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INEQUALITIES FOR EIGENFUNCTIONS OF THE
P -LAPLACIAN

Abstract. Motivated by the work of P. Lindqvist, we study
eigenfunctions of the one-dimensional p-Laplace operator, the
sinp functions, and prove several inequalities for these and
p-analogues of other trigonometric functions and their inverse
functions. Similar inequalities are given also for the p-analogues
of the hyperbolic functions and their inverses.
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§ 1. Introduction

In a highly cited paper P. Lindqvist [1] studied generalized trigono-
metric functions depending on a parameter p > 1 which for the case
p = 2 reduce to the familiar functions. Numerous other authors, see
e. g. [2], [3, 4], [5], [6], [7] and the bibliographies of these papers, have
extended this work in various directions including the study of general-
ized hyperbolic functions and their inverses. Our goal here to study these
p-trigonometric and p-hyperbolic functions and to prove several inequali-
ties for them.

For the statement of some of our main results we introduce some no-
tation and terminology for classical special functions, such as the classi-
cal gamma function Γ(x), the psi function ψ(x) and the beta function
B(x, y). For Rex > 0, Re y > 0, these functions are defined by

Γ(x) =
∫ ∞

0

e−ttx−1 dt, ψ(x) =
Γ
′
(x)

Γ(x)
, B(x, y) =

Γ(x)Γ(y)
Γ(x + y)

.
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Given complex numbers a, b and c with c 6= 0,−1,−2, . . ., the Gaus-
sian hypergeometric function is the analytic continuation to the slit place
C \ [1,∞) of the series

F (a, b; c; z) = 2F1(a, b; c; z) =
∞∑

n=0

(a, n)(b, n)
(c, n)

zn

n!
, |z| < 1.

Here (a, 0) = 1 for a 6= 0, and (a, n) is the shifted factorial function or the
Appell symbol

(a, n) = a(a + 1)(a + 2) · · · (a + n− 1)

for n ∈ N \ {0}, where N = {0, 1, 2, . . .}. The hypergeometric function
has numerous special functions as its special or limiting cases, see [8].

We start by discussing eigenfunctions of the so-called one-dimensional
p-Laplacian ∆p on (0, 1), p ∈ (1,∞). The eigenvalue problem [5]

−∆pu = −
(
|u′ |p−2u

′)′
= λ|u|p−2u, u(0) = u(1) = 0,

has eigenvalues
λn = (p− 1)(nπp)p,

and eigenfunctions
sinp(nπp t), n ∈ N,

where sinp is the inverse function of arcsinp , which is defined below and
(cf. [7])

πp =
2
p

∫ 1

0

(1− s)−1/ps1/p−1ds =
2
p

B

(
1− 1

p
,
1
p

)
=

2π

p sin(π/p)
.

Motivated by P. Lindqvist’s work, P. J. Bushell and D. E. Edmunds [9]
found recently many new results for these generalized trigonometric func-
tions. Some authors also considered various other p-analogues of trigono-
metric and hyperbolic functions and their inverses. In particular, they
considered the following homeomorphisms

sinp : (0, ap) → I, cosp : (0, ap) → I, tanp : (0, bp) → I,

sinhp : (0, cp) → I, tanhp : (0,∞) → I ,
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where I = (0, 1) and

ap =
πp

2
, bp =

1
2p

(
ψ

(
1 + p

2p

)
− ψ

(
1
2p

))
= 2−1/pF

(
1
p
,
1
p
; 1 +

1
p
;
1
2

)
,

cp =
(

1
2

)1/p

F

(
1 ,

1
p
; 1 +

1
p

;
1
2

)
.

For x ∈ I, their inverse functions are defined as

arcsinp x =
x∫
0

(1− tp)−1/pdt = xF

(
1
p
,
1
p
; 1 +

1
p
; xp

)
=

= x(1− xp)(p−1)/pF

(
1, 1; 1 +

1
p
; xp

)
,

arctanp x =
x∫
0

(1 + tp)−1dt = xF

(
1,

1
p
; 1 +

1
p
;−xp

)
,

arsinhp x =
x∫
0

(1 + tp)−1/pdt = xF

(
1
p

,
1
p
; 1 +

1
p
;−xp

)
,

artanhp x =
x∫
0

(1− tp)−1dt = xF

(
1 ,

1
p
; 1 +

1
p
;xp

)
,

and by [9, Prop. 2.2] arccosp x = arcsinp((1−xp)1/p). See also S. Takeuchi
[10] for two-parameter generalizations. For the particular case p = 2 one
obtains the familiar elementary functions.

The paper is organized into sections as follows. Section 1, the intro-
duction, contains the statements of our main results. In Section 2 we
give some inequalities for the p-analogues of trigonometric and hyper-
bolic functions. Section 3 contains the proofs of our main results and
some identities. Finally in Section 4 we give some functional inequalities
for elementary functions and Section 5 contains two small tables with a
few values of the function sinp and related functions compiled with the
Mathematica r© software.

Some of the main results are the following theorems.

Theorem 1. For p > 1 and x ∈ (0, 1), we have

1)
(

1 +
xp

p(1 + p)

)
x < arcsinp x <

πp

2
x,
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2)
(

1 +
1− xp

p(1 + p)

)
(1− xp)1/p < arccosp x <

πp

2
(1− xp)1/p,

3)
(p(1 + p)(1 + xp) + xp)x
p(1 + p)(1 + xp)1+1/p

< arctanp x < 21/p bp

(
xp

1 + xp

)1/p

.

Theorem 2. For p > 1 and x ∈ (0, 1), we have

z

(
1 +

log(1 + xp)
1 + p

)
< arsinhp x < z

(
1 +

1
p

log(1 + xp)
)

,

z =
(

xp

1 + xp

)1/p

,

(1)

x

(
1− 1

1 + p
log(1− xp)

)
< artanhp x < x

(
1− 1

p
log(1− xp)

)
. (2)

The next result provides several families of inequalities for elementary
functions.

Theorem 3. For x > 0 and z = πx/2, the function g(p) = f(zp)1/p is
decreasing in p ∈ (0,∞), where

f(z) ∈ {arcsin(2z/π), arcosh(z), artanh(2z/π)}.

Acknowledgments. The first author is indebted to the Gradu-
ate School of Mathematical Analysis and its Applications for support.
The second author was, in part supported by the Academy of Finland,
Project 2600066611. Both authors wish to acknowledge the expert help of
Dr. H. Ruskeepää in the use of the Mathematica r© software [11] and Prof.
P. Hästö for providing simplified versions of some of our proofs. Authors
thank to anonymous referee for his valuable comments.

§ 2. Preliminaries and definitions

For convenience, we use the notation R+ = (0,∞) .

Lemma 1. [13, Thm 2.1] Let f : R+ → R+ be a differentiable, log-
convex function and let a ≥ 1. Then g(x) = (f(x))a/f(a x) decreases on
its domain. In particular, if 0 ≤ x ≤ y , then the following inequalities

(f(y))a

f(a y)
≤ (f(x))a

f(a x)
≤ (f(0))a−1
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hold true. If 0 < a ≤ 1, then the function g is an increasing function on
R+ and inequalities are reversed.

For easy reference we recall the following identity [8, 15.3.5]

F (a, b; c; z) = (1− z)−bF (b, c− a; c;−z/(1− z)) . (3)

For the following lemma see [15, Thms 1.19(10), 1.52(1), Lems, 1.33,
1.35].

Lemma 2.

1) For a, b, c > 0, c < a + b, and |x| < 1,

F (a, b; c; x) = (1− x)c−a−bF (c− a, c− b; c; x) .

2) For a, x ∈ (0, 1), and b, c ∈ (0,∞)

F (−a, b; c;x) < 1− a b

c
x .

3) For a, x ∈ (0, 1), and b, c ∈ (0,∞)

F (a, b; c; x) + F (−a, b; c; x) > 2 .

4) Let a, b, c ∈ (0,∞) and c > a + b. Then for x ∈ [0, 1],

F (a, b; c; x) ≤ Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

.

5) For a, b > 0, the following function

f(x) =
F (a, b; a + b; x)− 1

log(1/(1− x))

is strictly increasing from (0, 1) onto (a b/(a + b), 1/B(a, b)).

Lemma 3. For p > 1 and x ∈ (0, 1), the functions

(arcsinp(xk))1/k and (artanhp(xk))1/k

are decreasing in k ∈ (0,∞), also

(arctanp(xk))1/k and (arsinhp(xk))1/k

are increasing in k ∈ (0,∞).
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In particular, for k ≥ 1

k

√
arcsinp(xk) ≤ arcsinp(x) ≤ (arcsinp

k
√

x)k ,

k

√
artanhp(xk) ≤ artanhp(x) ≤ (artanhp

k
√

x)k .

(arsinhp
k
√

x)k ≤ arsinhp(x) ≤ k

√
arsinhp(xk) ,

(arctanp
k
√

x)k ≤ arctanp(x) ≤ k

√
arctanp(xk) .

Let

f(k) :=
(
E(xk)

)1/k
, E(x) :=

∫ x

0

g(t) dt, E = E(xk).

We get

f ′ = −E1/k log E
1
k2

+
1
k

E1/k−1E′xk log x =

=
E1/k

k2

(
− log

E

xk
−

(
xk E′

E
− 1

)
log

1
xk

)
.

If g ≥ 1, then
E

xk
=

1
xk

∫ xk

0

g(t) dt ≥ 1.

If g is increasing, then

E′ − E

xk
= g(xk)− 1

xk

∫ xk

0

g(t) dt ≥ 0,

so that xk E′
E − 1 ≥ 0. Thus f ′ ≤ 0 under these assumptions.

For arcsinp and artanhp, g is (1− tp)−1/p and (1− tp)−1, so the con-
ditions are clearly satisfied. Additionally, we see that for arsinhp and
arctanp the conditions g ≤ 1 and g is decreasing and this conclude that
f ′ ≥ 0. This completes the proof.

Theorem 4. For p > 1 and r, s ∈ (0, 1), the following inequalities hold

1) arcsinp(r s) ≤ √
arcsinp(r2) arcsinp(s2) ≤ arcsinp(r) arcsinp(s),

r, s ∈ (0, 1) ,
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2) artanhp(r s) ≤ √
artanhp(r2) artanhp(s2) ≤ artanhp(r) artanhp(s),

r, s ∈ (0, 1) ,

3) arsinhp(r2) arsinhp(s2) ≤ √
arsinhp(r2) arsinhp(s2) ≤ arsinhp(r s) ,

4) artanhp(r) artanhp(s) ≤
√

artanhp(r2) artanhp(s2) ≤ artanhp(r s) .

Let h(x) := log f(ex). Then h is convex (in the C2 case) when h′′ ≥ 0,
i. e. if

f

y
(f ′ + yf ′′) ≥ (f ′)2,

where y = ex and the function is evaluated at y. If f ′′ ≥ 0, then

f

y
≥ f ′(0),

so a sufficient condition for convexity is f ′(0)(f ′+yf ′′) ≥ (f ′)2. If f ′′ ≤ 0,
the reverse holds, so a sufficient condition for concavity is f ′(0)(f ′+yf ′′) ≤
≤ (f ′)2. Suppose

f(x) :=
∫ x

0

g(t) dt.

Then f ′ = g and f ′′ = g′. Then one easily checks that h is convex in case
g is (1 − tp)−1/p and (1 − tp)−1, and concave for g equal to (1 + tp)−1/p

and (1 + tp)−1. Now proof follows easily from Lemma 3.

Lemma 4. For k, p > 1 and r ≥ s, we have(
arcsinp(s)
arcsinp(r)

)k

≤ arcsinp(sk)
arcsinp(rk)

, r, s ∈ (0, 1),

(
artanhp(s)
artanhp(r)

)k

≤ artanhp(sk)
artanhp(rk)

, r, s ∈ (0, 1),

arsinhp(sk)
arsinhp(rk)

≤
(

arsinhp(s)
arsinhp(r)

)k

, r, s ∈ (0, 1) .

For x > 0, the following functions

u(x) = arcsinp(e−x) , v(x) = artanhp(e−x) ,

w1(x) = 1/arsinhp(e−x)

are log-convex by the proof of Theorem 4. Let x < y, e−x = r ≥ s = e−y,
now inequalities follow from Lemma 1.
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Lemma 5. [17, Thm 2, p.151] Let J ⊂ R be an open interval, and let
f : J → R be strictly monotonic function. Let f−1 : f(J) → J be the
inverse to f then

1) if f is convex and increasing, then f−1 is concave,

2) if f is convex and decreasing, then f−1 is convex,

3) if f is concave and increasing, then f−1 is convex,

4) if f is concave and decreasing, then f−1 is concave.

Lemma 6. For k, p > 1 and r ≥ s, we have

(
sinp(r)
sinp(s)

)k

≤ sinp(rk)
sinp(sk)

, r, s ∈ (0, 1),

(
tanhp(r)
tanhp(s)

)k

≤ tanhp(rk)
tanhp(sk)

, r, s ∈ (0,∞),

(
sinhp(r)
sinhp(s)

)k

≥ sinhp(rk)
sinhp(sk)

, r, s ∈ (0, 1).

Inequalities reverse for k ∈ (0, 1).

It is clear from the proof of Theorem 4 that the functions

f(x) = log(arcsinp(e−x)), g(x) = log(artanhp(e−x)),

h(x) = log(1/arsinhp(ex))

are convex and decreasing, then Lemma 5(2) implies that

f−1(y) = log(1/ sinp(ey)), g−1(y) = log(1/ tanhp(ey)),

h−1(y) = log(sinhp(e−y)),

are convex, now the result follows from Lemma 1.

Theorem 5. For p > 1, the following inequalities hold

1)
√

sinp(r2) sinp(s2) ≤ sinp(r s) , r, s ∈ (0, πp/2),

2)
√

tanhp(r2) tanhp(s2) ≤ tanhp(r s) , r, s ∈ (0,∞),

3) sinhp(r s) ≤ √
sinhp(r2) sinhp(s2) , r, s ∈ (0,∞).
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Let f(z) = log(arcsinp(e−z)), z > 0. Then

f
′
(z) = −(1− e−pz)−1/p/F (1/p, 1/p; 1 + 1/p; e−pz) < 0,

f is decreasing and by the proof of Theorem 4 f is convex. By Lem-
ma 5(2), f−1(y) = log(1/ sinp(ey)) is convex. This implies that

log
(

1
sinp(ex/2ey/2)

)
≤ 1

2

(
log

(
1

sinp(ex)

)
+ log

(
1

sinp(ey)

))
,

letting r = ex/2 and s = ey/2, we get the first inequality.
For (2), let g(z) = log(artanhp(e−z)), z > 0 and

g
′
(z) = −1/((1− e−pz)F (1, 1/p; 1 + 1/p; e−pz)) < 0,

hence g is decreasing and by Theorem 4 g is convex. Then g−1(y) =
= log(1/artanhp(ey)) is convex by Lemma 5(2), and (2) follows. Finally,
let h1(z) = log(1/arsinhp(e

z)) and

h
′
1(z) = −1/F

(
1, 1/p; 1 + 1/p;

epz

1 + epz

)
< 0.

Then h−1
1 (y) = log(sinhp(e−y)) is decreasing and convex by Lemma 5(2).

This implies that

log(1/ sinhp(e−x/2e−y/2)) ≤ (log(1/ sinhp(e−x)) + log(1/ sinhp(e−y)))/2,

and (3) holds for r, s ∈ (0,∞). Again h2(z) = log(1/arsinhp(e−z)) and

h
′
2(z) = (F (1, 1/p; 1 + 1/p; 1/(1 + epz)))−1 > 0,

similarly proof follows from Lemma 5(2), this completes the proof of (3).

Lemma 7. For p > 1, the following relations hold

1)
√

sinp(r) sinp(s) ≤ sinp((r + s)/2), r, s ∈ (0, πp/2),

2)
√

sinhp(r) sinhp(s) ≤ sinhp((r + s)/2), r, s ∈ (0,∞) .

The proof follows easily from Lemma 5 and 2
√

r s ≤ r + s since the
functions are increasing.
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Lemma 8. For p > 1, the following inequalities hold

1) sinp(r + s)/2 ≤ (sinp(r) + sinp(s))/2 , r, s ∈ (0, πp/2) ,

2) tanhp(r + s)/2 ≤ (tanhp(r) + tanhp(s))2 , r, s ∈ (0, bp/2) ,

3) tanp(r + s)/2 ≥ (tanp(r) + tanp(s))2 , r, s ∈ (0, bp/2) ,

4) sinhp(r + s)/2 ≥ (sinhp(r) + sinhp(s))2 , r, s ∈ (0,∞) .

Let f(x) = arcsinp(x), x ∈ (0, ap). We get

f
′
(x) = (1− xp)−1/p ,

which is increasing, hence f is convex. Clearly, f is increasing. Therefore

f1 = f−1(y) = sinp(y)

is concave by Lemma 5(1). This implies that f
′
1 is decreasing. Clearly

f1(0) = 0, and by [15, Thm 1.25], f1(y)/y is decreasing. Now it follows
from [15, Lem 1.24] that

f1(r + s) ≤ f1(r) + f1(s),

and (1) follows. The proofs of the remaining claims follow similarly.

§ 3. Proof of main results

In this section we give the proof of our main results and few more
relations.
Proof of Theorem 1. By Lemma 2(3), (2) we get

2−
(

1− xp

p (1 + p)

)
< F

(
1
p
,
1
p
; 1 +

1
p
;xp

)
,

and the first inequality of part one holds. For the second one we get

arcsinp x = xF

(
1
p
,
1
p
; 1 +

1
p
; xp

)
<

<
x Γ(1 + 1/p)Γ(1 + 1/p− 1/p− 1/p)
Γ(1 + 1/p− 1/p)Γ(1 + 1/p− 1/p)

=

= xΓ
(

1 +
1
p

)
Γ

(
1− 1

p

)
= x

1
p
B

(
1− 1

p
,
1
p

)
= x

πp

2



24 B. A. Bhayo, M. Vuorinen

by Lemma 2(4). By [9, Prop. (2.11)], arccosp x = arcsinp ((1 − xp)1/p),
and (2) follows from (1). For (3), if we replace b = 1, c − a = 1/p, c =
= 1 + 1/p, xp = z/(1− z) in (3) then we get

arctanp x = xF

(
1,

1
p
; 1 +

1
p
;−xp

)
=

=
(

x

1 + xp

)
F

(
1, 1; 1 +

1
p
;

xp

1 + xp

)
=

=
(

x

1 + xp

)(
1

1 + xp

)1/p−1

F

(
1
p
,
1
p
; 1 +

1
p
;

xp

1 + xp

)
=

=
(

xp

1 + xp

)1/p

F

(
1
p
,
1
p
; 1 +

1
p
;

xp

1 + xp

)
<

< 21/p bp

(
xp

1 + xp

)1/p

,

third identily and inequality follow from Lemma 2(1), (4). For the
lower bound we get

arctanp x >

(
xp

1 + xp

)1/p (
2− F

(
1
p
,
1
p
; 1 +

1
p
;

xp

1 + xp

))
>

>
(p(1 + p)(1 + xp) + xp)x
p(1 + p)(1 + xp)1+1/p

from Lemma 2(3),(2). ¤
Proof of Theorem 2. For (1), we replace b = 1/p, c − a = 1/p, c =
= 1 + 1/p and xp = z/(1− z) in (3) and see that

arsinhp x = xF

(
1
p

,
1
p

; 1 +
1
p

;−xp

)
=

=
(

xp

1 + xp

)1/p

F

(
1,

1
p
; 1 +

1
p
;

xp

1 + xp

)
.

Now we get
log (1 + xp)

1 + p

(
xp

1 + xp

)1/p

<

< xF

(
1
p

,
1
p

; 1 +
1
p

;−xp

)
<

(
1− 1

p
log

(
1− xp

1 + xp

))(
xp

1 + xp

)1/p

from Lemma 2(5) and observing that B(1, 1/p) = p, this implies (1).
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For (2) we get from Lemma 2(5)

1
1 + p

log
(

1
1− xp

)
+ 1 < F

(
1 ,

1
p

; 1 +
1
p

; xp

)
<

1
p

log
(

1
1− xp

)
+ 1 ,

which is equivalent to

x

(
1− 1

1 + p
log(1− xp)

)
< xF

(
1 ,

1
p

; 1 +
1
p

;xp

)
<

< x

(
1− 1

p
log(1− xp)

)
,

and the result follows. ¤
Remark. For the particular case p = 2. Zhu [18] has proved for x > 0

6
√

2(
√

1 + x2 − 1)1/2

4 +
√

2(
√

1 + x2 + 1)1/2
< arsinh(x).

When p = 2, our bound in Theorem 2(1) differs from this bound roughly
0.01 when x ∈ (0, 1).

Lemma 9. For p > 1 and x ∈ (0, 1), the following inequalities hold:

1) arctanp(x) < arsinhp(x) < arcsinp(x) < artanhp(x) ,

2) tanhp(z) < sinp(z) < sinhp(z) < tanp(z) ,

the first and the second inequalities hold for z ∈ (0, πp/2), and the third
one holds for z ∈ (0, bp).

From the definition of the p-analogues functions we get (1), and (2)
follows from (1).

Lemma 10. For p > 1, we have

6p2

3p2 − 2
≤ πp ≤ 12p2

6p2 − π2
, πp =

2π

p sin(π/p)
.

By [19, Thm 3.1] we get

π

p

(
1− π2

6p2

)
≤ sin

(
π

p

)
≤ π

p

(
1− 2

3p2

)
,

and the result follows easily.
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Lemma 11. For a ∈ (0, 1) and k, r, s ∈ (1,∞) , the following inequalities
hold

1) πr s ≤ √
πr2 πs2 ≤ √

πr πs ,

2) πra s1−a ≤ a πr + (1− a)πs ,

3)
(

πs

πr

)k

≤ πsk

πrk

, r ≤ s .

Let f(x) = log(πex), x > 0. We get

f
′′
(x) = e−2xπ2(csc

(
e−xπ

)
)2 − e−xπ cot

(
e−xπ

)
,

which is positive, because the function g(y) = y2(csc(y))2 − y cot(y) is
positive. This implies that f is convex. Hence

log(πe(x+y)/2) ≤ 1
2

(log(πex) + log(πey )) ,

setting r = ex/2 and r = ey/2, we get the first inequality of (1), and the
second one follows from the fact that πp is decreasing in p ∈ (1,∞). Now
it is clear that πex is convex, and we get

πea x+(1−a)y ≤ a πex + (1− a)πey ,

and (2) follows easily. Let 0 ≤ x ≤ y, then we get

(πey )k

πek y

≤ (πex)k

πek x

from Lemma 1, and (3) follows if we set r = ex and r = ey.

Lemma 12. For p > 1 and x ∈ (0, 1), we have

arcsinp

(
x

p
√

1 + xp

)
= arctanp(x) ,

arcsinp(x) = arctanp

(
x

p
√

1− xp

)
,

arccosp(x) = arctanp

(
p
√

1− xp

x

)
,

arccosp

(
1

p
√

1 + xp

)
= arctanp(x) .
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We get

arctanp(x) = xF

(
1
p
,
1
p
; 1 +

1
p
;−xp

)
=

=
x

1 + xp
F

(
1, 1; 1 +

1
p
;

xp

1 + xp

)
=

=
x

1 + xp

(
1

1 + xp

)1/p−1

F

(
1
p
,
1
p
; 1 +

1
p
;

xp

1 + xp

)
=

=
(

x

1 + xp

)1/p

F

(
1
p
,
1
p
; 1 +

1
p
;
(

x

(1 + xp)1/p

)p)
=

= arcsinp

(
x

p
√

1 + xp

)

by (3) and Lemma 2(1). Write y = x/ p
√

1− xp, and second follows from
first one. For the third identity, we get

arctanp

(
p
√

1− xp

x

)
= x p

√
1− xpF

(
1
p
,
1
p
; 1 +

1
p
; (1− xp)

)
=

= arcsinp((1− xp)1/p) = arccosp(x)

by (3), Lemma 2(1) and [9, Prop. 2.2]. Similarly, the fourth identity
follows from third one.

Conjecture 1. For a fixed x ∈ (0, 1), the functions

sinp(πp x/2), tanp(πp x/2), sinhp(cp x)

are monotone in p ∈ (1,∞). For fixed x > 0, tanhp(x) is increasing in
p ∈ (1,∞).

§ 4. Some relations for elementary functions

In this section we give several inequalities involving the elementary
functions in form of Lemmas.

Lemma 13. For x ∈ (0, 1) and z ∈ (0,∞), the following functions

f1(k) = sin(xk)1/k , f2(k) = cos(xk)1/k , f3(k) = tanh(zk)1/k ,

are increasing in (0,∞).
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We get

f
′
1(k) = (xkcot(xk) log(xk)− log(sin(xk))) sin(xk)1/k/k2,

which is positive because

h1(y) = y cot(y) log(y)− log(sin(y)) ≥ 0 .

For f2 we get

f
′
2(k) = −(xk tan(xk) log(xk) + log(cos(xk))) cos(xk)1/k/k2,

which is positive because the function

h2(y) = y tan(y) log(y) + log(cos(y)) ≤ 0.

For f3 we get

f
′
3(k) =

tanh(zk)1/k

k2
(2zk log(zk)/ sinh(2zk)− log(tanh(zk))).

Let h3(y) = 2y log(y)/ sinh(2y) − log(tanh(y)), y = zk ∈ (0,∞). Clearly
h3(y) > 0 for y > 1. For y ∈ (0, 1) we see that h3(y) > 0 if

2y

sinh(2y)
log(y)

log(tanh(y))
≤ 1

which holds because y > tanh(y). In conclusion, f
′
3(k) > 0 for all

z ∈ (0,∞).

Lemma 14. The following inequalities hold

1)
√

arccos(r2)arccos(s2) < arccos(r s) , r, s ∈ (0, 1),

2) arctan(r)arctan(s) <
√

arctan(r2)arctan(s2) < arctan(r s) ,
for r, s ∈ (0, 1),

3)
√

arcosh(r2) arcosh(s2) < arcosh(r s); r, s ∈ (1,∞) .

For (1) we let f(x) = log(arccos(e−x)) , x > 0, and get

f
′′
(x) = −

√
e2x − 1 + e2xarccos(e−x)

(e2x − 1)3/2arccos2(e−x)
≤ 0,

hence f is concave, and the inequality follows.
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For (2) we define g(x) = log(arcsin(e−x)) , x > 0 and obtain

g
′′
(x) =

ex
((

e2x − 1
)
tan−1 (e−x)− ex

)

(e2x + 1)2 tan−1 (e−x)2
< 0 ,

because y < tan(y/(1− y2)) for y ∈ (0, 1), hence g is concave. Therefore
the first inequality of (2) follows and the second one follows from Lemma
13. Finally we define h(x) = log(arcosh(ex)) , x > 0 and get

h
′′
(x) = −ex(ex

√
e2x − 1− arcosh(ex))

(e2x − 1)3/2 arcosh2(ex)
< 0 .

This implies the proof of (3).

Lemma 15. For r, s ∈ (0,∞), we have

1) cosh(r s) <
√

cosh(r2) cosh(s2) < cosh(r) cosh(s) ,
here second inequality holds for r, s ∈ (0, 1),

2) tanh(r) tanh(s) <
√

tanh(r2) tanh(s2) <
√

tanh(r2 s2) .

For (1) we let g1(x) = log(cosh(e−x)) and g2(x) = log(cosh(ex)), x > 0,
and we get

g
′′
1 (x) = e−2x(1/(cosh2(e−x)) + ex tanh(e−x)) > 0,

g
′′
2 (x) = ex(ex/(cosh2(ex)) + tanh(ex)) > 0,

hence g1 and g2 are convex, and the first inequality of (1) holds, and its
second inequality follows from Lemma 13. The firstinequality of (2) follows
from Lemma 13. For the second one let h1(x) = log(tanh(e−x)), x > 0
and get

e−2x
(−csch2

(
e−x

)
+ 2excsch

(
2e−x

)− sech2
(
e−x

))

which is negative, hence h1 is concave. Again, let h2(x) = log(tanh(ex))
and get

−ex
(
excsch2 (ex)− 2csch (2ex) + exsech2 (ex)

)
< 0 .

This implies that h2 is also concave, and the second inequality of (2) holds
for r, s ∈ (0,∞).
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Lemma 16. For y ∈ (0, 1), we have

π

2
y cot

(π y

2

)
log y ≤ log

(
sin

(π y

2

))
, (4)

y coth (y) log y ≤ log (sinh (y)) , (5)

log
(
tan

(πy

2

))
≥ π

2
y log(y) csc

(πy

2

)
sec

(πy

2

)
. (6)

Let f(y) = π
2 y cot

(
π y
2

)
log y − log

(
sin

(
π y
2

))
. We get

f
′
(y) =

π

2
cot

(π y

2

)
log y − 1

4
yπ2 csc2

(π y

2

)
log y =

=
π

2
log(y−1)

(
π y

2
1

sin2(π y/2)
− cos(π y/2)

sin(π y/2)

)
=

=
π

2
log(y−1)

sin2(π y/2)

(π y

2
− sin

(π y

2

)
cos

(π y

2

))
=

=
π

2
log(y−1)

sin2(π y/2)

(
π y

2
− sin(π y)

2

)
.

This is positive because x ≥ sin x for x ∈ (0, 2π), and f(1) = 0 and this
completes the proof. Next, let

g(y) = y coth (y) log y − log (sinh (y)) .

We get

g
′
(y) =

log(1/y)
sinh2(y)

(y − sinh(y) cosh(y)) ≤ 0,

because sinh x ≥ x/ cosh x for x > 0. Moreover, g tends to zero when y
tends to zero and this implies the proof of (5). Next, let

h(y) = log
(
tan

(πy

2

))
− π

2
y log(y) csc

(πy

2

)
sec

(πy

2

)
.

We see that

h
′
(y) = −π2

4
y log(y) sec2

(πy

2

)
+

1
4
π2y log(y) csc2

(πy

2

)
−

−π

2
log(y) csc

(πy

2

)
sec

(πy

2

)
=

= π log
(

1
y

)
csc2(πy)(sin(πy)− πy cos(πy)) ≤ 0,
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because x ≤ tan x for x ∈ (0, 1). Hence h is increasing and tends to
log(π/2) when y tends to zero and this implies the proof.

Lemma 17.

1) The function

H(y) =
1
2
π log

(
1
yy

)
cot

(πy

2

)
− log

(
csc

(πy

2

))

is decreasing from (0, 1) onto (0, log(π/2)).
2) The function

G(y) = log
(
cosh

(πy

2

))
− 1

2
πy log(y) tanh

(πy

2

)

is increasing from (0, 1) onto (0, π log(cosh(π/2))/2).

We get

H
′
(y) = −π

4
csc2

(πy

2

) (
π log

(
y−y

)
+ log(y) sin(πy)

)
=

= −π

4
csc2

(πy

2

)
(π y log(1/y)− sin(πy) log(1/y)) ,

which is positive. Next,

G
′
(y) = −1

2
π log(y) tanh

(πy

2

)
− 1

4
π2y log(y)sech2

(πy

2

)
> 0 ,

and the limiting values follow easily.

Lemma 18. The following function is increasing from (0, 1) onto
(0, π(log(π/2))/2)

g(x) =
x√

1− x2
log

(
1
x

)
− arcsin(x) log

(
1

arcsin(x)

)
.

In particular,

xx/
√

1−x2
< arcsin(x)arcsin(x) <

(π

2

)π/2

xx/
√

1−x2
.
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We get

g
′
(x) = − x2 log(x)

(1− x2)3/2
− log(x)√

1− x2
+

log (arcsin(x))√
1− x2

=

=
log(1/x)− (1− x2) log(1/arcsin(x))

(1− x2)3/2
=

=
log(arcsin(x)(1−x2)/x)

(1− x2)3/2
,

which is clearly positive, and g tends to zero when x tends to zero and 1.

Lemma 19. For x ∈ (0, 1) , the following functions

f(k) = sin
(π

2
xk

)1/k

, g(k) = tan
(π

2
xk

)1/k

, h(k) = sinh
(
xk

)1/k
,

are decreasing in (0,∞). In particular, for k ≥ 1

k

√
sin

(π

2
xk

)
≤ sin

(π

2
x
)
≤ sin

(π

2
k
√

x
)k

,

k

√
tan

(π

2
xk

)
≤ tan

(π

2
x
)
≤ tan

(π

2
k
√

x
)k

,

k

√
sinh (xk) ≤ sinh (x) ≤ sinh

(
k
√

x
)k

.

We get

f
′
(k) = k

√
sin

(
πxk

2

) 
πxk log(x) cot

(
πxk

2

)

2k
−

log
(
sin

(
πxk

2

))

k2


 =

= − 1
2 k2

k

√
sin

(
πxk

2

)
×

×
(

πk xk log(1/x) cot
(

πxk

2

)
− 2 log

(
1/ sin

(
πxk

2

)))
,

which is negative by Lemma 17(1). Next, we get

g
′
(k) = k

√
tan

(
πxk

2

)
×
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×

πxk log(x) csc

(
πxk

2

)
sec

(
πxk

2

)

2k
−

log
(
tan

(
πxk

2

))

k2


 ≤ 0,

by (6). Finally,

h
′
(k) = k

√
sinh (xk)

(
xk log(x) coth

(
xk

)

k
− log

(
sinh

(
xk

))

k2

)
=

= k

√
sinh (xk)

(
xk log(xk) coth

(
xk

)− log
(
sinh

(
xk

)))
(1/k2),

which is negative by inequality (5), and this completes the proof.

Lemma 20. The following functions

f(k) = cos
(π

2
x1/k

)k

, x ∈ (0, 1) ,

g(k) = cosh
(
xk

)1/k
, x ∈ (0, 1) ,

h(k) = arcosh
(π

2
xk

)1/k

, x ∈ (1,∞) ,

are decreasing in (0,∞). In particular, for k ≥ 1

cos
(π

2
k
√

x
)k

≤ cos
(π

2
x
)
≤ k

√
cos

(π

2
xk

)
,

k

√
cosh (xk) ≤ cosh (x) ≤ cosh

(
k
√

x
)k

,

k

√
arcosh

(π

2
xk

)
≤ arcosh

(π

2
x
)
≤ arcosh

(π

2
k
√

x
)k

.

We get

f
′
(x) = cosk

(
1
2
πx1/k

)
×

×
(

πx1/k log(x) tan
(
πx1/k/2

)

2k
+ log

(
cos

(
πx1/k/2

)))
≤ 0

and proof of g follows from Lemma 14(1). Finally, for y ≥ π/2, let

j(y) = arcosh (y) log (arcosh (y))− y log(2y/π)√
y2 − 1

,
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and

j
′
(y) =

log (2y/π)

(y2 − 1)3/2
+

log (arcosh(y))√
y2 − 1

> 0,

and
j(π/2) = arcosh(π/2) log(arcosh(π/2)) ≡ 0.0235 .

With z = xk we get

h
′
(x) =

arcosh (πz/2)1/k

k2arcosh (πz/2)
×

×
(

πz log(z)
2
√

(πz/2)2 − 1
− arcosh

(π

2
z/2

)
log

(
arcosh

(π

2

)))
.

This is negative, because j(y) > 0 for y > π/2.
Proof of Theorem 3. The proof for arcosh follows from Lemma 20, and
the rest of proof follows from the Lemma 3, if we take p = 2. ¤
Lemma 21. The following relations hold

1) sin(r) sin(s) <
√

sin(r2) sin(s2), r, s ∈ (0, 1) ,

2) cos(r) cos(s) <
√

cos(r2) cos(s2) < cos(r s) ,

3) tan(r) tan(s) >
√

tan(r2) tan(s2) > tan(r s),
the first inequalities in (2) and (3) hold for r, s ∈ (0,

√
π/2), and

second ones for r, s ∈ (0, 1).

Clearly (1) and the fist inequality of (2) follwos from Lemmas 13 and
20, respectively. Let g(x) = log(cos(π e−x/2)), x > 0, we get

g′′(x) = −π2

4
e−2x sec2

(
e−xπ

2

)
− π

2
e−x tan

(
e−xπ

2

)
=

= −π

4
e−2x sec2

(
e−xπ

2

) (
ex sin

(
e−xπ

)
+ π

) ≤ 0,

and the second inequality of (2) follows.
For (3), we define h(x) = log(tan(π e−x/2)), x > 0, and we get

h′′(x) = e−xπ
(
1− e−xπ cot

(
e−xπ

))
csc

(
e−xπ

) ≥ 0,

hence h is convex, and the second inequality follows easily, and the first
one follows from Lemma 19.
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Lemma 22. For a fixed x ∈ (0, 1), the function g(k) = (cos kx+
+sin kx)1/k is decreasing in (0, 1).

Differentiation yields

g
′
(k) = (sin(kx) + cos(kx))

1
k×

×
(

kx(cos(kx)− sin(kx))
sin(kx) + cos(kx)

− log(sin(kx) + cos(kx))
)

/k2 .

To prove that this is positive, we let z = k x , y = cos z + sin z ≤ 1.1442

h(z) = (cos z + sin z) log(cos z + sin z)− z(cos z − sin z) ,

and observe that

h
′
(z) = z cos z + (cos z − sin z) log(cos z + sin z) + z sin z =

= zy + log ycos z − log ysin z ≥ 0,

because ezy > ysin z. This implies that g
′
(k) ≥ 0.

§ 5. Appendix

In the following tables we give the values of p-analogue functions for
some specific values of its domain with p = 3 computed with Mathemati-
ca r©. For instance, we can define [11]

arcsinp[p , x ]:= x *Hypergeometric2F1[1/p, 1/p, 1 + 1/p, x^p]
sinp[p , y ]:= x /.FindRoot[arcsinp[p, x] == y, {x, 0.5 }]

x arcsinp(x) arccosp(x) arctanp(x) arsinhp(x) artanhp(x)
0.00000 0.00000 1.20920 0.00000 0.00000 0.00000
0.25000 0.25033 1.17782 0.24903 0.24968 0.25099
0.50000 0.50547 1.07974 0.48540 0.49502 0.51685
0.75000 0.78196 0.88660 0.68570 0.72710 0.85661
1.00000 1.20920 0.00000 0.83565 0.93771 ∞

x sinp(x) cosp(x) tanp(x) sinhp(x) tanhp(x)
0.00000 0.00000 1.00000 0.00000 0.00000 0.00000
0.25000 0.24967 0.99478 0.25098 0.25033 0.24903
0.50000 0.49476 0.95788 0.51652 0.50518 0.48517
0.75000 0.72304 0.85362 0.84704 0.77588 0.68283
1.00000 0.91139 0.62399 1.46058 1.08009 0.82304
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With a normalization different from ours, some eigenvalue problems
of the p-Laplacian have been studied in [20].
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