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PLANE DOMAINS WITH SPECIAL CONE CONDITION

Abstract. The paper considers the domains with cone condi-
tion in C. We say that domain G satisfies the (weak) cone con-
dition, if p+ V(e(p), H) C G for all p € G, where V(e(p), H)
denotes right-angled circular cone with vertex at the origin, a
fixed solution ¢ and a height H, 0 < H < oo, and depen-
ding on the p vector e(p) axis direction. Domains satisfying
cone condition play an important role in various branches of
mathematic (e.g. [1], [2], [3] (p. 1076), [4]). In the paper of
P. Liczberski and V.V. Starkov, a—accessible domains were con-
sidered, « € [0, 1), — the domains, accessible at every boundary
point by the cone with symmetry axis on {pt : ¢ > 1}. Un-
like the paper of P. Liczberski and V.V. Starkov, here we con-
sider domains, accessible outside by the cone, which symmetry
axis inclined on fixed angle ¢ to the {pt : t > 1}, 0 < ||¢]| <
< /2. In this paper we give criteria for this class of domains
when the boundaries of domains are smooth, and also give a suf-
ficient condition when boundary is arbitrary. This article is the
full variant of [5], published without proofs.
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1. Introduction. In [6] (see also [7]) a—accessible domain, a € [0, 1),
were introduced and studied. A domain Q C R", 0 € €, is called a—
accessible, if for every point p € 02 there exists a number r = r(p) > 0
such that the cone
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is included in ' = R™\ Q.
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Plane domains with special cone condition 17

In particular, in [6] the authors proved that a—accessible domains are
bounded and satisfy cone condition when a € (0,1) and e(p)=—p. This
condition of radiality axis of symmetry applies significant limitation on (2.

The paper consider the case, when the axis of cone symmetry is lies
on ray, containing 0 and p, and crosses the cone.

Definition 1. A domain Q) C C, 0 € €, is called («, §)—accessible, «, 3 €
€ [0,1), if for every point p € 92 there exists a number r = r(p) > 0 so
that the cone

Ki(p,a,B,1) = {z eC: —%T < arg(z —p) —arg(p) < %, |z —p| < 7“}

is included in ' = C\ .

Let us denote oy = min(«, ), fo = max(«, 5). Note that the class of
(c, B)—accessible domains is intermediate between ap— and [p—accessible
classes.

The purpose of this paper is to discuss the failure of condition e(p) =
= —p, when the angle (let us denote it by ¢) of inclination axis of sym-
metry to the ray {pt : ¢t > 0} is a constant.

It is interesting to figure out how the properties of domains with this
inclination will be changed. This problem is very difficult for large values
of ¢ (¢ > %) even in the case of permanent angle ¢. In this case, the
methods by which the results were obtained in [6] are no longer applicable.

This work does not provide a complete description of these areas — this
task is too complex, but at this stage it’s unable to get rid of condition
e(p) = —p and replace it by the condition of the Def. 1, when ¢ is constant.

Let’s introduce some other definitions.

Definition 2. We call a domain 2 starlike with respect to 0 if for every
point z € Q) segment [0, z| is contained in §).

Definition 3. We call a domain ) a strong-starlike with respect to 0 if
[0, p] N O = p for every point p € ON2.

2. Case of arbitrary boundary.

Theorem 1. If the domain (Q is («, 3)—accessible, «, 8 € (0,1), then for
each point p € 02 and for every € € (0, min(a, 3)) there exists a number
p such that p(p) > 0 and the cone K_(p,a — ¢, — ¢, p) C 2, where

K_(p,a—g,ﬁ—g,p) =
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= {z eC: B _26)7r < arg(z —p) —arg(—p) < lo—er ;E)W

Proof. Suppose not. Then there exists a point p € 02 such that

Az—m<p}~

K (ppa—eB—ep)NQ #o

for p > 0 and € € (0, min(«, 8)). This shows that there exists a sequence
of points such that {w,,} € K_(p,a—¢,8—¢,p)NQ, and z,, — p as
m — oo. Consider C(p, |wy,|) — circle with center of p and radius |w,,|.
This circle intersects the segment [0, p). Associate point w,, with those,
which are obtained as a result of intersection C(p, |z,,|) N[0, p) with arc of
circle, are placed in Int(K_(p,a —¢,8 —€,p)). As 0 is connected, this
arc of circle intersects the bound of 2. Thus we get sequence of points
lying on bound of €2, which converges to p. Let us denote this sequence
{wn,}.

Denote by [(0) the ray, starting from 0 and passing through the seg-
ment [0, p] with angle 6. In [6, proof of Theorem 1] was proved existence
of lg N0 and a unique. Thus, € is a strong-starlike domain.

Introduce a function r = r(#), the distance from 0 to the point of
intersection of the ray [(f) with 90Q. From [6, proof of Theorem 1] it
follows that r(#) is continuous.

There exists n € N such that for all m > n

|arg(w,,) — arg(p)] < - (*)

Denote by ¢m = arg(wm) — atg(p), ém € (~; 7).

Now let us consider that L is part of 95, lying between [(0) and I(¢yy).

As wy, € 09, then for it exists cone K (wy,,a, f,7m) C Q, ry > 0.

Consider two ways:

1) Let ¢,, > 0. Draw a line through w,, parallel those sides of cone
K_(p,a—e¢,B —¢,p), which intersect I(¢,,). This line intersects segment
[0,p] at the point A : |A] < |p|. The same side of cone K (w,,,a, )
intersects the segment [0,p] at the point B : |B| < |A|. This is true,

when: 3 T )
T — &)
Y (1)

2) Let now ¢,, < 0. By similar reasoning, we obtain:
ar _ (a—e¢)

s
5 T+|¢m|' (2)
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From (%) it follows that for sufficiently large number m the inequalities
(1) and (2) hold. By the fact, that Q is («, §)—accessible and

K-‘r(wmva?Bva) NQ=o

we have L N Ky (wp, a, B,7m) = 2.

Consider L N [wy,, B]. Let wq is closest to B point of intersection
LN [wy,, B]. Denote by 6y = arg(wg) — arg(p), the angle between the ray
[(Ay), going from 0 through point wy, and the segment [0,p].

As wg € 99, for it exists cone K (wp, a, 3,0) such that

K+(7U0,O(7B,(5) Nl=g

for sufficiently small 6 > 0. The side of cone K (wy,, ) intersects the
segment [0, p] in point C' in the way that |C| < |B|. It follows from the
fact that cone K (wg,a, ) obtains from cone K, (w,,a, ) by turning
an angle (0p — ¢m,)-

For L to connect wp and p, it must either intersect (wq, B), or intersect
segment [0, p]. None of both is possible. Indeed, by the definition of wy,
L can’t intersect the segment (wp, B). On the other hand, by virtue
of an unambiguous definition r(#), 92 can’t contain the radial segments
[6, Theorem 1], so it doesn’t contain the points from [0,p). Hence we
get a contradiction with the fact, that theorem is wrong. The proof is
complete now. [

Theorem 2. If Q) is (a, B)—accessible, then for every point p € 9§} and
for every fixed a, 8 € [0, 1) unbounded cone K { (p, «, 5,00) := K (p,a, 3)
belongs to C\ = (V.

Proof. Suppose that the theorem is wrong. Then there is a point p € 02
such, that z € K, (p,a, ) NQ, z € Q. Consequently there exists w € 9
such, that for every fixed R > 0, w € K (p,a, B, R). Let us suppose,
that point w is first, except p, contained in 0K (p, a, 5, R), which means,
that there were no other points from 92 on 0K (p, o, 5, R).

Suppose that w € 0K, (p,a, ). Then w € 0B(p, R) and thus, there
exists vicinity U, C K (p,a, 3). So, there is a point v € € such that v €
€ Uy. As Q is starlike, [0, v] is contained in Q. From the other hand

[O,U] mKJr(p?auﬂ?R) 7é g,

which contradicts the fact that K, (p, o, 8, R) C V.
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So w € 0K (p,a, ). Through Theorem 1 there exists p = p(p) such
that cone K_(w,a —¢,8 —¢,p) C Q for every € € (0, min(a, 3)).

In C, we introduce polar coordinates 0 — pole, Op — polar.

Consider the points ay = p+ (w — p)A, A € (0,1). We show, that
ay € K_(w,a — ¢, — ¢, p) for sufficiently small p;0, when A close to 1
and € close to 0. If this is true, then one the one hand a) € €2, which
follows from Theorem 1, and on the other hand a) € 0K (p, «, ) since
w € 0K 4 (p,a, B). This contradiction get us that the theorem is true.

To prove the inclusion ay € K_(p,a — e, 8 — €, p) it is enough to show

that
_WT@W < arg(ay —w) — arg(—w) < @ (3)
Since ay —w =p+ (w—p)A—w = (p—w)(1—N), (3) can be rewritten
o (B—e)m (@ —e)m
s < arg(p —w) — arg(—w) < 5 (4)

Here we get two ways:
1) Suppose that

I < argw) — ara(p) < 0
this means that arg(w — p) — arg(p) = —’%ﬁ.
We see that arg(p — w) — arg(—w) = arg(w — p) — arg(w), so

arg(p — w) — ars(—w) = ~ 7+ arg(p) — arg(w) <0,

As arg(w) — arg(p) < 0, for sufficiently small ¢ > 0

arg(p) - arg(w) > -,
and thus,
arg(p) — 7 — arg(w) >~ + T @
From inequality (5), it follows, that
(B —e)m

< arg(p — w) — arg(—w) < 0.
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2) Now let us suppose that

0 < arg(w) — arg(p) < O;—W;

T

this means that arg(w — p) — arg(p) = 4.
We see that arg(p — w) — arg(—w) = arg(w — p) — arg(w) and so

0 < arg(p —w) — arg(—w) = % + arg(p) — arg(w).

As arg(w) — arg(p) > 0, for sufficiently € > 0, one has

ET
arg(w) — arg(p) > 5,

so that o on e
5 + arg(p) — arg(w) < 5 "5 (6)
From (6), it follows, that
(—e)m
0 < arg(p — w) — arg(—w) < —

Thus, from cases 1) and 2), it follows, that inequality (3) is true, and
thus ay € K_(w,a — ¢, — ¢, p) with A close enough to 1. Hence we get
a contradiction. The proof is completed. [J

Remark 1. Observe that («, 8)—accessible domains are bounded, if a, § €
€ (0,1), since these domains are a—accessible, ag = (min(c«, 3)), and in
[6] it was shown that ag—accessible domains are bounded for cg > 0.

Theorem 3. IfQ C C,0€ Q, «, 5 € (0,1), then the following assertions
are equivalent:

(1) Q is (a, B)—accessible domain;

(74) every unbounded cone K (p,c,3) C £, p € 0€;

(7i1) every unbounded cone K (p,a,3) C ', p € ;

(iv) for every point p € 92 and for every € € (0, min(c, [3)) there exists
an r = r(p) > 0 such that the bounded cone K_(p,ac — e, —¢e,r) C Q.

Proof. In view of Theorems 1 and 2, it is sufficient to prove the implica-
tions (iv) = (i) and (i1) = (ii7).
Let w = I(z) be the mapping inversion, defined as:

1

= (7)

w =
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For the proof of (iv) = (i), under this mapping, consider the image
of the cone K, (p/,B,a) \ {p'} to K_(p,a,B), where p = 1/p’. Indeed,
(7) is a bilinear mapping, having a circular feature and the property of
preserving angles, so that the boundary of K (p', o, §) transfers into arcs,
intersecting at points p and 0, and the angle of intersections of those circles
at the point p is (a4 )7 /2, and the image will be lying inside intersection
of these circles.

Now, let us consider the condition (iv). Denote G C C as the image
I(Q2\ 0). We will show that domain G’ = C\ G is (8, a)—accessible.

To show this, we note that 0 € G’, and for every point p € 99
there exists cone K_(p,a —e,8 — ¢,p) C , for sufficient small p =
= p(p,e) > 0. Obviously, there exists a number r = r(p, p) > 0 such that
when z = 1/w follows the inclusion

IKy(p,B—e,a—e,r)\{p'}) CK_(p,a—e,f—e¢,p),

which means that I(K4(p/,5 — e, —¢e,7) \ {p'}) C Q for every point
p’ € 0G'. Thus G’ is (B — &, a — g)—accessible domain, ¢ € (0, min(a, 3)).
From Theorem 2 it follows, that K (p/,5 —e,a —¢) C G. Passing to
the limit ¢ — 0 we get that K, (p/,8,a) C G', so G’ is (B, a)—accessible.
Hence, from Theorem 1, it follows that for every point p € OG’ and for
every € € (0, min(c, 3)) there exists an r = r(p’, &) > 0 such that the cone
K_(p/,a—e,B —e¢,r) belongs to G'.

Note that under the mapping (7) the image of cone K_(p/,a — e, —
— &,r) belongs to K (p,a —¢, 3 — ¢, R) for some r = r(p, R) > 0, so that
I(K_(p/,a—e,f—e,r)) C Q. Hence and from definition we see that 2 is
(v —e, f—e)—accessible domain. Using Theorem 1 and allowing ¢ — 0 we
get, that Q is (a, B)—accessible. This proves the implication (iv) = (7).

We now show, that if Q satisfies the condition (i7), then  satisfies
the condition (7i7). Take arbitrary point p € Q' \ 092. The segment
[0, p] intersects 0. If this intersection has more than one point, then
we take the closest to p and denote it as p’, and the next one — as p”.
Then the cone K (p',a, 3) contains inside sufficient small surroundings
of point p” and therefore points from 2. On the other hand, Theorem 2
says that K, (p/,«,8) C Q. This is a contradiction the fact that [0, p] N
NI = p’. Hence, from Theorem 2, it follows that K, (p/,«, 5) C Q. We
will now show, that K, (p,«, ) C Q. Indeed, since |p| > |p/|, we have

Kyi(p,a,B) =K, (p/ e, B) + (p — p'), so that arg(p) = arg(p’). Then for
every point z € K, (p, a, B), one has z+(p—p') € K4 (p, a, 8). Let us show
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that z + (p — p’) belongs to K, (p’, «, ). Since z+ (p—p') € K1 (p, «, 8),
we see that

AT

T < argle (0 p) ) — () < O

and so, as arg(p) = arg(p’),

/377 T
-5 < arg(z —p') —arg(p’) < -

Hence, from definition of K (p',«,3), we obtain that z + (p — p’) €
€ Ki(p,a,8). Thus K (p,a,) C . Since the point p € Q' \ 99
is arbitrary, we get the implication (ii) = (iii). O

Remark 2. If {Q,} is a family of (a, §)-accessible domains, then the
union Q = |J,{Q,} is also a («, B)-accessible domain. Actually, from
Theorem 3, it follows that ) is («, 3)—accessible domain if and only if
Ki(p,a,8) NQ = @ for every point p € Q. Ifp ¢ Q, then p ¢ Q,
for every ~. In this situation, K, (p,a, ) N, = @ for every . Thus,

K—i—(paavﬂ) N (UQW) =d.

Theorem 4. IfQis («, §)—accessible domain, «, 5 € (0, 1), then for every
e € (0,min(«, 3)) there exists an R = R(e) > 0 such that the cone
K_(p,a—¢,8—¢,R) C$ for every point p € ).

Proof. From the implication (iv) = (i) in proof of Theorem 3, it follows
that for (a, B)—accessible domains 2, the interior of complement I(Q)') =
= @', using z = I(w) = 1/w, is (B, a)—accessible domain. Therefore it
is enough to show that for every fixed ¢ € (0, min(c, 3)) there exists an
R = R(e) > 0 such that for every point p € 01, the image of every w €
€ K_(pa—e,8—¢,R) using z = I(w) considered inside K, (p', 3, a),
p’ = 1/p. Indeed, if it will be shown, then

I(K_(p,a—¢e,—¢,R)) C G=1(Q).

Hence, as I(w) is homeomorphism, we get K_(p,a —¢,8 — e, R) C Q.
Since w € K_(p,a —¢,8 — &, R), w = p + re!(®+a18®) ¢ (0, R],

pe((2—=PF+e)m/2,2+a—e)n/2),

sothat m — ¢ € ((8 —e)n/2, (a+¢)7m/2).
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By definition of the K (p, 8, a), we get I(w) = 1/w € IntK, (p, 8, @)

if and only if
am 1 1 1 B
— <arg <%—5) — arg (5) <5 (8)

Now

arg <% - %) —arg (%) = arg (%) — arg(p) = arg (]?) =

—re—i(d+arg(p))
- (;3 e i@ tare)

) — arg (ei(ﬂ'—¢>—arg(lﬂ))> + arg <p+rei(¢+arg(p))> _

= T — ¢ — a/rg(p) + arg (p + /rwei(¢’+3«rg(p))> .

Since 0 € 0, we have p # 0. Then there exists an R € (0, Iﬂla% Ip|)
pE

such that ' -
’arg (p n Rez(¢+arg(p>>> _ arg(p)‘ <3

therefore, for every r € (0, R) and for every p € 02, the following inequa-

lity holds:

’arg <p + rei(‘b’Larg(”))) — arg(p)’ < %T,

thus the inequality (8) holds.

Hence we get that there exists an R = R(¢) > 0 such that for every p €
€ 01, the image of the cone K_(p,a—e, f—¢, R) belongs to IntK (p’, 3, a).
This proves the theorem. [

Theorem 5. If a domain 2 C C (2 # C) is (a, f)—accessible, o, €
€ (0,1), then for every € € (0, min(a, 3)) there exists an R = R(e) > 0
such that the cone K_(p,a — e, 8 — ¢, R) belongs to ) for every p € Q.

Proof. Assume that theorem is wrong. Then for some ¢ € (0, min(a, 3))
there exists sequence of points wy € €2 and a sequence of numbers r; such
that the cone

K (wg,a—¢,B—¢e,m)NQ # o (9)

for every number k£ € N, and 7, — 0. Since © is compact, there exists
a convergent subsequence of sequence {wy}, that w) — w(. Denote this
subsequence as {w; }. If wy € Q, then for sufficiently small p > 0 ball



Plane domains with special cone condition 25

B(wy, p) C Q. Starting from some number k£ > N, points wj, € B(wy, p),
we have K_ (w},, a—¢, B—e)NB(wy, p) C Q. Since the last fact contradicts
(9), we get that wj, € 9.

Consider a sequence of points py, € 092, pr, = A\yw),, A > 1. Note that
pr — wj when k — oo and hm pr = po = wj. Indeed, if it is wrong,

then pg = Aw(), Ao > 0 and )\ 7é 1 Since pg € 01, for every surroundings
UpO Up, N2 # @. On the one hand 2 is («, 8)-accessible domain and
w( € 0L, so the cone K (w,a, ) belongs to £’. On the other hand,
since |po| > |wgl, the sufficient small surroundigs U,, C Ky (wy, , 3), so
that K (w),a, ) N # @, but this can not be true (see Theorem 2).
Hence we get that po=wy,.

Since lim wj = po = lim pi, pr = \w), Ay — 1T as kb — oc.

k—o00 k—o00

Therefore for number R from Theorem 4 and for sufficient large number
k, points w;, € K_(pg,o« —¢,8 — ¢, R) and

K (w,,a—¢,8—¢,1) CK_(pr,a—¢,8—¢,R).

By Theorem 4, the cone K_(py, o — e, — e, R) C Q for some fixed R =
= R(e) > 0, so that K_(w;,,a —¢,8 —¢,7;) C Q. The last contradicts
the relation (9). Theorem 5 is proved. [J

3. Case of domains with smooth boundary. Here we assume
that the domain Q C R? has smooth boundary 9 given by equation:

F(z,y) =0,

and
F(z,y) <O0.

is Q.

Smooth function F'(z,y) can be set locally which means that F(z,y) =
= F,(z,y) in the neighborhood of each point p € 9. Since 02 in the
neighborhood of each point p € 9€) can be defined by the equation:

z=f(y) or y=f(z),

we can assume that gradF(p) # 0 for every point p € 9.
_gradF(p)
@I

the external unit normal vector at
H gradF(p

Denote by n(p) =
point p € 0N.
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The following lemma is a consequence of the lemma from [6].

Lemma 1. Let 2 C C with smooth boundary OS2, and n(p) is external
normal vector at point p € 9. Then for every fixed o, f € (0,1) there
exists r > 0 such that

KT (p, o, B,71) =

= {z eC: —%ﬁ < arg(z — p) —arg(n(p)) < % Iz = pll < 7“} c e,
Ki(p7a7677‘) =

= {z eC: —%T < arg(z —p) — arg(—n(p)) < %, |z —p| < 7“} c Q.
Theorem 6. Let Q2 € C, 002 be smooth boundary. Then for every fixed
a, B € (0,1) domain § is (o, 5)—accessible if and only if

_Q%Mgmw»ﬂmwmé

(1-a)
2

(10)

for every point p € 0S2.

Proof. Suppose that Q is (a, )—accessible. We will show that the in-
equality (10) holds. As € is («, §)—accessible, it is starlike with respect
to 0, and under our assumptions about F(z) it follows from [7] that Q

starlike if and only if (II%\I’ %) > 0 for every p € 09. Indeed,
gradF(p)

ToradFm)] — n(p) is external normal vector at point p and

p ) )
QWW@HZMWWQQ

which means that |¢,| < 7/2. Let ¢, = arg(p) — arg(n(p)), arg(p) €
€ [0,2x]. arg(p) increases when crawling 9 in positive direction, and
arg(n(p)) changes continuously with a continuous changing of p € 0f).
Suppose that at point p the inequality (10) doesn’t hold, then we get:

(1—a)r

5 < arg(p) —arg(n(p)) < 3. (1)

" (-

5 (12

—g < arg(p) — arg(n(p)) < —
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For simplicity, we assume that arg(p) = 0, p € R (this could be achieved
by converting the rotation on which the domain {2 is not sensitive). Thus

T <argln(y)) < LT (13"
=T < arglnio)) < 7. (14

As Q is («, B)—accessible, the cone K (p,«, 5) C . Let
K_(pv"%m) =
= {z eC: —fg < arg(z —p) —arg(—n(p)) < 777, |z —p| < m} :

From a lemma proved in [6], it follows that for every fixed v € (0,1)
there exists an m > 0 such that K~ (p,v,m) C . Take a point z €
€ 0K, (p,a,B,r), z=p+pe'®, ¢ = {am/2,—fr/2}, 0 < p <.
Separately consider the cases (13*), (14*).
1) Case (13*). Let 2+ = p+ pe®™/2. We will show that 2t belongs to
K~ (p,v,m) if p < m. Choose arg(—n(p)) such that

arg(—n(p)) = 7 + arg(n(p)).

Then .
T <arg(-n(p) < TEOT (15)
Since arg(z" — p) = an/2, one has
T < arg(s* — p) — arg(—n(p)) < — L=, (16)
2 - 2

From (16) it follows that for sufficiently small m > 0 there exists v € (0,1)
with
T T

—77 <arg(z" —p) —arg(—n(p)) < 5

Last inequality means that 2™ € K~ (p,v, m) with p < m. A lemma from
(6] guarantees that K~ (p,v,m) C Q and thus 2T also belongs €2, which
contradicts the fact that z* € K, (p, o, ) C Q.

2) Case (14*). Now let 2~ = p+pe~i%" . We will show that 2~ belongs
to K~ (p,v,m) if p < m. Choose arg(—n(p)) such that

arg(—n(p)) = arg(n(p)) — .
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Then 1+ 5)
- < arg(—n(p)) < 3 (17)
Since arg(z~ — p) = —f7/2, we have
DT < arg(m — ) — ana(n(p) < 7 (18)

From (18) it follows that for sufficiently small m > 0 there exists v € (0, 1)
with
™

g <arg(z” —p) —arg(—n(p)) < -

Last inequality means, that 2~ € K~ (p,~y, m) with p < m. A lemma from
[6] guarantees that K~ (p,v,m) C Q. Thus z~ also belongs to €2, which
contradicts the fact that 2~ € K, (p,a,3) C .

Contradictions in cases 1) and 2) mean that if © is («, §)—accessible
domain then inequality (10) holds.

Now let for every point p € 9€) the inequality (10) hold. We show that
Q2 is (a, B)—accessible domain. At first show that Q is (7, #)-accessible
domain for n € (0,a),0 € (0,0), i.e. for every point p € 9 the cone
K. (p,n,0,r) C QO r= r(p) > 0. Fix p and take a point z € K (p,n,0,r)
with sufficiently small  then

O T
— Sarg(z —p) —arg(p) < - (19)
Compose (10) and (19):

_Q;%;@zga@@—m—a@m@»s

(1—a+n)m
—

Last inequality means that z belongs to K™ (p,1 —a +n,1 — 8+ 6,r).
Denote ¢ = max(l —a+mn,1—5+6), ¢ € (0,1). Then

K+(pa1—04+7771—3+977’) CK+(Pa¢>7’)-

A lemma from [6] guarantees that Kt (p,,r) C Q' for sufficiently small
r >0, and thus K*(p,1 —a+n,1—38+6,r) C .

We get that z € Q' for every point z € K, (p,n,0,r) with sufficiently
small » > 0. Thus 2 is (7, #)—accessible domain. Now, applying Theorem
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2 and passing to a limit n — «, 8 — [ we get that Q is a (a, 8)—accessible
domain. Theorem 6 proved.

O

Corollary 1. Denote by e the symmetry axis of the cone K (p,a,f3).
Then a condition (10) is equivalent to

(rep ) 2o (557

Proof. Fix p € 092. With rotation transformation, assume that arg(p)

=0.
The solution of the cone K (p,a,B,7) is (O‘Jr% Note that arg(e) €

€ (=%,%) Then

% — arg(e) = %Zf arg(e) > 0,
or
ﬁ; + arg(e) = %Zf arg(e) < 0.

From the last inequalities we get arg(e) = %. Thus from (10) we get:

_w < arg(e) — arg(n(p)) <

2—a—-p)r
4 b

and this is equivalent:
e . ((a+pB)7
— N p)) > sin (—> .
(™ i

The following theorem gives a sufficient condition for («, 5)—accessible
domains. Here A* denotes a matrix, conjugate to a matrix A. Let e, as
in corollary to Theorem 6, be a vector lying on the symmetry axis of the
cone K (p,a, ).

|

Theorem 7. Let Q C R? be a bounded domain with 0 € Q, «, 3 € (0,1).
Let f = z be a diffeomorphism of a domain ) at the unit circle

centered at the point 0, f(0) = 0, and D f(x) is nonsingular differential in
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every point x € ().
If for a number 6 > 0 the inequality:

fr@)Df(@)e ((Oé+ﬁ)7f>
[7-@DF@lel =\ 4

holds in Q(0) = {x € Q : dist(z,00) < 0}, then Q is («, f)—accessible do-

main.

Proof. Denote by Q, = {z € Q:u? +v? <r?} with r € (0,1). Q, C Q
and 0f2,. — smooth boundary, given by equation:

F(z) =u?+v* —r* =0,

Since D f(x) is nonsingular for every z € €, then f*(p)Df(p) # 0 for
every point p € 012,.. Note that

F@Dfa) = (o) ( o )

a$1 8$2

., Ou ov  Ou ov, (1.0 o L 10 , 45 5\
n (ual'l +U8x1’u8x2 +U(9332) B (2 81’1 <u v ), 2(9.’13’2(u v ) B
= %gradF(x).

Then gradF(p) = 2f*(p)D f(p) # 0 for every point p € 9.

As Q is bounded, for fixed § > 0 99, C Q(4) for r € (rg,1), with rg
sufficiently close to 1.

By the condition in Theorem 7 we get,

( e  gradF*(z) ) gradF(z)e F*(z)Df(x)e

lell” llgradF=(@)|l) ~ lgradF(@)[lle] ~ £+ Df @)lell =

> sin (M) .

4

Now, from the corollary after Theorem 6 we get that .. is (a, 8)—accessible
domain, and from remark after Theorem 3 it follows that 2 = |J 1) 2

is (a, B)—accessible. Thus, Theorem 7 is proved. O
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