УДК 515.12

Е. В. Кашуба

К ВОПРОСУ О НАСЛЕДСТВЕННОЙ НОРМАЛЬНОСТИ ПРОСТРАНСТВ ВИДА $\mathcal{F}(X)$

В работе [1] в предположении континуум-гипотезы (СН) был построен пример неметризуемого компакта X, обладающего следующими свойствами:

- 1) X^n наследственно сепарабельно для любого $n \in \mathbb{N}$;
- 2) $X^n \setminus \Delta_n$ совершенно нормально для любого $n \in \mathbb{N}$;
- 3) для любого сохраняющего вес и точки взаимной однозначности полунормального функтора \mathcal{F} со степенным спектром $sp(\mathcal{F}) = \{1, k, \dots\}$ пространство $\mathcal{F}_k(X)$ наследственно нормально (в частности, наследственно нормальны X^2 и $\lambda_3(X)$).

В данной работе доказано, что существует полунормальный функтор \mathcal{F} , удовлетворяющий всем условиям пункта 3, кроме сохранения точек взаимной однозначности, такой, что пространство $\mathcal{F}_k(X)$ не является наследственно нормальным.

Напомним определения свойств нормальности и полунормальности ковариантных функторов.

Функтор \mathcal{F} называется *мономорфным*, если для любого вложения $i: Y \to X$ отображение $\mathcal{F}(i): \mathcal{F}(Y) \to \mathcal{F}(X)$ также является вложением. Для мономорфного функтора \mathcal{F} и замкнутого подмножества $Y \subset X$ пространство $\mathcal{F}(Y)$ естественно отождествляется с подпространством $\mathcal{F}(i)$ ($\mathcal{F}(Y)$) пространства $\mathcal{F}(X)$.

Мономорфный функтор \mathcal{F} сохраняет пересечения, если для любого компакта X и любой системы $\{Y_{\alpha}: \alpha \in A\}$ замкнутых подмножеств X имеет место равенство

$$\mathcal{F}(\cap \{Y_{\alpha} : \alpha \in A\}) = \cap \{\mathcal{F}(Y_{\alpha}) : \alpha \in A\}.$$

[©] Е. В. Кашуба, 2009

Функтор \mathcal{F} называется иепрерывным, если он перестановочен с операцией перехода к пределу обратного спектра. Более точно это означает следующее. Для любого обратного спектра $S = \{X_a, p_b^a : a, b \in A\}$ определен обратный спектр $\mathcal{F}(S) = \{\mathcal{F}(X_a), \mathcal{F}(p_b^a) : a, b \in A\}$. Пусть $X = \lim S$. Отображения $\mathcal{F}(p_a) : \mathcal{F}(X) \to \mathcal{F}(X_a)$ в пределе дают отображение из $\mathcal{F}(X)$ в $\lim \mathcal{F}(S)$. Требование непрерывности состоит в том, чтобы это отображение было гомеоморфизмом.

Непрерывный мономорфный сохраняющий пересечения функтор называется *полунормальным*, если он сохраняет точку и пустое множество.

Функтор $\mathcal F$ сохраняет прообразы, если для любого отражения $f:X\to Y$ и любого замкнутого $A\subset Y$

$$(\mathcal{F}(f))^{-1}\,\mathcal{F}(A) = \mathcal{F}(f^{-1}A).$$

Функтор \mathcal{F} называется *эпиморфным*, если он сохраняет эпиморфизмы.

Функтор $\mathcal F$ сохраняет вес, если для любого бесконечного X $w(X) = w(\mathcal F(X)).$

Полунормальный эпиморфный функтор \mathcal{F} , сохраняющий вес и прообразы, называется *нормальным*.

Примером нормального функтора в категории Сотр компактов и их непрерывных отображений может служить функтор exp.

Экспонента пространства X — это множество $\exp X$ непустых замкнутых подмножеств X, снабженное топологией Вьеториса. Открытую базу этой топологии образуют множества вида

$$O < U_1, \dots, U_k > = \{A \in \exp X : A \subset U_1 \cup \dots \cup U_k$$
 и $A \cap U_i \neq \emptyset \ \forall \ i = 1, \dots, k\},$

где U_i — открытые в X множества. Если пространство X — компакт, то и пространство $\exp X$ также является компактом. Если $f: X \to Y$ — непрерывное отображение, то отображение $\exp f: \exp X \to \exp Y$, определяемое равенством $\exp f(A) = f(A)$, непрерывно.

Если \mathcal{F} — мономорфный функтор, то для любой точки $a \in \mathcal{F}(X)$ определен *носитель* $\operatorname{supp}(a)$ следующим образом:

$$supp(a) = \bigcap \{ Y \subset X : a \in \mathcal{F}(Y) \}.$$

Для любого натурального n через $\mathcal{F}_n(X)$ обозначается множество

$${a \in \mathcal{F}(X) : |\operatorname{supp}(a)| \le n}.$$

50 Е. В. Кашуба

Если \mathcal{F} — мономорфный сохраняющий пересечения функтор, то подпространство $\mathcal{F}_n(X)$ замкнуто в $\mathcal{F}(X)$ для любого X и любого n. Более того, соответствие $X \to \mathcal{F}_n(X)$ однозначно определяет подфунктор \mathcal{F}_n функтора \mathcal{F} . Если \mathcal{F} — полунормальный функтор, то для любого натурального n функтор \mathcal{F}_n также является полунормальным. При этом $\mathcal{F}_1(X) = X$ и можно считать X подпространством $\mathcal{F}(X)$.

В случае, когда $\mathcal{F} = \exp$, в качестве \mathcal{F}_n получаем функтор \exp_n .

Пространство $\exp_n X$ является подпространством экспоненты $\exp_n X$. Точками $\exp_n X$ являются не более чем n-точечные подмножества X. Это пространство называется n-ой $\operatorname{гиперсимметрической}$ степенью пространства X. Гиперсимметрическая степень $\exp_n X$ компакта X является компактом. Если $f: X \to Y$ — отображение, то отображение $\exp_n f: \exp_n X \to \exp_n Y$ определяется так же, как и $\exp_f : \exp_n f(A) = f(A)$. Известно, что \exp_n является нормальным функтором в категории Comp.

Для каждого $n \geq 2$ через $\mathcal{F}_{nn}(X)$ обозначается множество $\mathcal{F}_n(X) \setminus \mathcal{F}_{n-1}(X)$.

Cтепенным cпектром функтора $\mathcal F$ называется следующее множество

$$sp(\mathcal{F}) = \{k : k \in \mathbb{N}, \mathcal{F}_{kk}(k) \neq \emptyset\}.$$

Степенной спектр любого полунормального функтора содержит 1. Степенной спектр нормального функтора либо равен \mathbb{N} , либо совпадает с начальным отрезком натурального ряда. В работе [2] показано, что для любого подмножества $K \subset \mathbb{N}(1 \in K)$ существует функтор \exp^K , удовлетворяющий всем условиям нормальности, кроме сохранения прообразов, для которого $sp(\exp^K) = K$.

Приведем построение функтора \exp^K .

Пусть X — компакт и $n \in \mathbb{N}$. В пространстве $\exp_n X$ рассмотрим разбиение R_n , единственным нетривиальным элементом которого является множество $\exp_{n-1} X$, и фактор-пространство $\exp_n X/R_n$ обозначим через $\exp_n^0 X$. Заметим, что $\exp_1^0 X = \exp_1 X = X$. Пусть ξ_n^0 — точка $\exp_n^0 X$, соответствующая множеству $\exp_{n-1} X$. Для всякого $\xi \in \exp_n^0 X$ множество $\mathrm{H}(\xi) \subset X$ определяется следующим образом: если $\xi \neq \xi_n^0$, то $\xi - n$ -точечное подмножество X и $\mathrm{H}(\xi) = \xi$, если же $\xi = \xi_n^0$, то, по определению, $\mathrm{H}(\xi) = X \cup \{X\}$.

Рассмотрим произведение

$$Z = \prod_{n \in K} \exp_n^0 X$$

и выделим в Z подпространство $\exp^K(X)$ следующим образом:

$$\exp^K(X) = \{ \{ \xi_n : n \in K \} : \mathsf{H}(\xi_k) \subset \mathsf{H}(\xi_n)$$
 при $k < n \}.$

Множество $\exp^K(X)$ замкнуто в Z и, следовательно, является компактом.

Пусть $f:X\to Y$ — непрерывное отображение. Для всякого $n\in K$ рассмотрим отображение $\exp_n f:\exp_n X\to \exp_n Y$. Поскольку

$$\exp_n f(\exp_{n-1} X) \subset \exp_{n-1} Y,$$

отображение $\exp_n f$ естественно порождает непрерывное отображение $\exp_n^0 f: \exp_n^0 X \to \exp_n^0 Y$. При этом $\exp_n^0 (\operatorname{id}_X) = \operatorname{id}_{\exp_n^0 X}$ и $\exp_n^0 (f \circ g) = \exp_n^0 f \circ \exp_n^0 g$, то есть $\exp_n^0 -$ функтор в категории Сомр. Очевидно, что $\exp_1^0 -$ тождественный функтор.

Пусть $\xi = \{\xi_n : n \in K\}$ — точка из $\exp^K(X)$. Положим

$$\exp^K(f)(\xi) = \{\exp_n^0 f(\xi_n) : n \in K\}.$$

Легко проверить, что $\operatorname{H}(\exp_n^0 f(\xi_k)) \subset \operatorname{H}(\exp_n^0 f(\xi_n))$ при $k, n \in K, k < n$. Следовательно, $\exp^K(f)(\xi) \in \exp^K(Y)$. Итак, для всякого отображения $f: X \to Y$ определено непрерывное отображение $\exp^K(f): \exp^K(X) \to \exp^K(Y)$. При этом $\exp^K(\operatorname{id}_X) = \operatorname{id}_{\exp^K(X)}$ и $\exp^K(f \circ g) = \exp^K f \circ \exp^K g$. Таким образом, построен функтор \exp^K в категории Comp.

Говорят, что полунормальный функтор $\mathcal F$ сохраняет точки вза-имной однозначности [1], если для любого отображения $f:X\to Y$ и любой точки $y\in Y$ такой, что $|f^{-1}(y)|=1$, отображение $\mathcal F(f):\mathcal F(X)\to \mathcal F(Y)$ также взаимно однозначно в точке $y\in Y\subset \mathcal F(Y):|(\mathcal F(f))^{-1}y|=1$.

ЛЕММА 1. Функтор \exp^K не сохраняет точки взаимной однозначности при $K = \{1, 3\}$.

Доказательство. Пусть $X = \{x_0, x_1, x_2\}, Y = \{y_0, y_1\}$ и отображение $f: X \to Y$ действует по правилу: $f(x_0) = y_0, f(x_1) = f(x_2) = y_1$. Тогда $|f^{-1}(y_0)| = 1$. Точка $y_0 \in Y$ отождествляется с точкой $(\{y_0\}, \eta_3^0) \in \exp^{\{1,3\}}Y$, где η_3^0 — точка \exp_3^0Y , соответствующая множеству \exp_2Y . Но прообраз точки $(\{y_0\}, \eta_3^0) = y_0$ при отображении $\mathcal{F}(f)$ равен $(\mathcal{F}(f))^{-1}(y_0) = \{(\{x_0\}, \{x_0, x_1, x_2\}), (\{x_0\}, \xi_3^0)\}$, то есть состоит более, чем из одной точки.

В работе [1] был получен следующий результат.

Теорема 1. (CH) Существует неметризуемый компакт X такой, что

- 1) X^n наследственно сепарабельно для любого $n \in \mathbb{N}$;
- 2) если F замкнутое подмножество X^n и $[F \setminus \Delta_n] = F$, то F G_{δ} -множество в X^n ;
- 3) $X^n \setminus \Delta_n$ совершенно нормально для любого $n \in \mathbb{N}$;
- 4) для любого сохраняющего вес полунормального функтора \mathcal{F} и любого $n \in sp(\mathcal{F})$ $\mathcal{F}_n(X)$ наследственно сепарабельно и $\mathcal{F}_{nn}(X)$ совершенно нормально;
- 5) для любого сохраняющего вес и точки взаимной однозначности полунормального функтора \mathcal{F} со степенным спектром $sp(\mathcal{F}) = \{1, k, \ldots\}$ пространство $\mathcal{F}_k(X)$ наследственно нормально (в частности, наследственно нормальны X^2 и $\lambda_3 X$).

Компакт X является пределом непрерывного спектра $S=\{X_\alpha,p_\beta^\alpha:\alpha,\beta<\omega_1\}$ из нульмерных метризуемых компактов. Для любого α существуют точки $x\in X_\alpha$, такие, что $|p_\alpha^{-1}(x)|=1$, и точки $\tilde x\in X_\alpha$, такие, что $|p_\alpha^{-1}(\tilde x)|=2$.

ТЕОРЕМА 2. (СН) Пространство $\exp^K(X)$ не является наследственно нормальным при $K = \{1, 3\}$.

Доказательство. Рассмотрим точку $x_0 \in X_0$ такую, что $|p_0^{-1}(x_0)| = 1$ и множества $F_1 = (\exp^K(p_0))^{-1}(x_0) \setminus \{x_0\} \subset \exp^K X$ и $F_2 = X \setminus \{x_0\} \subset \exp^K X$. Здесь мы используем одинаковые обозначения для точки $x_0 \in X_0$ и ее единственного прообраза в X при отображении p_0 , а также ее единственного прообраза в X_α при отображении p_α . Отметим, что множества F_1 и F_2 отделимы по Хаусдорфу. Покажем, что F_1 и F_2 не имеют непересекающихся окрестностей. Допустим противное. Пусть OF_1 и OF_2 — такие окрестности множеств F_1 и F_2 , что $OF_1 \cap OF_2 = \emptyset$. Так как X является совершенно нормальным компактом и F_2 открыто в X, то F_2 представимо в виде

$$F_2 = \bigcup_{n=1}^{\infty} \Phi_n,$$

где $\Phi_n(n\in\mathbb{N})$ — замкнутые в X множества. Без ограничения общности можно считать, что $\Phi_n\subset\Phi_m$ при $n\leq m$. Заметим, что

$$\Phi_n \cap (\exp^K(p_0))^{-1}(x_0) = \emptyset$$

для любого $n \in \mathbb{N}$. Так как $\Phi_n \subset OF_2$ для любого $n \in \mathbb{N}$, то

$$\Phi_n \cap (\exp^K(X) \setminus OF_2) = \emptyset$$

для любого $n \in \mathbb{N}$. Следовательно (см.[3], гл. 3), найдется ординал α такой, что

$$\exp^K(p_\alpha)(\Phi_n) \cap \exp^K(p_\alpha)(\exp^K(X) \setminus OF_2) = \emptyset$$

для любого $n \in \mathbb{N}$. То есть

$$\exp^{K}(p_{\alpha})(\Phi_{n}) \subset \exp^{K}(X_{\alpha}) \setminus (\exp^{K}(p_{\alpha})(\exp^{K}(X) \setminus OF_{2})) = \\ = (\exp^{K}(p_{\alpha}))^{\sharp}OF_{2}.$$

Заметим, что $\exp^K(p_\alpha)\Phi_n = p_\alpha(\Phi_n)$ и

$$\bigcup_{n=1}^{\infty} p_{\alpha}(\Phi_n) = X_{\alpha} \setminus \{x_0\}.$$

Выберем последовательность $x_n, n \in \mathbb{N}$, такую, что $x_n \in p_{\alpha}(\Phi_n)$, $|p_{\alpha}^{-1}(x_n)| = 1, x_n \to x_0$. Выберем элемент $\tilde{x} \in X_{\alpha} \setminus \{x_0\}$ такой, что $p_{\alpha}^{-1}(\tilde{x}) = \{y_1, y_2\}$. Пусть $\xi_n = \{\{x_n\}, \{x_n, y_1, y_2\}\} \in \exp^K X$. Тогда $\exp^K(p_{\alpha})(\xi_n) = x_n$, откуда следует, что $\xi_n \in OF_2$. Так как $x_n \to x_0$, то $\xi_n \to \xi_0 = \{\{x_0\}, \{x_0, y_1, y_2\}\}$. Но $\xi_0 \in F_1$, поскольку $\exp^K(p_0)(\xi_0) = x_0$. Таким образом, $\xi_0 \in OF_1$ и $\xi_0 \in [OF_2]$ (поскольку $\xi_n \in OF_2$ для любого $n \in \mathbb{N}$). Противоречие с пустотой пересечения множеств OF_1 и OF_2 .

Теорема 2 показывает, что требование сохранения точек взаимной однозначности в пункте 5) теоремы 1 существенно.

Résumé

Ivanov and Kashuba [1] constructed an example assuming the Continuum Hypothesis. There exists a nonmetrizable compact space X, such that the following conditions hold:

- 1) for any natural number n the compact space X^n is hereditarily separable;
- 2) for any natural number n the space $X^n \setminus \Delta_n$ is hereditarily normal;
- 3) for any functor \mathcal{F} preserving weight and one-to-one points the space $\mathcal{F}_k(X)$ is hereditarily normal (k) is the second element of the degree spectrum $sp(\mathcal{F})$.

E. B. Кашуба

In this paper the following result is proved. There exists a seminormal functor \mathcal{F} satisfying conditions 3 except preserving one-to-one points, such that $\mathcal{F}_k(X)$ is not hereditarily normal.

Список литературы

- [1] Иванов А. В. О наследственной нормальности пространства вида $\mathcal{F}(X)$ / А. В. Иванов, Е. В. Кашуба // Сибирский математический журнал. 2008. Т. 49. № 4. С. 813–824.
- [2] Иванов А. В. О степенных спектрах и композициях финитно строго эпиморфных функторов / А. В. Иванов // Труды ПетрГУ. Сер. Математика. 2000. Вып. 7. С. 15–28.
- [3] Федорчук В. В. Общая топология. Основные конструкции / В. В. Федорчук, В. В. Филиппов // Учеб. пособие. 2-е изд. М.: Физматлит, 2006. 336 с.

Петрозаводский государственный университет, математический факультет, 185910, Петрозаводск, пр. Ленина, 33