˇ
min
|𝑧|“1

|𝐹1p𝑧q| “ 𝑛
ˇ

ˇ

ˇ
1`

𝛽

2

ˇ

ˇ

ˇ
min
|𝑧|“1

|𝐹 p𝑧q|.

So, we have proved (8).
The statement about the equality sign is checked by direct calcula-

tion. l

2. Also in [8, Theorem 2], for a polynomial 𝐹 p𝑧q of degree 𝑛, having
all its zeros in Cz∆, the following sharp inequality was obtained: for all
𝛽 P ∆ and |𝑧| “ 1

ˇ

ˇ

ˇ
𝑧𝐹 1p𝑧q `

𝑛𝛽

2
𝐹 p𝑧q

ˇ

ˇ

ˇ
6 (9)

6
𝑛

2

”´
ˇ

ˇ

ˇ
1`

𝛽

2

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

𝛽

2

ˇ

ˇ

ˇ

¯

max
|𝑧|“1

|𝐹 p𝑧q| ´
´
ˇ

ˇ

ˇ
1`

𝛽

2

ˇ

ˇ

ˇ
´

ˇ

ˇ

ˇ

𝛽

2

ˇ

ˇ

ˇ

¯

min
|𝑧|“1

|𝐹 p𝑧q|
ı

.

In (9), equality holds for the polynomials 𝐹 p𝑧q “ 𝑎 ` 𝑏𝑧𝑛, where
|𝑎| “ |𝑏| “ 1{2. In particular, with the same conditions on a polyno-
mial 𝐹 p𝑧q as in (8) and 𝛽 “ 0, from (8), the following known result by
Aziz and Dawood [2] holds:

ˇ

ˇ𝐹 1p𝑧q
ˇ

ˇ 6
𝑛

2

`

max
|𝑧|“1

|𝐹 p𝑧q| ´min
|𝑧|“1

|𝐹 p𝑧q|
˘

, for all 𝑧 P B∆. (10)
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Using still the same method from the proof of Theorem 1, we obtain
a corresponding statement for an arbitrary polynomial 𝐹 .

Proposition 2. Let 𝐹 be a polynomial of degree 𝑛. By Λ´ denote the
set of all zeros of 𝐹 , lying in ∆, taking into account their multiplicity. Let
𝑠 P r0, 𝑛s be order of the zero 𝑧 “ 0 of 𝐹 . If Λ´ “ t𝑧1, . . . , 𝑧𝑘u ‰ ∅,

denote 𝑞p𝑧q “
ś

𝑧𝑗PΛ´

1´ 𝑧𝑗𝑧

𝑧 ´ 𝑧𝑗
. If Λ´ “ ∅, put 𝑞p𝑧q ” 1. Then for all 𝛽 P ∆

and |𝑧| “ 1
ˇ

ˇ

ˇ
𝑧p𝐹 p𝑧q𝑞p𝑧qq1 `

p𝑛´ 𝑠q𝛽

2
𝐹 p𝑧q𝑞p𝑧q

ˇ

ˇ

ˇ
6 (11)

6
𝑛´ 𝑠

2

”´
ˇ

ˇ

ˇ
1`

𝛽

2

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

𝛽

2

ˇ

ˇ

ˇ

¯

max
|𝑧|“1

|𝐹 p𝑧q| ´
´
ˇ

ˇ

ˇ
1`

𝛽

2

ˇ

ˇ

ˇ
´

ˇ

ˇ

ˇ

𝛽

2

ˇ

ˇ

ˇ

¯

min
|𝑧|“1

|𝐹 p𝑧q|
ı

.

Inequality (11) is sharp. For Λ´ ‰ ∅, equality holds for 𝐹 p𝑧q “ 𝑐𝑧𝑛,
𝑐 P Czt0u.

Proof. In the case Λ´ “ ∅ inequality (11) is identical to (9). If Λ´ ‰ ∅,
then 𝐹1p𝑧q “ 𝐹 p𝑧q𝑞p𝑧q is a polynomial of degree p𝑛´𝑠q. All its zeros lie in
Cz∆. Therefore, applying (9) to 𝐹1, we obtain (11), taking into account
|𝑞p𝑧q| ” 1 on B∆. It remains to be noted that for all 𝛽 P ∆ the polynomial
𝐹 p𝑧q “ 𝑐𝑧𝑛 transforms inequality (11) to the identity for 𝑧 P B∆. l

Corollary 1. Using the notations of Proposition 2, from (11) with 𝛽 “ 0,
we obtain an analogue of (10):

ˇ

ˇp𝐹 p𝑧q𝑞p𝑧qq1
ˇ

ˇ 6
p𝑛´ 𝑠q

2

`

max
|𝑧|“1

|𝐹 p𝑧q| ´min
|𝑧|“1

|𝐹 p𝑧q|
˘

for |𝑧| “ 1 and for arbitrary polynomial 𝐹 .

3. For a polynomial 𝐹 p𝑧q and 0 ă 𝑝 ă 8, denote

||𝐹 ||𝑝 “

ˆ

1

2𝜋

2𝜋
ż

0

|𝐹 p𝑒𝑖𝑡q|𝑝𝑑𝑡

˙
1
𝑝

, ||𝐹 ||0 “ exp

ˆ

1

2𝜋

2𝜋
ż

0

log |𝐹 p𝑒𝑖𝑡q|𝑑𝑡

˙

.

R. P. Boas and Q. I. Rahman [7] proved the following inequality for a
polynomial 𝐹 of degree 𝑛 with all zeros in Cz∆:

||𝐹 p𝑅𝑧q||𝑝 6
||𝑧 `𝑅𝑛||𝑝

||𝑧 ` 1||𝑝
||𝐹 p𝑧q||𝑝 for 𝑅 ą 1 and 𝑝 > 1. (12)
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Inequality (12) is sharp. The equality holds for 𝐹 p𝑧q “ 𝑎𝑧𝑛 ` 𝑏, |𝑎| “ |𝑏|.
Later, Q. I. Rahman and G. Schmeisser [24] proved that (12) is also true
for 𝑝 P r0, 1q. About 𝐿𝑝 inequalities for polynomials, see also [25].

We again use the method from the proof of Theorem 1. We obtain an
analogue of (12) for arbitrary polynomial 𝐹 without restrictions on the
location of the zeros of 𝐹 .

Proposition 3. For a polynomial 𝐹 , denote by Λ´ the set of all zeros
of 𝐹 lying in ∆, taking into account their multiplicity. Let 𝑠 P r0, 𝑛s
be order of the zero 𝑧 “ 0 of 𝐹 . If Λ´ “ t𝑧1, . . . , 𝑧𝑘u ‰ ∅, denote

𝑞p𝑧q “
ś

𝑧𝑗PΛ´

1´ 𝑧𝑗𝑧

𝑧 ´ 𝑧𝑗
. If Λ´ “ ∅, put 𝑞p𝑧q ” 1. Then for 𝑝 > 0 and 𝑅 ą 1

||𝐹 p𝑅𝑧q𝑞p𝑅𝑧q||𝑝 6
||𝑧 `𝑅𝑛´𝑠||𝑝

||𝑧 ` 1||𝑝
||𝐹 p𝑧q||𝑝. (13)

Inequality (13) is sharp. The equality holds for 𝐹 p𝑧q “ 𝑐𝑧𝑛, 𝑐 P Czt0u.

Proof. If Λ´ “ ∅, then inequalities (13) and (12) are the same. If
Λ´ ‰ ∅, then 𝐹1p𝑧q “ 𝐹 p𝑧q𝑞p𝑧q is a polynomial of degree p𝑛´ 𝑠q, having
all zeros in Cz∆. Apply (12) to 𝐹1 with 𝑝 P r0,8q:

||𝐹1p𝑅𝑧q||𝑝 “ ||𝐹 p𝑅𝑧q𝑞p𝑅𝑧q||𝑝 6

6
||𝑧 `𝑅𝑛´𝑠||𝑝

||𝑧 ` 1||𝑝
||𝐹 p𝑧q𝑞p𝑧q||𝑝 “

||𝑧 `𝑅𝑛´𝑠||𝑝

||𝑧 ` 1||𝑝
||𝐹 p𝑧q||𝑝, 𝑅 ą 1.

We have proved (13). l

In this paper, we do not set an impossible goal to reformulate all
known statements about differential inequalities for complex polynomials,
removing restriction on the zeros of polynomials. There are too many such
results. We just want to point out a way to achieve this goal.

Theorem 2. Let 𝜌 > 1 be a fixed number. Let 𝑓p𝑧q and 𝐹 p𝑧q be
polynomials, deg 𝑓 “ 𝑚, deg 𝐹 “ 𝑛, such that |𝑓p𝑧q| 6 |𝐹 p𝑧q| on B∆.
Let the set 𝐷𝜌, 𝑛 of variation of the parameter 𝛼 be as in Theorem 1. Let
Λ “ t𝑧1, . . . , 𝑧𝑘u denote the set of all zeros of 𝐹 , lying in Cz∆, taking into
account their multiplicity. Let 𝑞p𝑧q be as Theorem 1, if Λ “ ∅ we put
𝑞p𝑧q ” 1. Then for |𝑧| > 𝜌

|𝑧𝑓 1p𝑧q ´ 𝛼𝑓p𝑧q| 6 |𝑧|𝑙|𝑧p𝐹 p𝑧q𝑞p𝑧qq1 ´ p𝛼 ´ 𝑙q𝐹 p𝑧q𝑞p𝑧q| (14)
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for 𝛼 P 𝐷𝜌,𝑚, if 𝑙 “ 𝑚´ 𝑛 ą 0;

|𝑧𝑓 1p𝑧q ´ 𝛼𝑓p𝑧q| 6 |𝑧p𝐹 p𝑧q𝑞p𝑧qq1 ´ 𝛼𝐹 p𝑧q𝑞p𝑧q| (15)

for 𝛼 P 𝐷𝜌, 𝑛, if 𝑚 6 𝑛.
For |𝑧| > 𝜌 ą 1 and 𝛼 P 𝐷𝜌,𝑚, equality in (14) holds only for polyno-

mial 𝑓p𝑧q “ 𝑒𝑖𝛾𝑧𝑙𝐹 p𝑧q𝑞p𝑧q. For |𝑧| > 𝜌 ą 1 and 𝛼 P 𝐷𝜌, 𝑛, equality in (15)
holds only for 𝑓p𝑧q “ 𝑒𝑖𝛾𝐹 p𝑧q𝑞p𝑧q, 𝛾 P R.

Proof. In the case 𝑚 6 𝑛 and Λ “ ∅, the statement of Theorem 2 equals
to the statement of Theorem B. If 𝑚 6 𝑛 and Λ ‰ ∅, then condition of
Theorem 1, including the statement about the equality sign, are fulfilled.
So, we obtain (15).

Now let 𝑚 ą 𝑛. Consider new polynomial 𝐹2p𝑧q “ 𝑧𝑙𝐹 p𝑧q, deg 𝐹2 “ 𝑚
and |𝑓p𝑧q| 6 |𝐹2p𝑧q| on B∆. Then we can apply Theorem 1 to the pair of
polynomials t𝑓, 𝐹2u. Consequently, for |𝑧| > 𝜌 > 1 and all 𝛼 P 𝐷𝜌,𝑚 we
get

|𝑆𝛼r𝑓 sp𝑧q| 6 |𝑆𝛼r𝐹2𝑞sp𝑧q|,

i. e.
|𝑧𝑓 1p𝑧q ´ 𝛼𝑓p𝑧q| 6 |𝑧p𝑧𝑙𝐹 p𝑧q𝑞p𝑧qq1 ´ 𝛼𝑧𝑙𝐹 p𝑧q𝑞p𝑧q| “

“ |𝑧|𝑙|𝑧p𝐹 p𝑧q𝑞p𝑧qq1 ´ p𝛼 ´ 𝑙q𝐹 p𝑧q𝑞p𝑧q|.

Moreover, from Theorem 1, for |𝑧| > 𝜌 ą 1 and 𝛼 P 𝐷𝜌,𝑚, in (14)
equality holds only for 𝑓p𝑧q “ 𝑒𝑖𝛾𝐹2p𝑧q𝑞p𝑧q, i. e. 𝑓p𝑧q “ 𝑒𝑖𝛾𝑧𝑙𝐹 p𝑧q𝑞p𝑧q,
𝛾 P R. l

3. On geometry of domains in the theorems of S. N. Bernstain
and V. I. Smirnov. In most classical results on differential inequalities
for polynomials, condition 2) of p˚q is often used: it is required that a
polynomial 𝐹 has all its zeros in the unit disc ∆. However, there are
a number of studies, where the condition that the zeros of a polynomial
𝐹 belong to ∆ (or Cz∆) is replaced by the condition that the zeros are
localized in a compact set with certain restrictions on its geometry, see,
for example [22], [26], [27, ch. V, § 1, 2˝, 3˝, p. 351, 352, 365, 366]. In this
section, we continue the research of these authors.

In [27, ch. V, § 1, 3˝, Theorem 2, p. 362], Theorem B was generalized.
Here, instead of ∆ (in Theorem B), an arbitrary open disc ∆p𝑤,𝑅q of
center 𝑤 and radius 𝑅 was considered, or exterior of this disc.

Further in this section we will denote by r𝜉, 𝜂s the segment in C with
endpoints 𝜉 and 𝜂. For 𝑛 P N, 0 ă 𝜌 ă 1, by 𝐷˚𝜌, 𝑛 denote the complement
to the closed disc with diameter

“

´
𝑛𝜌
1´𝜌 ,

𝑛𝜌
1`𝜌

‰

.
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Theorem D. [27, ch. V, § 1, 3˝, Theorem 2, p. 362]. Let 𝑓p𝑧q and 𝐹 p𝑧q
be polynomials such that:
1q deg 𝑓 6 deg𝐹 “ 𝑛,
2q F has all its zeros in a disc ∆p𝑤,𝑅q por in Cz∆p𝑤,𝑅qq,
3q |𝑓p𝑧q| 6 |𝐹 p𝑧q| on B∆p𝑤,𝑅q.
Suppose 𝜌, 𝜌 > 1 (or 0 ă 𝜌 ă 1, correspondingly) be a fixed number.
Then for 𝑧, |𝑧 ´ 𝑤| > 𝑅𝜌 (or |𝑧 ´ 𝑤| 6 𝑅𝜌, correspondingly), we have

|p𝑧 ´ 𝑤q𝑓 1p𝑧q ´ 𝛼1𝑓p𝑧q| 6 |p𝑧 ´ 𝑤q𝐹
1
p𝑧q ´ 𝛼1𝐹 p𝑧q| (16)

for 𝛼1 P 𝐷𝜌, 𝑛 (or 𝛼1 P 𝐷˚𝜌, 𝑛, correspondingly).
For 𝑧, |𝑧 ´ 𝑤| > 𝑅𝜌, 𝜌 ą 1, and 𝛼1 P 𝐷𝜌, 𝑛 (or 𝑧, |𝑧 ´ 𝑤| 6 𝑅𝜌, 𝜌 ă 1,

and 𝛼1 P 𝐷
˚
𝜌, 𝑛, correspondingly), in (16) equality holds only for 𝑓 “ 𝑒𝑖𝛾𝐹 ,

𝛾 P R.

In [27, ch. V, § 1, 3˝, p. 366], an analogue of Theorem B was obtained
for a convex set. In particular, the following theorem was proved.

Theorem E. Let 𝐵 Ă C be a bounded strictly convex domain. For a
fixed point 𝜁 P B𝐵, let ∆p𝑤𝜁 , 𝑅𝜁q be a closed disc of minimal radius,
containing 𝐵, such that 𝜁 P B∆p𝑤𝜁 , 𝑅𝜁q. Fix 𝑤0 P 𝐵, 𝑤0 ‰ 𝑤𝜁 . Denote

𝜌˚ “ min
𝜁PB𝐵

ˇ

ˇ

ˇ

𝜁 ´ 𝑤0

𝜁 ´ 𝑤𝜁

ˇ

ˇ

ˇ
. For the function 𝜓p𝜁q “ arg

𝜁 ´ 𝑤0

𝜁 ´ 𝑤𝜁

continuous on B𝐵,

denote 𝜃1 “ min
𝜁PB𝐵

𝜓p𝜁q, 𝜃2 “ max
𝜁PB𝐵

𝜓p𝜁q.

Consider the polynomials 𝑓p𝑧q and 𝐹 p𝑧q such that:
1q deg 𝑓 6 deg𝐹 “ 𝑛,
2q F has all its zeros in 𝐵,
3q |𝑓p𝑧q| 6 |𝐹 p𝑧q| on B𝐵.
Then for 𝑧 R 𝐵

|p𝑧 ´ 𝑤0q𝑓
1
p𝑧q ´ 𝛽𝑓p𝑧q| 6 |p𝑧 ´ 𝑤0q𝐹

1
p𝑧q ´ 𝛽𝐹 p𝑧q| (17)

for all 𝛽 from the closet set Ω Q 0, bounded by the smooth curve, which
consists of the arc of a circle

Γ “
 𝑛

2
𝜌˚𝑒

𝑖𝜃 : 𝜃1 6 𝜃 6 𝜃2
(

and two rays, passing from the endpoints of the curve Γ.

The following theorem complements Theorem E.
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Theorem 3. Let 𝐸 Ă C be a compact set, 𝐵 “ conv𝐸 be the convex
hull of 𝐸. Consider polynomials 𝑓p𝑧q and 𝐹 p𝑧q, such that:
1q deg 𝑓 6 deg𝐹 “ 𝑛,
2q F has all its zeros in 𝐸,
3q |𝑓p𝑧q| 6 |𝐹 p𝑧q| on B𝐸.
Fix a point 𝑧 R 𝐵. Consider a supporting line 𝑙 to 𝐵, 𝑧 R 𝑙, separating
𝐵 and 𝑧. Take a disc ∆p𝑣𝑧, 𝑅𝑧q, 𝑣𝑧 ‰ 𝑧, such that ∆p𝑣𝑧, 𝑅𝑧q X 𝑙 “ ∅,
𝑧 P ∆p𝑣𝑧, 𝑅𝑧q, and the segment r𝑧, 𝑣𝑧s that is orthogonal to 𝑙. Then

|p𝑧 ´ 𝑣𝑧q𝑓
1
p𝑧q ´ 𝛼1𝑓p𝑧q| 6 |p𝑧 ´ 𝑣𝑧q𝐹

1
p𝑧q ´ 𝛼1𝐹 p𝑧q|, (18)

for all 𝛼1 P 𝐷˚𝜌1, 𝑛, where 𝜌1 “
|𝑧 ´ 𝑣𝑧|

𝑅𝑧

.

For 𝛼1 P 𝐷
˚
𝜌1, 𝑛

, in (18) equality holds only if 𝑓 “ 𝑒𝑖𝛾𝐹 , 𝛾 P R.

Remark 2. For all pairs of polynomials t𝑓, 𝐹 u, from Theorem 3, for fixed
𝑧, 𝑣𝑧, 𝑅𝑧 from Theorem 3 and 𝑤0 from Theorem E, neither (17) nor (18) is
a consequence of the other. This means that there is no 𝜆 P C, such that

𝜆p𝑧 ´ 𝑤0q “ 𝑧 ´ 𝑣𝑧 and 𝜆Ω Ă 𝐷˚𝜌1, 𝑛 (19)

(where Ω is the set from Theorem E) and there is no 𝜇 P C such that

𝜇p𝑧 ´ 𝑣𝑧q “ 𝑧 ´ 𝑤0 and 𝜇𝐷˚𝜌1, 𝑛 Ă Ω. (20)

Indeed, the inclusion 𝜆Ω Ă 𝐷˚𝜌1, 𝑛 is not fulfilled, because 0 P Ω, but
0 R 𝐷˚𝜌1, 𝑛, Hence, for all 𝜆 there exists a neighborhood 𝒰𝜆 of the origin
such that 𝒰𝜆 Ć 𝐷˚𝜌1, 𝑛. Thus, (19) does not take place for all 𝜆 P C.

By conditions of Theorem E, 𝐵 Q 𝑤0 ‰ 𝑧 R 𝐵. Therefore, if (20) is
true, then 𝜇 ‰ 0. Consider the set

Cz∆
´

0,
𝑛𝜌1

1´ 𝜌1

¯

“
ď

𝜃Pr𝜃1,𝜃1`2𝜋s

𝑙𝜃, where 𝑙𝜃 “
!

𝑠𝑒𝑖𝜃, 𝑠 P
” 𝑛𝜌1

1´ 𝜌1
,8

¯)

,

𝜃1 is a constant from Theorem E. Obviously, Cz∆
`

0,
𝑛𝜌1
1´𝜌1

˘

Ă 𝐷˚𝜌1, 𝑛. Since
Ω does not contain the rays 𝐿𝜃 “

 

𝑠𝑒𝑖𝜃 : 𝑠 P
`𝑛𝜌˚

2 ,`8
˘(

for 𝜃 P p𝜃1, 𝜃2q,
then Ω does not contain the domain

Ť

𝜃Pp𝜃1,𝜃2q

𝐿𝜃. Consequently, for all 𝜇 ‰ 0

and sufficiently large 𝑇 > 1 the set
 

𝛼1 P C : |𝛼1| ą 𝑇 |𝜇|
𝑛𝜌˚
2
, arg𝛼1 P p𝜃1, 𝜃2q

(
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is a subdomain of 𝜇𝐷˚𝜌1, 𝑛, but does not intersect Ω.
Therefore, Theorem E and Theorem 3 complement each other.

Proof of Theorem 3. By condition 2) of Theorem 3, all zeros of 𝐹
lie in Cz∆p𝑣𝑧, 𝑅𝑧q. By conditions 1), 3), and the maximum modulus
principle, we have |𝑓p𝑧q| 6 |𝐹 p𝑧q| for all 𝑧 P Cz𝐵. In particular, the last
inequality takes place on B∆p𝑣𝑧, 𝑅𝑧q. Then we apply Theorem D to 𝑓 and
𝐹 , inequality (16) takes the form

|p𝜁 ´ 𝑣𝑧q𝑓
1
p𝑧q ´ 𝛼1𝑓p𝑧q| 6 |p𝜁 ´ 𝑣𝑧q𝐹

1
p𝑧q ´ 𝛼1𝐹 p𝑧q|, (21)

for all 𝜁 P ∆p𝑣𝑧, 𝑅𝑧q, such that |𝜁´ 𝑣𝑧| 6 𝑅𝑧𝜌1 for the fixed 𝜌1 P p0, 1q and
all 𝛼1 P 𝐷˚𝜌1, 𝑛. In particular, (21) takes place for 𝜁 “ 𝑧, where 𝑧 is the

point from the statement of Theorem 3, with 𝜌1 “
|𝑧 ´ 𝑣𝑧|

𝑅𝑧

.

By Theorem D, for 𝜁 “ 𝑧, |𝑧 ´ 𝑣𝑧| “ 𝑅𝑧𝜌1, 𝜌1 ă 1, and 𝛼1 P 𝐷
˚
𝜌1, 𝑛

, in
(21) equality holds only in the case 𝑓 “ 𝑒𝑖𝛾𝐹 , 𝛾 P R.

Corollary 2. Let conditions of Theorem 3 be satisfied, 𝐵 “ conv𝐸,
𝑧 R 𝐵 be a fixed point. Then

|𝑓 1p𝑧q ´ 𝛽𝑓p𝑧q| 6 |𝐹 1p𝑧q ´ 𝛽𝐹 p𝑧q| (22)

for all 𝛽, |𝛽| >
𝑛

𝜌p𝑧, 𝐵q
.

For 𝛽, |𝛽| ą
𝑛

𝜌p𝑧,𝐵q
, in (22) equality holds only if 𝑓 “ 𝑒𝑖𝛾𝐹 , 𝛾 P R.

Proof. Let 𝑐 be the projection of the point 𝑧 onto 𝐵, i. e. 𝑐 is the nearest
point to 𝑧, lying on B𝐵. By ℎ denote the straight line, passing through 𝑧
and 𝑐. Let 𝑙 be the straight line, passing through 𝑐 orthogonal to ℎ. Then
(see [21, p. 81, Theorem 1.9.1]) 𝑙 is a supporting line to 𝐵, separating
𝐵 and 𝑧. Therefore we can write inequality (18) from Theorem 3 for the
polynomials 𝑓 and 𝐹 . Here we take the open disc ∆p𝑣𝑧, 𝑅𝑧q, such that
𝑐 P B∆p𝑣𝑧, 𝑅𝑧q, 𝑅𝑧 “ 𝜌p𝑧,𝐵q ` |𝑧 ´ 𝑣𝑧|. Rewrite (18) in the form (22),

where 𝛽 “
𝛼1

𝑧 ´ 𝑣𝑧
, 𝛼1 P 𝐷˚𝜌1, 𝑛, 𝜌1 “

|𝑧 ´ 𝑣𝑧|

𝑅𝑧

. Note that

 

𝛼1 P C : |𝛼1| >
𝑛𝜌1

1´ 𝜌1

(

Ă 𝐷˚𝜌1, 𝑛.

Consequently, in (22) we can take 𝛽, such that

|𝛽| >
𝑛𝜌1

p1´ 𝜌1q|𝑧 ´ 𝑣𝑧|
“

𝑛

𝑅𝑧 ´ |𝑧 ´ 𝑣𝑧|
“

𝑛

𝜌p𝑧,𝐵q
.
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Consider the question about equality in (22) for 𝛽, |𝛽| ą
𝑛

𝜌p𝑧,𝐵q
. By

Theorem 3, for 𝛼1 P 𝐷
˚
𝜌1, 𝑛

, in (18) equality holds iff 𝑓 “ 𝑒𝑖𝛾𝐹 , 𝛾 P R.
Taking 𝛼1, |𝛼1| ą

𝑛𝜌1
1´ 𝜌1

, we have 𝛼1 P 𝐷˚𝜌1, 𝑛 and 𝛽, |𝛽| ą
𝑛

𝜌p𝑧,𝐵q
.

Therefore, for the point 𝑧 and such 𝛽, in (22) equality holds only in the
case 𝑓 “ 𝑒𝑖𝛾𝐹 , 𝛾 P R. l

Corollary 2 gives us an opportunity to take 𝛽 from (22) outside a disc
centered at the origin. The following theorem states that we can also take
𝛽 inside some disc centered at the origin.

Theorem 4. Let 𝐸 be a compact set in C, 𝐵 “ conv𝐸 be a strictly
convex set, 𝑓, 𝐹, 𝑧 be as in Theorem 3. Then

|𝑓 1p𝑧q ´ 𝛽𝑓p𝑧q| 6 |𝐹 1p𝑧q ´ 𝛽𝐹 p𝑧q| (23)

for all 𝛽, |𝛽| 6
𝑛

𝜌p𝑧, 𝐵q ` 2𝑅
, where 𝑅 is radius of the smallest disc

∆p𝑤,𝑅q, containing 𝐵, such that B∆p𝑤,𝑅q contains the projection 𝑐 of 𝑧
onto 𝐵, 𝑤 belongs to the straight line, passing through 𝑧 and 𝑐.

For 𝛽, |𝛽| ă
𝑛

𝜌p𝑧,𝐵q ` 2𝑅
, in (23) equality holds only if 𝑓 “ 𝑒𝑖𝛾𝐹 ,

𝛾 P R.

Proof. Consider the disc ∆p𝑤,𝑅q from the statement of Theorem 4. This
disc always exists, because 𝐵 is a strictly convex set, i. e. B𝐵 does not
contain segments. By ℎ denote the straight line, passing through the
points 𝑧, 𝑐, and 𝑤. The supporting line 𝑙 to 𝐵, passing through the point
𝑐 orthogonally to the straight line ℎ, separates 𝐵 and 𝑧 (see [21, p. 81,
Theorem 1.9.1]). Since 𝑐 P B∆p𝑤,𝑅q and 𝑙 is a tangent to B∆p𝑤,𝑅q, we
have 𝑧 R ∆p𝑤,𝑅q.

All zeros of 𝐹 belong to ∆p𝑤,𝑅q by condition 2) of Theorem 3. By
1) and 3), and the maximum modulus principle, on B∆p𝑤,𝑅q we have
|𝑓p𝑧q| 6 |𝐹 p𝑧q|. Applying Theorem D, we obtain the inequality

|p𝑧 ´ 𝑤q𝑓 1p𝑧q ´ 𝛼1𝑓p𝑧q| 6 |p𝑧 ´ 𝑤q𝐹
1
p𝑧q ´ 𝛼1𝐹 p𝑧q|, (24)

where |𝑧 ´ 𝑤| “ 𝑅𝜌1, 𝜌1 ą 1, 𝛼1 P 𝐷𝜌1, 𝑛. Rewriting (24) we have (23),
where 𝛽 “

𝛼1

𝑧 ´ 𝑤
. Take all 𝛼1 P 𝐷𝜌1, 𝑛 such that |𝛼1| 6

𝑛𝜌1
𝜌1 ` 1

. Hence, in

(23) we can use all 𝛽, satisfying the condition

|𝛽| “
|𝛼1|

|𝑧 ´ 𝑤|
6

𝑛

p𝜌1 ` 1q𝑅
.
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Since |𝑧 ´ 𝑤| “ |𝑧 ´ 𝑐| ` |𝑐 ´ 𝑤| “ 𝜌p𝑧, 𝐵q ` 𝑅, we have p𝜌1 ` 1q𝑅 “

“ |𝑧 ´ 𝑤| ` 𝑅 “ 𝜌p𝑧,𝐵q ` 2𝑅. Hence, in (23), it is possible to take all
𝛽, |𝛽| 6

𝑛

𝜌p𝑧,𝐵q ` 2𝑅
.

The statement about equality sign follows from Theorem D,
because to obtain 𝛽, |𝛽| ă

𝑛

𝜌p𝑧,𝐵q ` 2𝑅
, we can take 𝛼1 P 𝐷𝜌1, 𝑛,

|𝛼1| ă
𝑛𝜌1

1` 𝜌1
. l

Multiplying both sides of (22) and (23) by |𝑧| and taking 𝜏 “ 𝑧𝛽, we
obtain the following corollary.

Corollary 3. Let 𝐸,𝐵, 𝑓, 𝐹, 𝑧 be as in Theorem 4. Then

|𝑆𝜏 r𝑓 sp𝑧q| 6 |𝑆𝜏 r𝐹 sp𝑧q| (25)

for all 𝜏 , |𝜏 | >
𝑛|𝑧|

𝜌p𝑧,𝐵q
.

For 𝜏 , |𝜏 | ą
𝑛|𝑧|

𝜌p𝑧, 𝐵q
, in (25) equality holds only if 𝑓 “ 𝑒𝑖𝛾𝐹 , 𝛾 P R.

If, in addition, 𝐵 is a strictly convex set, then (25) takes place for all
𝜏 from the complement to the annulus

𝐴 “

"

𝜏 :
𝑛|𝑧|

𝜌p𝑧, 𝐵q ` 2𝑅
ă |𝜏 | ă

𝑛|𝑧|

𝜌p𝑧,𝐵q

*

,

where 𝑅 is the constant from Theorem 4.
For 𝜏 P Cz𝐴, in (25) equality holds only in the case 𝑓 “ 𝑒𝑖𝛾𝐹 , 𝛾 P R.

Remark 3. If in Corollary 3 we take 𝐸 “ ∆, then 𝜌p𝑧,𝐵q “ |𝑧| ´ 1,
the constant 𝑅 from Theorem 4 equals 1. Therefore, by Corollary 3, (25)
takes place for 𝜏 from the complement Σ|𝑧| of the annulus

!

𝜏 :
𝑛|𝑧|

|𝑧| ` 1
ă |𝜏 | ă

𝑛|𝑧|

|𝑧| ´ 1

)

.

The set Σ|𝑧| is contained into the set 𝐷|𝑧|, 𝑛 from Theorem B. However,
Σ|𝑧| ‰ 𝐷|𝑧|, 𝑛. This is rather expected, because in Corollary 3 we consider
much more wider class of sets 𝐸 compared with Theorem B, where ∆ is
taken. In addition, it is interesting to note that boundary circles of Σ|𝑧|
are tangent to B𝐷|𝑧|, 𝑛.
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The Jung theorem [11] states that every compact set 𝐸 Ă C can be

placed into a closed disc of radius
diam𝐸
?

3
.

Definition 1. [21, p. 297] For a compact set 𝐸 Ă C, 𝑅 >
diam𝐸
?

3
, the

𝑅-strictly convex hull of 𝐸 is the intersection of all closed discs of radius
𝑅, containing 𝐸. This set is denoted by strco𝑅𝐸.

The following corollary allows us to remove the restriction on the com-
pact set 𝐸 in Theorem 4 : conv𝐸 is a strictly convex set, and to obtain
an inequality of type (23).

Corollary 4. Let 𝐸 Ă C be a compact set, 𝐵 “ conv𝐸, 𝑧 R 𝐵. Suppose
𝑓p𝑧q and 𝐹 p𝑧q be polynomials such that:
1q deg 𝑓 6 deg𝐹 “ 𝑛,
2q F has all its zeros in 𝐸,
3q |𝑓p𝑧q| 6 |𝐹 p𝑧q| on B𝐸.
Then

|𝑓 1p𝑧q ´ 𝛽𝑓p𝑧q| 6 |𝐹 1p𝑧q ´ 𝛽𝐹 p𝑧q|, (26)
for all 𝛽,

|𝛽| 6
𝑛

𝜌p𝑧, strco𝑅˚𝐸q ` 2𝑅˚
,

where

𝑅˚ “ max
!diam𝐸

?
3

,
diam2𝐸

𝜌p𝑧, 𝐵q

)

.

For 𝛽, |𝛽| ă
𝑛

𝜌p𝑧, strco𝑅˚𝐸q ` 2𝑅˚
in (26) equality holds iff 𝑓 “ 𝑒𝑖𝛾𝐹 ,

𝛾 P R.

Proof. Fix 𝑅 ą 𝑅˚ and construct the 𝑅-strictly convex hull of 𝐸. It is
known [21, p. 306] that the Hausdorff distance ℎ between 𝐵 and strco𝑅𝐸
satisfies the inequality

ℎp𝐵, strco𝑅𝐸q 6
diam2𝐸

𝑅
. (27)

Inequalities 𝑅 ą
diam2𝐸

𝜌p𝑧,𝐵q
and (27) imply the inequality ℎp𝐵, strco𝑅𝐸q ă

ă 𝜌p𝑧, 𝐵q. Therefore, 𝑧 R strco𝑅𝐸.
Apply Theorem 4 to the polynomials 𝑓 and 𝐹 , point 𝑧, and the strictly

convex compact set strco𝑅𝐸. We obtain (26) for all 𝛽 such that

|𝛽| 6
𝑛

𝜌p𝑧, strco𝑅𝐸q ` 2𝑅
.
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From [21, p. 359, Theorem 4.4.5], (see also [3]), for 𝑅 ą 𝑅˚, the fol-
lowing inequality holds

ℎpstrco𝑅𝐸, strco𝑅˚𝐸q 6
´

c

𝑅 `𝑅˚

𝑅 ´𝑅˚
´ 1

¯

p𝑅 ´𝑅˚q.

Therefore, ℎpstrco𝑅𝐸, strco𝑅˚𝐸q ÝÑ
𝑅Ñ𝑅˚

0. Since (see [21, p. 34])

|𝜌p𝑧, strco𝑅𝐸q ´ 𝜌p𝑧, strco˚𝑅𝐸q| 6 ℎpstrco𝑅𝐸, strco𝑅˚𝐸q,

we have 𝜌p𝑧, strco𝑅𝐸q ÝÑ
𝑅Ñ𝑅˚

𝜌p𝑧, strco𝑅˚𝐸q, and the function 𝜌p𝑧, strco𝑅𝐸q
is continuous at the point 𝑅 “ 𝑅˚. Hence, in (26), it is possible to take
all 𝛽 such that

|𝛽| ă
𝑛

𝜌p𝑧, strco𝑅˚𝐸q ` 2𝑅˚
.

For 𝛽, |𝛽| “
𝑛

𝜌p𝑧, strco𝑅˚𝐸q ` 2𝑅˚
, we obtain (26) by passing to the limit

by 𝛽.
Take 𝛽, |𝛽| ă

𝑛

𝜌p𝑧, strco𝑅˚𝐸q ` 2𝑅˚
. Choose 𝑅 ą 𝑅˚, 𝑅 is close to

𝑅˚, such that
|𝛽| ă

𝑛

𝜌p𝑧, strco𝑅𝐸q ` 2𝑅
.

By Theorem 4, for this 𝛽, in (26) equality holds iff 𝑓 “ 𝑒𝑖𝛾𝐹 , 𝛾 P R. l

Remark 4. Note that Theorem 4 and Corollary 4 complement each other
even in the case of a strictly convex compact set 𝐸.

1) Take 𝐸 “ ∆. The set of variation of the parameter 𝛽 from Theo-

rem 4 is the disc ∆
´

0,
𝑛

|𝑧| ` 1

¯

.

Note that strco𝑅˚𝐸 “ ∆, where the constant 𝑅˚ from Corollary 4
equals 𝑅˚ “ max

 2?
3
, 4
|𝑧|´1

(

.

For |𝑧| > 2
?

3 ` 1, we have 𝑅˚ “ 2?
3
, and, by Corollary 4, we can

take 𝛽 P ∆
´

0,
𝑛

|𝑧| ´ 1` 4?
3

¯

. This disc is contained in ∆
´

0,
𝑛

|𝑧| ` 1

¯

.

For |𝑧| ă 2
?

3 ` 1, we obtain 𝑅˚ “ 4
|𝑧|´1 . In (26), it is possible to take

𝛽 from the disc ∆
´

0,
𝑛

|𝑧| ´ 1` 8
|𝑧|´1

¯

. And again, this disc is contained
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in ∆
´

0,
𝑛

|𝑧| ` 1

¯

. Therefore, for 𝐸 “ ∆, Theorem 4 gives a wider set of

variation of parameter 𝛽 in comparison with Corollary 4.
2) Consider the compact set 𝐸, bounded by the arc 𝛾 of the circle

B∆ with endpoints p1 ´ 𝜀,˘
?

2𝜀´ 𝜀2q, 0 ă 𝜀 ă 1, 1 P 𝛾, and the arc 𝛾1,
symmetric to 𝛾 with respect to the straight line Re𝑧 “ 1´ 𝜀. Take 𝑧 ą 1.

In Theorem 4, projection of 𝑧 onto 𝐸 is the point 𝑐 “ 1, the disc
∆p𝑤,𝑅q “ ∆. So, for all 0 ă 𝜀 ă 1, in Theorem 4 we obtain

𝛽 P ∆
´

0,
𝑛

𝑧 ` 1

¯

.
In Corollary 4,

𝑅˚ “ max
!2
?

2𝜀´ 𝜀2
?

3
,

8𝜀´ 4𝜀2

𝑧 ´ 1

)

ÝÑ
𝜀Ñ0

0.

Here we can take

𝛽 P ∆
´

0,
𝑛

𝜌p𝑧, strco𝑅˚𝐸q ` 2𝑅˚

¯

.

By Definition 1, we have 𝐸 Ă strco𝑅˚𝐸. Therefore, 𝜌p𝑧, strco𝑅˚𝐸q 6
6 𝜌p𝑧, 𝐸q “ 𝑧 ´ 1. Also we note that 𝑅˚ ă 1 for sufficiently small 𝜀.
Consequently, 𝜌p𝑧, strco𝑅˚𝐸q ` 2𝑅˚ ă 𝑧 ` 1. Hence, in the case of such
compact set, it is better to use Corollary 4 (not Theorem 4), because the

set of variation of the parameter 𝛽 in Corollary 4 contains ∆
´

0,
𝑛

𝑧 ` 1

¯

.
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