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Abstract. Sofi and Shah proved some Bernstein-type inequalities
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1. Introduction. Let 𝑝p𝑧q :“
𝑛
ÿ

𝑗“0

𝑐𝑗𝑧
𝑗 be a polynomial of degree 𝑛

with complex coefficients, and let 𝑝1p𝑧q be its derivative. Concerning the
maximum modulus of 𝑝p𝑧q and 𝑝1p𝑧q on unit disk, Bernstein [3] proved the
following inequality that bears his name:

max
|𝑧|“1

|𝑝1p𝑧q| 6 𝑛max
|𝑧|“1

|𝑝p𝑧q|. (1)

Since a polynomial is entirely determined by its zeros (up to multiplication
by a constant), it is natural to investigate the inequality (1) under some
restrictions on the zeros of 𝑝. Two significant results in this direction are
the following:

Theorem 1. If 𝑝p𝑧q :“
𝑛
ÿ

𝑗“0

𝑐𝑗𝑧
𝑗 has all zeros in |𝑧| > 1, then

max
|𝑧|“1

|𝑝1p𝑧q| 6
𝑛

2
max
|𝑧|“1

|𝑝p𝑧q|. (2)
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Theorem 2. If 𝑝p𝑧q :“
𝑛
ÿ

𝑗“0

𝑐𝑗𝑧
𝑗 has all zeros in |𝑧| 6 1, then

max
|𝑧|“1

|𝑝1p𝑧q| >
𝑛

2
max
|𝑧|“1

|𝑝p𝑧q|. (3)

Inequality (2) was conjectured by Erdös and later verified by Lax [6],
whereas inequality (3) is due to Turán [12]. There have been many gener-
alizations and refinements to (1), (2), and (3): for details, see [2], [4] [5],
[7], and [13].

Li et al. [8] extended several of these Bernstein-type inequalities to the
rational functions with prescribed poles. It turns out that analogues of
(1), (2), and (3) hold for rational functions: they are obtained by replacing
𝑛 with the Blaschke product. For instance, the analogue of Bernstein’s
inequality (1) is given by the following theorem.

Theorem 3. If 𝑟p𝑧q “
𝑝p𝑧q

𝑛
ś

𝑗“0

p𝑧 ´ 𝑎𝑗q
, where 𝑝p𝑧q is a polynomial of degree

𝑛, then
|𝑟1p𝑧q| 6 |ℬ1p𝑧q|max

|𝑧|“1
|𝑟p𝑧q| (4)

for |𝑧| “ 1, where ℬp𝑧q “
𝑛
ś

𝑗“1

´1´ 𝑎𝑗𝑧

𝑧 ´ 𝑎𝑗

¯

denotes the Blaschke product and

|𝑎𝑗| ą 1, 𝑗 “ 1, 2, 3, . . . 𝑛.

All the work done so far on Bernstein-type inequalities for rational
functions (with one exception [11]) involves the rational functions with
poles inside/outside a disk with an estimation of bounds on the bound-
ary of that disk (for details, see [1], [14]). In [11], Sofi and Shah proved
Bernstein-type inequalities for rational functions having poles in the half-
plane instead of inside or outside a disk. One key difference in the estima-
tion of the bounds on the boundary of the half-plane is that the boundary
of the half-plane (unlike that of a disk) is not a compact set.

In this paper, we prove some inequalities for rational functions having
poles in a half-plane under some restrictions on their zeros. We will use
the following notations and definitions:

I :“ t𝑧 : Rep𝑧q “ 0u.

I` :“ t𝑧 : Rep𝑧q ą 0u.
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I´ :“ t𝑧 : Rep𝑧q ă 0u.

Further, for 𝑝p𝑧q “
𝑛
ř

𝑗“0

𝑐𝑗𝑧
𝑗 and 𝑧 P I, we also define conjugate trans-

pose 𝑝˚ of 𝑝 as

𝑝˚p𝑧q :“ p´1q𝑛𝑝p´𝑧q “ 𝑐𝑛𝑧
𝑛
´ 𝑐𝑛´1𝑧

𝑛´1
` . . . p´1q𝑛𝑐0.

Also, we denote the set of rational functions ℛ𝑛 by

ℛ𝑛 “ ℛ𝑛p𝑎1, 𝑎2, . . . , 𝑎𝑛q :“
! 𝑝p𝑧q

𝑤p𝑧q
, 𝑎𝑗 P I`, 𝑗 “ 1, 2, . . . , 𝑛

)

,

where 𝑤p𝑧q “
𝑛
ś

𝑗“1

p𝑧 ´ 𝑎𝑗q, and a Blaschke product for the half-plane by

𝐵p𝑧q :“
𝑛
ź

𝑗“1

´𝑧 ` 𝑎𝑗
𝑧 ´ 𝑎𝑗

¯

.

It is clear that |𝐵p𝑧q| “ 1 on I and 𝐵p𝑧q “
𝑤˚p𝑧q

𝑤p𝑧q
, with 𝑤˚p𝑧q :“

p´1q𝑛𝑤p´𝑧q.

Now, for 𝑟p𝑧q “
𝑝p𝑧q

𝑤p𝑧q
, define 𝑟˚p𝑧q :“ 𝐵p𝑧q𝑟p´𝑧q. Therefore, if 𝑟 P ℛ𝑛,

then 𝑟˚p𝑧q “
𝑝˚p𝑧q

𝑤p𝑧q
P ℛ𝑛.

We are also going to need the idea of the polar derivative of a poly-
nomial 𝑝p𝑧q of degree 𝑛 with respect to a complex number 𝛼, which is
defined as

𝐷𝛼𝑝p𝑧q :“ 𝑛𝑝p𝑧q ` p𝛼 ´ 𝑧q𝑝1p𝑧q.

Clearly 𝐷𝛼𝑝p𝑧q, like the derivative, is a polynomial of degree 𝑛´ 1, and

lim
𝛼Ñ8

𝐷𝛼𝑝p𝑧q

𝛼
“ 𝑝1p𝑧q.

With regards to the polar derivative, it was E. Laguerre in 1874, who
first recognized its importance in locating the zeros of polynomials, but
he used the term ’emanant’ for it. Later G. Polya and G. Szego called
𝐷𝛼𝑝p𝑧q the derivative with respect to 𝛼. It was Marden, who proposed
the name polar derivative (for details see [9] and [10]).
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We need the following lemmas.

Lemma 1. Let 𝑖 be the imaginary unit. The function 𝐵p𝑧q “ 𝑖 has
exactly 𝑛 simple roots and they all lie on imaginary axis I, and for 𝑟 P ℛ𝑛

and 𝑧 P I :

𝑟1p𝑧qp𝐵p𝑧q ´ 𝑖q ´𝐵1p𝑧q𝑟p𝑧q “ p𝐵p𝑧q ´ 𝑖q2
𝑛
ÿ

𝑘“1

𝑢𝑘𝑟p𝑡𝑘q

|𝑧 ´ 𝑡𝑘|2
, (5)

where 𝑡1, 𝑡2, . . . , 𝑡𝑛 are the 𝑛 simple roots of 𝐵p𝑧q “ 𝑖 and

1

𝑢𝑘

“ 𝐵1p𝑡𝑘q “ 𝑖
𝑛
ÿ

𝑗“1

2Rep𝑎𝑗q

|𝑡𝑘 ´ 𝑎𝑗|2
, 1 6 𝑘 6 𝑛. (6)

Moreover, for 𝑧 P I :
𝐵1p𝑧q

𝐵p𝑧q
“

𝑛
ÿ

𝑗“1

2Rep𝑎𝑗q

|𝑧 ´ 𝑎𝑗|2
. (7)

Lemma 2. Let 𝑟 P ℛ𝑛 be such that all zeros of 𝑟 lie in IY I`; then, for
𝑧 P I:

Re
´𝑟1p𝑧q

𝑟p𝑧q

¯

6
1

2
|𝐵1p𝑧q|. (8)

Lemma 3. 𝑧 P I if and only if |𝐵p𝑧q| “ 1.

The above lemmas are due to Sofi et al. [11].
With the above notations, we state our main results as follows:

Theorem 4. Let 𝑡1, 𝑡2, . . . , 𝑡𝑛 be the 𝑛 simple roots of 𝐵p𝑧q “ 𝑖 and 𝑠1,
𝑠2, . . . , 𝑠𝑛 be those of 𝐵p𝑧q “ ´𝑖. If 𝑟 P ℛ𝑛 and 𝑧 P I, then

|𝑟1p𝑧q|2`|p𝑟˚p𝑧qq1|2 6
1

2
|𝐵1p𝑧q|2

"

´

max
16𝑘6𝑛

|𝑟p𝑡𝑘q|
¯2

`

´

max
16𝑘6𝑛

|𝑟p𝑠𝑘q|
¯2
*

. (9)

The result is sharp and equality holds for 𝑟p𝑧q “ 𝜆𝐵p𝑧q with |𝜆| “ 1.

Proof. From equation (5), we have

|𝑟1p𝑧q𝐵p𝑧q ´ 𝑟p𝑧q𝐵1p𝑧q ´ 𝑖𝑟1p𝑧q| “
ˇ

ˇ

ˇ
p𝐵p𝑧q ´ 𝑖q2

𝑛
ÿ

𝑘“1

𝑢𝑘𝑟p𝑡𝑘q

|𝑧 ´ 𝑡𝑘|2

ˇ

ˇ

ˇ

6 |𝐵p𝑧q ´ 𝑖|2
𝑛
ÿ

𝑘“1

|𝑢𝑘||𝑟p𝑡𝑘q|

|𝑧 ´ 𝑡𝑘|2
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6 |𝐵p𝑧q ´ 𝑖|2
𝑛
ÿ

𝑘“1

|𝑢𝑘|

|𝑧 ´ 𝑡𝑘|2
max
16𝑘6𝑛

|𝑟p𝑡𝑘q|. (10)

Now, using Lemma 1 and noting that 𝑠1, 𝑠2, . . . , 𝑠𝑛 are the zeros of 𝐵p𝑧q`𝑖,
we get

𝑟1p𝑧qp𝐵p𝑧q ` 𝑖q ´𝐵1p𝑧q𝑟p𝑧q “ p𝐵p𝑧q ` 𝑖q2
𝑛
ÿ

𝑘“1

𝑣𝑘𝑟p𝑠𝑘q

|𝑧 ´ 𝑠𝑘|2
, (11)

where
1

𝑣𝑘
“ 𝐵1p𝑠𝑘q “ ´𝑖

𝑛
ÿ

𝑗“1

2Rep𝑎𝑗q

|𝑠𝑘 ´ 𝑎𝑗|2
, 1 6 𝑘 6 𝑛.

(For reference, see [11]) Hence,

|𝑟1p𝑧q𝐵p𝑧q ´ 𝑟p𝑧q𝐵1p𝑧q ` 𝑖𝑟1p𝑧q| 6 |𝐵p𝑧q ` 𝑖|2
𝑛
ÿ

𝑘“1

|𝑣𝑘|

|𝑧 ´ 𝑠𝑘|2
max
16𝑘6𝑛

|𝑟p𝑠𝑘q|.

(12)
Now, taking 𝑟p𝑧q ” 1 in (5) and using (11), we get:

|𝐵1p𝑧q| “ |𝐵p𝑧q ´ 𝑖|2
ˇ

ˇ

ˇ

𝑛
ÿ

𝑘“1

|𝑢𝑘|

|𝑧 ´ 𝑡𝑘|2

ˇ

ˇ

ˇ
. (13)

|𝐵1p𝑧q| “ |𝐵p𝑧q ` 𝑖|2
ˇ

ˇ

ˇ

𝑛
ÿ

𝑘“1

|𝑣𝑘|

|𝑧 ´ 𝑠𝑘|2

ˇ

ˇ

ˇ
. (14)

Using (13) and (14) in (10) and (12), respectively, we get:

|𝑟1p𝑧q𝐵p𝑧q ´ 𝑟p𝑧q𝐵1p𝑧q ´ 𝑖𝑟1p𝑧q| 6 |𝐵1p𝑧q| max
16𝑘6𝑛

|𝑟p𝑡𝑘q|. (15)

|𝑟1p𝑧q𝐵p𝑧q ´ 𝑟p𝑧q𝐵1p𝑧q ` 𝑖𝑟1p𝑧q| 6 |𝐵1p𝑧q| max
16𝑘6𝑛

|𝑟p𝑠𝑘q|. (16)

Squaring and adding (15) and (16), we get:

|𝑟1p𝑧q𝐵p𝑧q ´ 𝑟p𝑧q𝐵1p𝑧q ´ 𝑖𝑟1p𝑧q|2 ` |𝑟1p𝑧q𝐵p𝑧q ´ 𝑟p𝑧q𝐵1p𝑧q ` 𝑖𝑟1p𝑧q|2

6 |𝐵1p𝑧q|2
!

`

max
16𝑘6𝑛

|𝑟p𝑡𝑘q|
˘2
`
`

max
16𝑘6𝑛

|𝑟p𝑠𝑘q|
˘2
)

. (17)

Now, using the identity

|𝐴`𝐵|2 ` |𝐴´𝐵|2 “ 2|𝐴|2 ` 2|𝐵|2
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in (17) with 𝐴 “ 𝑟1p𝑧q𝐵p𝑧q ´ 𝑟p𝑧q𝐵1p𝑧q and 𝐵 “ 𝑖𝑟1p𝑧q, we get:

2|𝑟1p𝑧q𝐵p𝑧q ´ 𝑟p𝑧q𝐵1p𝑧q|2 ` 2|𝑟1p𝑧q|2

6 |𝐵1p𝑧q|2
!´

max
16𝑘6𝑛

|𝑟p𝑡𝑘q|
¯2

`

´

max
16𝑘6𝑛

|𝑟p𝑠𝑘q|
¯2)

. (18)

Also, since 𝑟˚p𝑧q :“ 𝐵p𝑧q𝑟p´𝑧q, we have

p𝑟˚p𝑧qq1 “ 𝐵1p𝑧q𝑟p´𝑧q ´𝐵p𝑧q𝑟1p´𝑧q.

This gives, for 𝑧 P I,

|p𝑟˚p𝑧qq1| “ |𝐵1p𝑧q𝑟p𝑧q ´𝐵p𝑧q𝑟1p𝑧q| “
1

|𝐵p𝑧q|
|𝐵1p𝑧q𝑟p𝑧q ´𝐵p𝑧q𝑟1p𝑧q|

“

ˇ

ˇ

ˇ

𝐵1p𝑧q

𝐵p𝑧q
𝑟p𝑧q ´ 𝑟1p𝑧q

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

𝐵1p𝑧q

𝐵p𝑧q
𝑟p𝑧q ´ 𝑟1p𝑧q

ˇ

ˇ

ˇ
since

𝐵1p𝑧q

𝐵p𝑧q
is a real number by (7)

“

ˇ

ˇ

ˇ

𝐵1p𝑧q

𝐵p𝑧q
𝑟p𝑧q ´ 𝑟1p𝑧q

ˇ

ˇ

ˇ
“ |𝐵1p𝑧q𝑟p𝑧q ´𝐵p𝑧q𝑟1p𝑧q|

Hence, from (18), we get:

2|𝑟1p𝑧q|2 ` 2|p𝑟˚p𝑧qq1|2 6 |𝐵1p𝑧q|2
!´

max
16𝑘6𝑛

|𝑟p𝑡𝑘q|
¯2

`

´

max
16𝑘6𝑛

|𝑟p𝑠𝑘q|
¯2)

.

Equivalently, for 𝑧 P I:

|𝑟1p𝑧q|2 ` |p𝑟˚p𝑧qq1|2 6
1

2
|𝐵1p𝑧q|2

!´

max
16𝑘6𝑛

|𝑟p𝑡𝑘q|
¯2

`

´

max
16𝑘6𝑛

|𝑟p𝑠𝑘q|
¯2)

.

Now, if we take 𝑟p𝑧q “ 𝜆𝐵p𝑧q with |𝜆| “ 1, then

𝑟˚p𝑧q “ 𝐵p𝑧q𝜆𝐵p´𝑧q “ 𝜆,

which gives
p𝑟˚p𝑧qq1 “ 0,

and, since

𝐵p𝑡𝑘q “ 𝑖 and 𝐵p𝑠𝑘q “ ´𝑖 for all 𝑘 “ 1, 2, . . . , 𝑛,
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we have:
|𝑟p𝑡𝑘q| “ |𝑟p𝑠𝑘q| “ 1 for all 𝑘 “ 1, 2, . . . , 𝑛,

and we get the equality in (9). This completes the proof of Theorem 4. l

Remark. The conclusion of Theorem 4 is not only an improvement over
the corollary 1 of [11], but is also sharp, unlike the result in [11].

Using Theorem 2.5, we get an estimate of the modulus of the polar
derivative 𝐷𝛼p𝑝p𝑧qq on the imaginary axis, when 𝛼 lies in the right half-
plane, and to that effect we have the following corollary:

Corollary 1. Suppose 𝑝p𝑧q is a polynomial of degree 𝑛 and 𝛼 P I`.
Then, for 𝑧 P I:

|𝐷𝛼p𝑝p𝑧qq|
2
` |𝐷𝛼p𝑝

˚
p𝑧qq|2 6 2𝑛Rep𝛼q

|𝑧 ´ 𝛼|𝑛´1

|𝑧0 ´ 𝛼|𝑛
|𝑝p𝑧0q|

2,

where 𝑧0 P t𝑡1, 𝑡2, . . . , 𝑡𝑛, 𝑠1, 𝑠2, . . . , 𝑠𝑛u with

|𝑟p𝑧0q| “ maxt|𝑟p𝑡1q|, |𝑟p𝑡2q|, . . . , |𝑟p𝑡𝑛q|, |𝑟p𝑠1q|, |𝑟p𝑠2q|, . . . , |𝑟p𝑠𝑛q|u,

𝑟p𝑧q “
𝑝p𝑧q

p𝑧 ´ 𝛼q𝑛
. The inequality is sharp and equality holds for

𝑝p𝑧q “ 𝜆p𝑧 ` 𝛼q𝑛 with |𝜆| “ 1.

Proof. If we assume that 𝑎1 “ ¨ ¨ ¨ “ 𝑎𝑛 “ 𝛼, that is, 𝑟p𝑧q “
𝑝p𝑧q

p𝑧 ´ 𝛼q𝑛
,

then (9) becomes

|𝑟1p𝑧q|2 ` |p𝑟˚p𝑧qq1|2 6 |𝐵1p𝑧q||𝑟p𝑧0q|
2. (19)

Now,

𝑟1p𝑧q “
´ 𝑝p𝑧q

p𝑧 ´ 𝛼q𝑛

¯1

“
p𝑧 ´ 𝛼q𝑛𝑝1p𝑧q ´ 𝑛𝑝p𝑧qp𝑧 ´ 𝛼q𝑛´1

p𝑧 ´ 𝛼q2𝑛
“
´𝐷𝛼p𝑝p𝑧qq

p𝑧 ´ 𝛼q𝑛`1
.

Similarly, p𝑟˚p𝑧qq1 “
´𝐷𝛼p𝑝

˚p𝑧qq

p𝑧 ´ 𝛼q𝑛`1
. Also, from (7) for 𝑧 P I, |𝐵1p𝑧q| “

2𝑛Rep𝛼q

|𝑧 ´ 𝛼|2
. Using all these values in (19), we get

ˇ

ˇ

ˇ

𝐷𝛼p𝑝p𝑧qq

p𝑧 ´ 𝛼q𝑛`1

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ

𝐷𝛼p𝑝
˚p𝑧qq

p𝑧 ´ 𝛼q𝑛`1

ˇ

ˇ

ˇ

2

6
2𝑛Rep𝛼q

|𝑧 ´ 𝛼|2

ˇ

ˇ

ˇ

𝑝p𝑧0q

p𝑧0 ´ 𝛼q𝑛

ˇ

ˇ

ˇ

2
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6
2𝑛Rep𝛼 ´ 𝑧q

|𝑧 ´ 𝛼|2

ˇ

ˇ

ˇ

𝑝p𝑧0q

p𝑧0 ´ 𝛼q𝑛

ˇ

ˇ

ˇ

2

, for 𝑧 P I.

This implies

|𝐷𝛼p𝑝p𝑧qq|
2
` |𝐷𝛼p𝑝

˚
p𝑧qq|2 6 2𝑛Rep𝛼 ´ 𝑧q

|𝑧 ´ 𝛼|𝑛´1

|𝑧0 ´ 𝛼|𝑛
|𝑝p𝑧0q|

2 for 𝑧 P I.

The case for equality follows from the case for equality of Theorem 4. l

Remark. The proofs of both Theorem 4 and Corollary 1 improve the
proofs of Corollary!1 and theorem!7 of [11] and lead to better and sharp
inequalities.

We next consider the case when the zeros of 𝑟p𝑧q are restricted to the
closed right half-plane and prove the following:

Theorem 5. Let 𝑡1, 𝑡2, . . . , 𝑡𝑛 be the 𝑛 simple zeros of 𝐵p𝑧q ´ 𝑖 and
𝑠1, 𝑠2, . . . , 𝑠𝑛 be the 𝑛 simple zeros of 𝐵p𝑧q ` 𝑖. If 𝑟 P ℛ𝑛 has all zeros in
IY I`, then, for 𝑧 P I:

|𝑟1p𝑧q| 6
1

2
|𝐵1p𝑧q|

!´

max
16𝑘6𝑛

|𝑟p𝑡𝑘q|
¯2

`

´

max
16𝑘6𝑛

|𝑟p𝑠𝑘q|
¯2) 1

2
. (20)

The result is sharp and equality holds for 𝑟p𝑧q “ 𝐵p𝑧q ˘ 𝑖.

Proof. By the assumption, all zeros of 𝑟p𝑧q lie in I Y I`; therefore, by
Lemma 2,

Re
´𝑟1p𝑧q

𝑟p𝑧q

¯

6
1

2
|𝐵1p𝑧q|

for 𝑧 P I, which are not zeros of 𝑟p𝑧q. Since, by virtue of (7), |𝐵1p𝑧q| ą 0
for 𝑧 P I, we get:

Re
´ 𝑟1p𝑧q

𝑟p𝑧q|𝐵1p𝑧q|

¯

6
1

2
.

This gives, for 𝑧 P I:
ˇ

ˇ

ˇ

𝑟1p𝑧q

𝑟p𝑧q|𝐵1p𝑧q|

ˇ

ˇ

ˇ
6

ˇ

ˇ

ˇ

𝑟1p𝑧q

𝑟p𝑧q|𝐵1p𝑧q|
´ 1

ˇ

ˇ

ˇ
.

Equivalently,
|𝑟1p𝑧q| 6 |𝑟1p𝑧q ´ |𝐵1p𝑧q|𝑟p𝑧q|.
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Again, by (7),
𝐵1p𝑧q

𝐵p𝑧q
ą 0 for 𝑧 P I. By Lemma 3 |𝐵p𝑧q| “ 1 for 𝑧 P I, and

we have:
𝐵1p𝑧q

𝐵p𝑧q
“

ˇ

ˇ

ˇ

𝐵1p𝑧q

𝐵p𝑧q

ˇ

ˇ

ˇ
“ |𝐵1p𝑧q| for 𝑧 P I

|𝐵p𝑧q𝑟1p𝑧q| 6 |𝐵p𝑧q𝑟1p𝑧q ´𝐵1p𝑧q𝑟p𝑧q| for 𝑧 P I.
That is,

|𝑟1p𝑧q| 6 |𝐵p𝑧q𝑟1p𝑧q ´𝐵1p𝑧q𝑟p𝑧q| for 𝑧 P I.
But

|𝐵p𝑧q𝑟1p𝑧q ´𝐵1p𝑧q𝑟p𝑧q| “ |p𝑟˚p𝑧qq1| for 𝑧 P I,
which gives

|𝑟1p𝑧q| 6 |p𝑟˚p𝑧qq1| for 𝑧 P I.
Therefore, from (9) we get:

|𝑟1p𝑧q| 6
1

2
|𝐵1p𝑧q|

!´

max
16𝑘6𝑛

|𝑟p𝑡𝑘q|
¯2

`

´

max
16𝑘6𝑛

|𝑟p𝑠𝑘q|
¯2) 1

2
.

To prove the case for equality, take 𝑟p𝑧q “ 𝐵p𝑧q ` 𝑖, so that the left-hand
side of inequality (20) reduces to |𝐵1p𝑧q|. Also, 𝑡𝑘 are zeros of 𝐵p𝑧q ` 𝑖
and 𝑠𝑘 are zeros of 𝐵p𝑧q ´ 𝑖, and, hence, 𝑟p𝑡𝑘q “ 𝐵p𝑡𝑘q ` 𝑖 “ 0 and
𝑟p𝑠𝑘q “ 𝐵p𝑠𝑘q ` 𝑖 “ 𝐵p𝑠𝑘q ´ 𝑖 ` 2𝑖 “ 2𝑖. Hence, using these values, the
right-hand side of (20) also reduces to |𝐵1p𝑧q|. This completes the proof
of Theorem 5. l

Using Theorem 5 and following the same steps as in the proof of corol-
lary 1, we can prove a bound estimate for the polar derivative of a poly-
nomial of 𝑝p𝑧q having all its zeros in the closed right half-plane. More
precisely, the following corollary follows from Theorem 5:

Corollary 2. Suppose 𝑝p𝑧q is a polynomial of degree 𝑛, having all its
zeros in the closed right half-plane IY I`. Then, for 𝑧 P I, 𝛼 P I`,

|𝐷𝛼𝑝p𝑧q| 6
?
2𝑛
|𝑧 ´ 𝛼|𝑛

|𝑧0 ´ 𝛼|𝑛
|𝑝p𝑧0q|,

where 𝑧0 P t𝑡1, 𝑡2, . . . , 𝑡𝑛, 𝑠1, 𝑠2, . . . , 𝑠𝑛u with

|𝑟p𝑧0q| “ maxt|𝑟p𝑡1q|, |𝑟p𝑡2q|, . . . , |𝑟p𝑡𝑛q|,|𝑟p𝑠1q|, |𝑟p𝑠2q|, . . . , |𝑟p𝑠𝑛q|u,

𝑟p𝑧q “
𝑝p𝑧q

p𝑧 ´ 𝛼q𝑛
.
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