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SOME REFINEMENTS OF BERNSTEIN TYPE
INEQUALITIES FOR RATIONAL FUNCTIONS WITH
ZEROS IN A HALF PLANE

Abstract. Sofi and Shah proved some Bernstein-type inequalities
for the class of rational functions 7(z) with all poles in a half-plane.
In this paper, we consider all zeros of r(z) to lie in the right half-
plane and prove several refinements of these results, which, in turn,
generalize some previously known results.
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1. Introduction. Let p(z Z ;) be a polynomial of degree n
7=0
with complex coefficients, and let p/(z) be its derivative. Concerning the
maximum modulus of p(z) and p’(z) on unit disk, Bernstein [3] proved the
following inequality that bears his name:

fnlwflp( z)| <n nmax x |p(2)]. (1)

Since a polynomial is entirely determined by its zeros (up to multiplication
by a constant), it is natural to investigate the inequality (1) under some
restrictions on the zeros of p. Two significant results in this direction are
the following:
n
Theorem 1. Ifp(z):= Z c;# has all zeros in |z| > 1, then
7=0

max () <2 5 max Ip(2)]. (2)
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Theorem 2. Ifp(z):= Z c;2’ has all zeros in |z| < 1, then
=0

, n
max [p'(z)] > 5 max [p(z)| (3)

Inequality (2) was conjectured by Erdos and later verified by Lax [6],
whereas inequality (3) is due to Turdn [12]. There have been many gener-
alizations and refinements to (1), (2), and (3): for details, see [2], [4] [5],
[7], and [13].

Li et al. [8] extended several of these Bernstein-type inequalities to the
rational functions with prescribed poles. It turns out that analogues of
(1), (2), and (3) hold for rational functions: they are obtained by replacing
n with the Blaschke product. For instance, the analogue of Bernstein’s
inequality (1) is given by the following theorem.

p(2)

Theorem 3. Ifr(z) = , where p(z) is a polynomial of degree

ﬁo(z — aj)
n, then "
7' (2)] < |B'(2)] gl'fglr(Z)! (4)
1 —aj;z

for |z| = 1, where B(z) = ] ( ) denotes the Blaschke product and

g=1 274

laj| >1,7=1,2,3,...n.

All the work done so far on Bernstein-type inequalities for rational
functions (with one exception [11]) involves the rational functions with
poles inside/outside a disk with an estimation of bounds on the bound-
ary of that disk (for details, see [1], [14]). In [11], Sofi and Shah proved
Bernstein-type inequalities for rational functions having poles in the half-
plane instead of inside or outside a disk. One key difference in the estima-
tion of the bounds on the boundary of the half-plane is that the boundary
of the half-plane (unlike that of a disk) is not a compact set.

In this paper, we prove some inequalities for rational functions having
poles in a half-plane under some restrictions on their zeros. We will use
the following notations and definitions:

I:={z: Re(z) = 0}.

I* :={z: Re(z) > 0}.
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[T :={z: Re(z) < 0}.

Further, for p(z) =

1=

¢;jz) and z € I, we also define conjugate trans-
0

J
pose p* of p as

p*(2) = (=1)"p(=2) = Gp2" — G2 4. (—1)"Co.

Also, we denote the set of rational functions R,, by

p(2)
w(z)

anRn(al,ag,...,an):z{ ,ajeﬂ+,j=1,2,...,n},

where w(z) = [[(z — a;), and a Blaschke product for the half-plane by

j=1
Sz 4a;
B(z) := 1),
@=110=)
j=1 J
_ w*(z) .
It is clear that |B(z)] = 1 on I and B(z) = o) with w*(z) :=
w(z

(=1)"w(=2).
Now, for r(z) = p(2) , define r*(z) := B(z)r(—%). Therefore, if r € R,,,
*

g

(2)

then 7*(z) = ]Zu((zz)) € Ry.

We are also going to need the idea of the polar derivative of a poly-
nomial p(z) of degree n with respect to a complex number «, which is
defined as

Dap(2) :=np(2) + (o — 2)p'(2).
Clearly D,p(z), like the derivative, is a polynomial of degree n — 1, and

lim Daplz) =7p'(2).

a—00 (8%
With regards to the polar derivative, it was E. Laguerre in 1874, who
first recognized its importance in locating the zeros of polynomials, but
he used the term ’emanant’ for it. Later G. Polya and G. Szego called
D,p(z) the derivative with respect to a. It was Marden, who proposed
the name polar derivative (for details see [9] and [10]).
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We need the following lemmas.

Lemma 1. Let i be the imaginary unit. The function B(z) = i has
exactly n simple roots and they all lie on imaginary axis I, and for r € R,
and z € I:

n t )
() (B(2) — i) — B'(2)r(z) = —i)? Y t:P’ (5)
where ty,ts, ..., 1, are the n simple roots of B(z) =i and
——R@ywi2mm” k<. (6)
U e ‘tk — CLj|2 = =

Lemma 2. Letr € R, be such that all zeros of r lie in 1 U I'; then, for
zel:

m(%2)<;3@» (8)

Lemma 3. z el ifand only if |B(2)| = 1.

The above lemmas are due to Sofi et al. [11].
With the above notations, we state our main results as follows:

Theorem 4. Let ty, ty,...,t, be the n simple roots of B(z) =i and sy,
S9,..., 8, be those of B(z) = —i. If r € R,, and z € I, then

1<k<n 1<k<n

PR P <GB OR] (s )+ (s re0l) ) ©

The result is sharp and equality holds for r(z) = AB(z) with |A| = 1.

Proof. From equation (5), we have

"(2)B(2) = 1(2)B(2) — ' ()] = | (B(z

|ug| 7 ( tk|
i Z Tz —tel?

HM:

_tk|2‘
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Bz)—z’|22 Wl e (k)] (10)

‘z — tg|? 1<k<n

Now, using Lemma 1 and noting that s, ss, ..., s, are the zeros of B(z)+1,
we get
FAB) +i) — Blor() = (BG) + 2 Y, 2y
k=1 [z = sil?

where

1 v 2Re(qy)

— = B'(s —3 J <k<n

Uk ( k‘) ]Zl |8k - aj|2

(For reference, see [11]) Hence,

Sk|z mmax |r(se)l

[7'(2)B(2) = r(2)B'(2) + ir'(2)| < |B(2) + il Z

(12)
Now, taking 7(z) = 1 in (5) and using (11), we get:

B - 1B6) i Y L] (13

i 12— 8l

B = 186) +iF] X | (1)

Using (13) and (14) in (10) and (12), respectively, we get:
F(2)B(2) ~ r(2)B(:) —ir' () < |B)] mas et (19
B — r(@B(E) + i ()] < 1BE) max sl (16)

1<k<n
Squaring and adding (15) and (16), we get:
7'(2)B(2) = r(2)B'(2) — ir'(2) " + |r'(2) B(2) — r(2) B'(2) + ir'(2)
<IB')P{ (max [r@)))* + (max [r(s0)l)*} (17)

1<k<n 1<k<n
Now, using the identity

|A+ B> + |A— B|* = 2|A]* + 2|Bf?
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in (17) with A =1'(2)B(z) —r(2)B'(z) and B = ir'(z), we get:
2|r'(2)B(2) = r(2)B'(2)|* + 2|r'(2)

< B2 (max \r(tk)|)2 + (max \r(sk)y>2}. (18)

1<k<n 1<k<n

Also, since r*(z) := B(z)r(—%), we have

(07 = BT = BTG = s | B - BERE)
_ g((j;r_z)_w(z)
_ i/((j))r(z) “o(z)|  since g(f) is a real number by (7)
- [Br ) =G| = 1B - B o)

Hence, from (18), we get:

20r'(2) 2+ 2" (2)) P < B P{ (s raw)]) + (e r(sn)l) -

1<k<n 1<k<n

Equivalently, for z € I:

PP + 10 P < B EP{ (max Ir(w)]) + (max r(s0)l)

1<k<n 1<k<n

Now, if we take r(z) = AB(z) with |\| = 1, then

r*(2) = B(2)AB(=2) = ),

which gives
(r*(2))" = 0,

and, since

B(ty) =i and B(sy) = —i forall k=1,2,...,n,
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we have:
Ir(te)| = |r(sg)| =1 forall k=1,2,...,n,

and we get the equality in (9). This completes the proof of Theorem 4. []

Remark. The conclusion of Theorem 4 is not only an improvement over
the corollary 1 of [11], but is also sharp, unlike the result in [11].

Using Theorem 2.5, we get an estimate of the modulus of the polar
derivative D,(p(z)) on the imaginary axis, when « lies in the right half-
plane, and to that effect we have the following corollary:

Corollary 1. Suppose p(z) is a polynomial of degree n and « € I7.
Then, for z € I:

2 — n—1
Db+ 1Da(3” N < 20 Re(e) =)
where zg € {t1,ta,...,tn, S1,592,...,S,} with
r(20)| = max{[r(t)|, [r(&2)], ..., |r(E)], [r(s1)l; r(s2)], - - - [r(sa)l},

r(z) = p(2)
oy
p(z) = Mz + @)™ with |\ = 1.

The inequality is sharp and equality holds for

Proof. If we assume that a; = --- = a, = «, that is, r(2) = %,
z—a)"

then (9) becomes
7' ()2 + |(r*(2)) P < |B'(2)|Ir(20) - (19)

, p(z) \ _ (z—a)"p(z) —np(z)(z —a)"'  —D,(p(2))
r (Z> = <( )n) = = 1

z—« (z — ) (z — a)rtl’
—D.(p*
Similarly, (r*(z)) = %. Also, from (7) for z € I, |B'(2)| =
2
|n Re(|0;)' Using all these values in (19), we get
Z—

p(z0) |2

= |z — af? ‘(zo — )"

Da(p(2)) ’2 +‘Da(p*(z)) ‘2 < 2nRe(q)

’ (z — a)ntl (z —a)ntt
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2

< 2n Re(a — 2) , for zel.

~

‘ p(20)
|z — a2 (zp— )"

This implies

Da(p(2))? + |Dalp" (=) < 2nRe(a Z>‘||Zz—; = 5"

The case for equality follows from the case for equality of Theorem 4. []

Remark. The proofs of both Theorem 4 and Corollary 1 improve the
proofs of Corollary!l and theorem!7 of [11] and lead to better and sharp
inequalities.

We next consider the case when the zeros of r(z) are restricted to the
closed right half-plane and prove the following:

Theorem 5. Let ty,ts,...,t, be the n simple zeros of B(z) — i and
S1,82,-..,S, be the n simple zeros of B(z) +i. If r € R,, has all zeros in
I ul*, then, for z € I:

< B (max )+ (max o)) e @)

1<k<n 1<k<n

The result is sharp and equality holds for r(z) = B(z) + i.

Proof. By the assumption, all zeros of r(z) lie in T u I'*; therefore, by
Lemma 2,

r'(2) 1
e (2) <
() <5150
for z € I, which are not zeros of r(z). Since, by virtue of (7), |B'(z)| > 0

for z € I, we get:
r'(2) 1
Re|—————) < =.
¢ <r(z)]B’(z)\> 2

This gives, for z € I:

Equivalently,
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Again, by (7), %I((ZZ)) > 0 for z € I. By Lemma 3 |B(z)| =1 for z € I, and
we have: ) )
g((;) _ ‘i((j)‘ _1B(2)| for zel
|B(2)r'(2)] < |B(2)r'(z) — B'(2)r(z)| for zel.
That is,
|7'(2)| < |B(2)r'(z) — B'(2)r(z)| for zel
But

[B(2)r'(2) = B'(2)r(2)] = |(r*(2))'] for ze€l,

which gives
17'(2)] < |(r*(2))'| for zel.

Therefore, from (9) we get:

1 2 213
P < 31BN (max r(to]) + (max (s)l) )
To prove the case for equality, take r(z) = B(z) + i, so that the left-hand
side of inequality (20) reduces to |B’(z)|. Also, ty are zeros of B(z) + i
and s; are zeros of B(z) — i, and, hence, r(ty) = B(t;) +¢ = 0 and
r(sk) = B(sk) +1 = B(sg) — i + 2i = 2i. Hence, using these values, the
right-hand side of (20) also reduces to |B’(z)|. This completes the proof
of Theorem 5. []

Using Theorem 5 and following the same steps as in the proof of corol-
lary 1, we can prove a bound estimate for the polar derivative of a poly-
nomial of p(z) having all its zeros in the closed right half-plane. More
precisely, the following corollary follows from Theorem 5:

Corollary 2. Suppose p(z) is a polynomial of degree n, having all its
zeros in the closed right half-plane T U 1. Then, for z € I, a € I,

z — o™
Dap(2) < VI 2= 1)),

20 — "
where 20 € {tl,tg, vy ln, 81,89, ..., Sn} with
[r(20)| = max{[r(ta)|, [r(E2)l, -, [r(ta)[[r(s)ls r(s2)l, - - [r(sn) [},
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