УДК 517.55

ON KÖBE THEOREM FOR BIHOLOMORPHIC MAPPINGS OF A BALL IN \mathbb{C}^N

P. Liczberski

In the paper there has been given an upper sharp estimation of the distance between the point f(z) and the boundary of the image $f(\mathbb{B}^n)$ for biholomorphic mappings of the ball \mathbb{B}^n .

Introduction

Let \mathbb{C}^n be the space of *n*-complex variables with the Euclidean norm and the distance $\operatorname{dist}(a,b) = ||a-b||$. Let $\mathbb{B}^n(a,r), \ a \in \mathbb{C}^n, \ r > 0$, denote the open ball $\{z \in \mathbb{C}^n : ||z-a|| < r\}$, (we write \mathbb{B}^n for $\mathbb{B}^n(0,1)$). For a domain $G \subset \mathbb{C}^n$ the topological boundary of G will be denoted by ∂G .

It is well-known (see [3]) that for every function, univalent and analytic in the open unit disc \mathbb{B}^1 , the following Köbe inequality holds:

$$\frac{1}{4}(1-|z|^2)|f'(z)| \le \operatorname{dist}(f(z),\partial f(\mathbb{B}^1)) \le (1-|z|^2)|f'(z)|, \ z \in \mathbb{B}^1. \ (1)$$

Hence, if f(0) = 0 and f'(0) = 1, then

$$\frac{1}{4} \le \operatorname{dist}(0, \partial f(\mathbb{B}^1)) \le 1. \tag{2}$$

The following example of biholomorphic mappings $f: \mathbb{B}^2 \to \mathbb{C}^2$

$$f(z) = (z_1 + cz_2^2, z_2), z = (z_1, z_2) \in \mathbb{B}^2, c \in \mathbb{C}$$

shows that the left-hand side of (2) is not true for n > 1. Moreover, it remains false even if the constant $\frac{1}{4}$ is replaced by a constant $d \in (0, \frac{1}{4})$.

[©] P. Liczberski, 2002

30 P. Liczberski

In the paper [2] we have shown that for n > 1 the right-hand side of (2) is still true. Namely, if $f: \mathbb{B}^n \to \mathbb{C}^n$, f(0) = 0, Df(0) = I is a biholomorphic mapping, then

$$\operatorname{dist}(0, \partial f(\mathbb{B}^n)) \leq 1.$$

The equality holds for $f(z) \equiv z$.

In connection with the upper estimation from (1) we have proved in [2] that for every biholomorfic mapping $f: \mathbb{B}^n \to \mathbb{C}^n, n > 1$, there holds

$$dist(f(z), \partial f(\mathbb{B}^n)) \le (1 - ||z||^2)^{\frac{1}{2}} ||Df(z)||, \ z \in \mathbb{B}^n.$$
 (3)

However, in the paper [2] the sharpness in this estimation has not been discussed.

In the next section of the paper we will give the sharp estimation of $\operatorname{dist}(f(z), \partial f(\mathbb{B}^n))$ for all n from the set $\mathbb{B}N$ of all positive integers.

Main result

By $J_f(z)$ let us denote the complex Jacobian of the mapping f at the point $z \in \mathbb{B}^n$.

We will prove the following theorem.

THEOREM 1. If $f: \mathbb{B}^n \to \mathbb{C}^n$, $n \in \mathbb{N}$, is a biholomorphic mapping, then

$$\operatorname{dist}(f(z), \partial f(\mathbb{B}^n)) \le (1 - ||z||^2)^{\frac{n+1}{2n}} |J_f(z)|^{\frac{1}{n}}, \ z \in \mathbb{B}^n.$$
 (4)

The estimation is sharp.

PROOF. By G let us denote the image $f(\mathbb{B}^n)$ of the ball \mathbb{B}^n in the mapping f. We will consider the Bergman space $A^2(G)$ of all holomorphic functions $g: G \to \mathbb{C}$ such that

$$\left[\int_{G} |g(w)|^{2} dV(w) \right]^{\frac{1}{2}} \equiv ||g||_{A^{2}(G)} < \infty.$$

Let us fix $z \in \mathbb{B}^n$ and let $w \in G$ be such that w = f(z).

It is well-known (see [1]) that for every $g \in A^2(G)$ and r > 0 such that $\mathbb{B}^n(w,r) \subset G$

$$|g(w)|^2 \le [V(\mathbb{B}^n(w,r))]^{-1} [||g||_{A^2(G)}]^2,$$
 (5)

where $V(\mathbb{B}^n(w,r))$ denotes the volume (in \mathbb{R}^{2n}) of the ball $\mathbb{B}^n(w,r)$. Applying inequality (5) to the function $\hat{q} \in A^2(G)$ such that

$$\|\hat{g}\|_{A^2(G)} = \inf_{g \in A^2(G), \ g(w)=1} \|g\|_{A^2(G)},$$

(see [S]), we obtain

$$1 \le [V(\mathbb{B}^n(w,r))]^{-1} \left[||\hat{g}||_{A^2(G)} \right]^2.$$

Since

$$V(\mathbb{B}^n(w,r)) = \frac{r^{2n}\pi^n}{n!}$$

and

$$\left[||\hat{g}||_{A^2(G)}\right]^2 = \frac{1}{K_G(w,w)},$$

where K_G denotes the Bergman kernel function for G, we have

$$\frac{r^{2n}\pi^n}{n!} \leq [K_G(w,w)]^{-1}$$
.

From this, in view of the transformation formula for Bergman kernel function, we get

$$\frac{r^{2n}\pi^n}{n!} \le \left|J_f(z)\right|^2 \left[K_{\mathbb{B}^n}(z,z)\right]^{-1}.$$

Therefore,

$$r^{2n} \le |J_f(z)|^2 (1 - ||z||^2)^{n+1},$$

because (see [1])

$$K_{\mathbb{B}^n}(z,z) = \frac{n!}{\pi^n (1 - ||z||^2)^{n+1}}.$$

To prove inequality (4) it is sufficient to use the fact that the last inequality holds for every r > 0 such that $\mathbb{B}^n(w,r) \subset f(\mathbb{B}^n)$.

Finally, we prove that the equality in (4) also holds.

To this purpose let q_a be the mapping defined as follows:

$$q_a(z) = \frac{a - s_a z - (1 - s_a) P_a(z)}{1 - \langle z, a \rangle}, \quad z \in \mathbb{B}^n,$$

where

$$s_a = (1 - \|a\|^2)^{\frac{1}{2}}, \quad \langle z, a \rangle = \sum_{j=1}^n z_j \bar{a}_j, \quad P_a(z) = \begin{cases} \frac{\langle z, a \rangle}{\|a\|^2} a & \text{for } a \neq 0, \\ 0 & \text{for } a = 0 \end{cases}$$

32 P. Liczberski

It is well-known (see [4]) that q_a is a holomorphic automorphism of the ball \mathbb{B}^n , $q_a(a) = 0$ and $|J_{q_a}(a)| = (1 - ||a||^2)^{-\frac{n+1}{2}}$. Then, for z = a and $f = q_a$ we have

$$\operatorname{dist}(q_a(a), \partial q_a(\mathbb{B}^n)) = \operatorname{dist}(0, \partial \mathbb{B}^n) = 1$$

and

$$(1 - ||a||^2)^{\frac{n+1}{2n}} |J_{q_a}(a)|^{\frac{1}{n}} = 1.$$

This proves the sharpness of estimation (4). \square

Remark 1. Estimation (3) follows from estimation (4). For $z \neq 0$ estimation (3) was not sharp.

Indeed, for n > 1 and $z \neq 0$ we have

$$(1 - ||a||^2)^{\frac{n+1}{2n}} < (1 - ||a||^2)^{\frac{1}{2}}$$

and

$$|J_f(z)| \le ||Df(z)||^n.$$

Now, we consider the case of the maximum norm in \mathbb{C}^n . Let $\mathbb{D}^n(a,r)$, $a \in \mathbb{C}^n$, r > 0, denote the open polydisc

$$\{z \in \mathbb{C}^n : \operatorname{dist}(z, a) = \max_{1 \le j \le n} |z_j - a_j| < r\},\$$

(we write \mathbb{D}^n for $\mathbb{D}^n(0,1)$).

We have proved the following theorem, similar to Theorem 1.

THEOREM 2. If $f: \mathbb{D}^n \to \mathbb{C}^n$, $n \in \mathbb{B}N$, is a biholomorphic mapping, then

$$\operatorname{dist}(f(z), \partial f(\mathbb{D}^n)) \le \left[\prod_{j=1}^n (1 - |z_j|^2) \right]^{\frac{1}{n}} |J_f(z)|^{\frac{1}{n}}.$$
 (6)

The estimation is sharp. The equality in (6) is achieved in any point $a \in \mathbb{D}^n$ by the holomorphic automorphism $q_a = [q_{1a}, \dots, q_{na}]$

$$q_{ja}(z) = \frac{a_j - z_j}{1 - z_j a_j}, \quad z = (z_1, \dots, z_n) \in \mathbb{D}^n,$$

of the polydisc \mathbb{D}^n .

The proof of Theorem 2 runs similarly to the proof of Theorem 1. It is sufficient to replace (5) by the following formula

$$|g(w)|^2 \le V(\mathbb{D}^n(w,r)) \left[||g||_{A^2(G)} \right]^2, \ w \in G = f(\mathbb{D}^n), \ \mathbb{D}^n(w,r) \subset G,$$

(see [S]) and observe that for the Bergman kernel function $K_{\mathbb{D}^n}$ of the polydisc \mathbb{D}^n

$$K_{\mathbb{D}^n}(z,z) = rac{1}{\pi^n} \prod_{i=1}^n rac{1}{(1-|z_j|^2)^2}, \ \ z \in \mathbb{D}^n.$$

REMARK 2. In the paper [2] it has been proved that for every biholomorphic mapping $f: \mathbb{D}^n \to \mathbb{C}^n$ the following estimation

$$\operatorname{dist}(f(z), \partial f(\mathbb{D}^n)) \le \|Df(z)\| \max_{1 \le j \le n} (1 - |z_j|^2) \tag{7}$$

holds. Moreover, if $a = ||a||(e^{i\theta_1}, \dots, e^{i\theta_n}) \in \mathbb{D}^n$ and $f = q_a$, defined as above, then in (7) the equality also holds.

REMARK 3. We do not know, whether it is possible to obtain inequality (7) from inequality (6).

Although

$$\left[\prod_{j=1}^{n} (1 - |z_j|^2) \right]^{\frac{1}{n}} \le \max_{1 \le j \le n} (1 - |z_j|^2),$$

but we have only

$$|J_f(z)| \le \sqrt{n} \, ||Df(z)||^n$$

in the case of maximum norm in \mathbb{C}^n .

References

- [1] Krantz S.G. Function theory of several complex variables. John Wiley & Sons, 1982.
- [2] Liczberski P. On biholomorphic and proper holomorphic mappings in Cⁿ// Demonstratio Math. 1994. V. 27. P. 209−216.
- [3] Pommerenke Ch. Univalent functions. Göttingen: Vondenhoeck & Ruprecht, 1975.
- [4] Rudin W. Function theory in the unit ball of \mathbb{C}^n . Berlin; Heidelberg; New York: Springer—Verlag, 1980.

34 P. Liczberski

[S] Шабат Б. В. Введение в комплексный анализ. М.: Наука, 1976.

Institute of Mathematics Technical University of Łódź, Al. Politechniki 11, 90-924 Łódź E-mail: piliczb@sk-sg.p.lodz.pl