Серия "Математика"

Выпуск 13, 2006

УДК 511

И. А. Ионова, Б. М. Широков

О КОЛИЧЕСТВЕ ЧИСЕЛ, ПОРОЖДЕННЫХ ПРОСТЫМИ ИЗ АРИФМЕТИЧЕСКИХ ПРОГРЕССИЙ И НЕ ПРЕВОСХОДЯЩИХ ДЕЙСТВИТЕЛЬНОГО ЧИСЛА

В работе дается асимптотическое разложение для количества натуральных чисел, порожденных простыми из заданных арифметических прогрессий и не превосходящих действительного числа \boldsymbol{x} .

Сначала введем необходимые обозначения: k — фиксированное натуральное число, $\varphi(n)$ — функция Эйлера, $a_1,\ldots,a_r,\,r<\varphi(k)$ — фиксированный набор вычетов по модулю k, попарно не сравнимых между собой и взаимно простых с модулем $k,\,p,q$ — простые числа, P — множество простых чисел, удовлетворяющих одному из сравнений

$$p \equiv a_i \pmod{k}, \qquad i = 1, \dots, r,$$

E — моноид, порожденный множеством $P,\,x$ — положительное действительное число, A(x) — количество чисел из E, не превосходящих числа $x,\,\tau=r/\varphi(k),\,s=\sigma+it,\,\chi(n)$ — характер Дирихле модуля $k,\,\chi_0(n)$ — главный характер Дирихле того же модуля, $L(s,\chi)$ — L-функция Дирихле.

В работе [1] Е. Титчмарша приведена асимптотика: при $x \to \infty$

$$A(x) \sim \frac{x}{(\ln x)^{1-\tau}}. (1)$$

В данной работе приводится окончательный результат по порядку роста величины A(x), точнее, для величины A(x) устанавливается асимптотическое разложение. Основной результат содержит теорема.

[©] И. А. Ионова, Б. М. Широков, 2006

Теорема. Для любого натурального числа при $\to \infty$

$$A(x) = \frac{x}{(\ln x)^{1-\tau}} + \frac{a_1 x}{(\ln x)^{2-\tau}} + \dots + \frac{a_{n-1} x}{(\ln x)^{n-\tau}} + O\left(\frac{x}{(\ln x)^{n+1-\tau}}\right).$$

Для доказательства этой теоремы нам потребуется одна теорема тауберова типа, которая сформулирована в качестве леммы в работе [2, с. 180], но для удобства приведем ее формулировку, причем лишь ту часть, которая необходима для наших целей.

Нам потребуются некоторые дополнительные обозначения. Для фиксированного положительного числа α обозначим

$$\sigma(t) = 1 - \frac{\beta}{\ln(2+|t|)} \qquad \Omega = \left\{ s|\ \sigma > \max\left\{\sigma(t), \frac{3}{4}\right\}, -\infty < t < +\infty \right\}.$$

Для положительного числа x положим

$$\sigma_0 = 1 + \frac{2}{\ln x}, \qquad T = e^{-\sqrt{\ln x}}.$$

Допустим, что в области $\overline{\Omega}$ задана функция F(s). Обозначим

$$J(x) = \frac{1}{2\pi i} \int_{\sigma_0 - iT}^{\sigma_0 + iT} \frac{F(s)}{s} x^s ds.$$

Итак,

ТЕОРЕМА А. Если функция F(s) в области Ω удовлетворяет условиям:

1) существует такая постоянная c_1 , что при $|t| \ge 1$

$$F(s) = O(\ln^{c_1}(2+|t|)), \quad s \in \overline{\Omega},$$

2) функция

$$G(s) = F(s)(s-1)^{\tau}, \qquad 0 < \tau < 1,$$

аналитична в Ω и $G(1) \neq 0$,

то при $x \to \infty$ для любого натурального числа n

$$J(x) = \frac{x}{(\ln x)^{1-\tau}} P_{n-1}\left(\frac{1}{\ln x}\right) + O\left(\frac{x}{(\ln x)^{n+1-\tau}}\right),$$

где

$$P_n(y) = \sum_{m=0}^n a_m y^m,$$

И

$$a_m = \frac{(\tau - 1)\dots(\tau - m)}{\Gamma(z)m!} \cdot \frac{d^m}{(ds)^m} \left(\frac{G(s)}{s}\right) (1).$$

Доказательство этой теоремы, представляющей собой частный случай леммы из работы [2], кратко изложено в той же работе.

Перейдем к доказательству основной теоремы.

Обозначим через h(n) индикаторную функцию моноида E. Тогда

$$A(x) = \sum_{n \le x} h(n).$$

Производящим рядом Дирихле для A(x) является дзета-функция моноида E:

$$\zeta_E(s) = \sum_{n=1}^{\infty} \frac{h(n)}{n^s}.$$
 (2)

В силу приближенной формулы Перрона (см., например, [3, с. 427]) существует такое число c, что 0 < c < 1 и при $x \to \infty$

$$A(x) = \frac{1}{2\pi i} \int_{\sigma_0 - iT}^{\sigma_0 + iT} \frac{\zeta_E(s)}{s} x^s ds + O\left(xe^{-c\sqrt{\ln x}}\right).$$

Входящий в правую часть этого равенства интеграл обозначим через J(x), как это принято в теореме А. Для применения этой теоремы нужно проверить выполнение ее условий 1 и 2 для функции $\zeta_E(x)$.

Ввиду теоремы Эйлера для $\zeta_E(x)$, выбирая ту ветвь логарифма, которая вещественна при t = Im(s) = 0, имеем:

$$\ln \zeta_A(s) = \sum_{p \in P} \left(-\ln(1 - \frac{1}{p^s}) \right) = \sum_{p \in P} \frac{1}{p^s} + \sum_{p \in P} \sum_{m=2}^{\infty} \frac{1}{mp^{ms}}.$$
 (3)

Обозначим

$$B_1(s) = \sum_{p \in P} \sum_{m=2}^{\infty} \frac{1}{mp^{ms}}.$$

Эта функция регулярна в области $\sigma > 1/2$. Рассмотрим первый ряд по простым числам из P в формуле (3):

$$\sum_{p \in P} \frac{1}{p^s} = \sum_{n=1}^r \sum_{p \equiv a_n (modk)} \frac{1}{p}.$$
 (4)

Так как

$$\sum_{\chi} \chi(p)\overline{\chi}(a_n) = \begin{cases} \varphi(k), & p \equiv a_n \pmod{k}, \\ 0, & p \not\equiv a_n \pmod{k}, \end{cases}$$

то ряд (4) можно представить в виде

$$\sum_{p \in P} \frac{1}{p^s} = \frac{1}{\varphi(k)} \sum_{n=1}^r \sum_{\chi} \overline{\chi}(a_n) \sum_{p \in P} \frac{\chi(p)}{p^s}.$$

Последний ряд по простым числам из P при $\sigma > 1$ можно выразить через L-ряды Дирихле, учитывая, что

$$\ln L(s,\chi) = \sum_{p} \frac{\chi(p)}{p^s} + \sum_{p} \sum_{m>2} \frac{\chi^m(p)}{mp^{ms}},$$

причем здесь, как и прежде, фиксируем ту ветвь логарифма, которая действительна при t=0. Обозначив сумму двойного ряда через $-B_2(s,\chi)$, получим

$$\sum_{p} \frac{\chi(p)}{p^s} = \ln L(s, \chi) + B_2(s, \chi).$$

Подставляя это представление в формулу (3), будем иметь

$$\ln \zeta_A(s) = \frac{1}{\varphi(k)} \sum_{n=1}^r \sum_{\chi} \overline{\chi}(a_n) (\ln L(s,\chi) + B_2(s,\chi)) + B_1(s).$$

Для сокращения записи обозначим

$$B_3(s) = e^{B_1(s)} \prod_{n=1}^r \prod_{\chi} B_2(s,\chi)$$

и находим выражение дзета-функции через L-ряды Дирихле

$$\zeta_A(s) = B_3(s) \prod_{n=1}^r \prod_{\chi} (L(s,\chi))^{\frac{\overline{\chi}(a_n)}{\varphi(k)}}.$$

Если $\chi \neq \chi_0$, то функция $L(s,\chi)$ продолжается регулярно в область $\overline{\Omega}$ и не обращается там в 0.

Выделим сомножитель, содержащий главный характер,

$$\left(L(s,\chi_0)\right)^{\frac{r}{\varphi(k)}} = \left(\zeta(s)(s-1)\prod_{p|k}\left(1-\frac{1}{p^s}\right)\right)^{\tau}(s-1)^{-\tau}.$$

Обозначим

$$G(s) = B_3(s) \prod_{n=1}^r \prod_{\chi \neq \chi_0} \left(L(s,\chi) \right)^{\frac{\overline{\chi}(a_n)}{\varphi(k)}} \left(\zeta(s)(s-1) \prod_{p|k} \left(1 - \frac{1}{p^s} \right) \right)^{\tau}.$$

Окончательно для дзета-функции моноида E получаем представление

$$\zeta_E(s) = G(s)(s-1)^{\tau}. \tag{5}$$

Ввиду свойств функций $L(s,\chi)$ и $\zeta(s)$ эта функция удовлетворяет условиям теоремы A и ее применение дает нам асимптотическое равенство: для любого натурального n при $x\to\infty$

$$A(x) = \frac{a_0 x}{(\ln x)^{1-\tau}} + \dots + \frac{a_{n-1} x}{(\ln x)^{n-\tau}} + O\left(\frac{x}{(\ln x)^{n+1-\tau}}\right).$$
 (6)

Из сравнения этой асимптотики с результатом Титчмарша (1) следует, что $a_0 = 1$. Теорема доказана.

Résumé

It is given the asiptotic expansion for number positive integer that not exceed of the real number and divisible by prime number from arithmetical progression in this paper.

Список литературы

 Titchmarsh E. C. A divisor problem / E. C. Titchmarsh // Rendiconty Palermo. 1930. V. 54. P. 414–429; 1933. V. 57. P. 478–479.

- [2] Широков Б. М. *Распределение значений арифметических функций в классах вычетов* / Б. М. Широков // Записки науч. семинаров ЛОМИ. 1983. Т. 121. С. 176–186.
- [3] Прахар К. Распределение простых чисел / К. Прахар. М.: Мир, 1967.

Петрозаводский государственный университет, математический факультет, 185910, Петрозаводск, пр. Ленина, 33