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PLANE DOMAINS WITH SPECIAL CONE CONDITION

Abstract. The paper considers the domains with cone condi-
tion in C. We say that domain G satisfies the (weak) cone con-
dition, if p + V (e(p), H) ⊂ G for all p ∈ G, where V (e(p),H)
denotes right-angled circular cone with vertex at the origin, a
fixed solution ε and a height H, 0 < H ≤ ∞, and depen-
ding on the p vector e(p) axis direction. Domains satisfying
cone condition play an important role in various branches of
mathematic (e. g. [1], [2], [3] (p. 1076), [4]). In the paper of
P. Liczberski and V.V. Starkov, α–accessible domains were con-
sidered, α ∈ [0, 1), — the domains, accessible at every boundary
point by the cone with symmetry axis on {pt : t > 1}. Un-
like the paper of P. Liczberski and V.V. Starkov, here we con-
sider domains, accessible outside by the cone, which symmetry
axis inclined on fixed angle ϕ to the {pt : t > 1}, 0 < ∥ϕ∥ <
< π/2. In this paper we give criteria for this class of domains
when the boundaries of domains are smooth, and also give a suf-
ficient condition when boundary is arbitrary. This article is the
full variant of [5], published without proofs.
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1. Introduction. In [6] (see also [7]) α–accessible domain, α ∈ [0, 1),
were introduced and studied. A domain Ω ⊂ Rn, 0 ∈ Ω, is called α–
accessible, if for every point p ∈ ∂Ω there exists a number r = r(p) > 0
such that the cone

K+(p, α, r) =

{
x ∈ Rn :

(
x− p,

p

∥p∥

)
≥ ∥x− p∥ cos(απ

2
), ∥x− p∥ ≤ r

}
is included in Ω′ = Rn \ Ω.
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In particular, in [6] the authors proved that α–accessible domains are
bounded and satisfy cone condition when α ∈ (0, 1) and e(p)=−p. This
condition of radiality axis of symmetry applies significant limitation on Ω.

The paper consider the case, when the axis of cone symmetry is lies
on ray, containing 0 and p, and crosses the cone.

Definition 1. A domain Ω ⊂ C, 0 ∈ Ω, is called (α, β)–accessible, α, β ∈
∈ [0, 1), if for every point p ∈ ∂Ω there exists a number r = r(p) > 0 so
that the cone

K+(p, α, β, r) =

{
z ∈ C : −βπ

2
≤ arg(z − p)− arg(p) ≤ απ

2
, |z − p| ≤ r

}
is included in Ω′ = C \ Ω.

Let us denote α0 = min(α, β), β0 = max(α, β). Note that the class of
(α, β)–accessible domains is intermediate between α0– and β0–accessible
classes.

The purpose of this paper is to discuss the failure of condition e(p) =
= −p, when the angle (let us denote it by ϕ) of inclination axis of sym-
metry to the ray {pt : t > 0} is a constant.

It is interesting to figure out how the properties of domains with this
inclination will be changed. This problem is very difficult for large values
of ϕ (ϕ > π

2 ) even in the case of permanent angle ϕ. In this case, the
methods by which the results were obtained in [6] are no longer applicable.

This work does not provide a complete description of these areas – this
task is too complex, but at this stage it’s unable to get rid of condition
e(p) = −p and replace it by the condition of the Def. 1, when ϕ is constant.

Let’s introduce some other definitions.

Definition 2. We call a domain Ω starlike with respect to 0 if for every
point z ∈ Ω segment [0, z] is contained in Ω.

Definition 3. We call a domain Ω a strong-starlike with respect to 0 if
[0, p] ∩ ∂Ω = p for every point p ∈ ∂Ω.

2. Case of arbitrary boundary.

Theorem 1. If the domain Ω is (α, β)–accessible, α, β ∈ (0, 1), then for
each point p ∈ ∂Ω and for every ε ∈ (0,min(α, β)) there exists a number
ρ such that ρ(p) > 0 and the cone K−(p, α− ε, β − ε, ρ) ⊂ Ω, where

K−(p, α− ε, β − ε, ρ) =
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=

{
z ∈ C : − (β − ε)π

2
< arg(z − p)− arg(−p) < (α− ε)π

2
, |z − p| < ρ

}
.

Proof. Suppose not. Then there exists a point p ∈ ∂Ω such that

K−(p, α− ε, β − ε, ρ) ∩ Ω′ ̸= ∅

for ρ > 0 and ε ∈ (0,min(α, β)). This shows that there exists a sequence
of points such that {wm} ∈ K−(p, α− ε, β − ε, ρ) ∩ Ω′, and zm → p as
m → ∞. Consider C(p, |wm|) – circle with center of p and radius |wm|.
This circle intersects the segment [0, p). Associate point wm with those,
which are obtained as a result of intersection C(p, |zm|)∩ [0, p) with arc of
circle, are placed in Int(K−(p, α− ε, β − ε, ρ)). As ∂Ω is connected, this
arc of circle intersects the bound of Ω. Thus we get sequence of points
lying on bound of Ω, which converges to p. Let us denote this sequence
{wm}.

Denote by l(θ) the ray, starting from 0 and passing through the seg-
ment [0, p] with angle θ. In [6, proof of Theorem 1] was proved existence
of lθ ∩ ∂Ω and a unique. Thus, Ω is a strong-starlike domain.

Introduce a function r = r(θ), the distance from 0 to the point of
intersection of the ray l(θ) with ∂Ω. From [6, proof of Theorem 1] it
follows that r(θ) is continuous.

There exists n ∈ N such that for all m > n

| arg(wm)− arg(p)| < επ

2
. (∗)

Denote by ϕm = arg(wm)− arg(p), ϕm ∈ (−π;π].
Now let us consider that L is part of ∂Ω, lying between l(0) and l(ϕm).
As wm ∈ ∂Ω, then for it exists cone K+(wm, α, β, rm) ⊂ Ω, rm > 0.
Consider two ways:
1) Let ϕm > 0. Draw a line through wm parallel those sides of cone

K−(p, α− ε, β − ε, ρ), which intersect l(ϕm). This line intersects segment
[0, p] at the point A : |A| < |p|. The same side of cone K+(wm, α, β)
intersects the segment [0, p] at the point B : |B| < |A|. This is true,
when:

βπ

2
>

(β − ε)π

2
+ |ϕm|. (1)

2) Let now ϕm ≤ 0. By similar reasoning, we obtain:

απ

2
>

(α− ε)π

2
+ |ϕm|. (2)
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From (∗) it follows that for sufficiently large number m the inequalities
(1) and (2) hold. By the fact, that Ω is (α, β)–accessible and

K+(wm, α, β, rm) ∩ Ω = ∅

we have L ∩K+(wm, α, β, rm) = ∅.
Consider L ∩ [wm, B]. Let w0 is closest to B point of intersection

L ∩ [wm, B]. Denote by θ0 = arg(w0)− arg(p), the angle between the ray
l(θ0), going from 0 through point w0, and the segment [0,p].

As w0 ∈ ∂Ω, for it exists cone K+(w0, α, β, δ) such that

K+(w0, α, β, δ) ∩ Ω = ∅

for sufficiently small δ > 0. The side of cone K+(w0, α, β) intersects the
segment [0, p] in point C in the way that |C| < |B|. It follows from the
fact that cone K+(w0, α, β) obtains from cone K+(wm, α, β) by turning
an angle (θ0 − ϕm).

For L to connect w0 and p, it must either intersect (w0, B), or intersect
segment [0, p]. None of both is possible. Indeed, by the definition of w0,
L can’t intersect the segment (w0, B). On the other hand, by virtue
of an unambiguous definition r(θ), ∂Ω can’t contain the radial segments
[6, Theorem 1], so it doesn’t contain the points from [0, p). Hence we
get a contradiction with the fact, that theorem is wrong. The proof is
complete now. □
Theorem 2. If Ω is (α, β)–accessible, then for every point p ∈ ∂Ω and
for every fixed α, β ∈ [0, 1) unbounded cone K+(p, α, β,∞) := K+(p, α, β)
belongs to C \ Ω = Ω′.

Proof. Suppose that the theorem is wrong. Then there is a point p ∈ ∂Ω
such, that z ∈ K+(p, α, β) ∩ Ω, z ∈ Ω. Consequently there exists w ∈ ∂Ω
such, that for every fixed R > 0, w ∈ ∂K+(p, α, β,R). Let us suppose,
that point w is first, except p, contained in ∂K+(p, α, β,R), which means,
that there were no other points from ∂Ω on ∂K+(p, α, β,R).

Suppose that w ̸∈ ∂K+(p, α, β). Then w ∈ ∂B(p,R) and thus, there
exists vicinity Uw ⊂ K+(p, α, β). So, there is a point v ∈ Ω such that v ∈
∈ Uw. As Ω is starlike, [0, v] is contained in Ω. From the other hand

[0, v] ∩K+(p, α, β,R) ̸= ∅,

which contradicts the fact that K+(p, α, β,R) ⊂ Ω′.
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So w ∈ ∂K+(p, α, β). Through Theorem 1 there exists ρ = ρ(p) such
that cone K−(w,α− ε, β − ε, ρ) ⊂ Ω for every ε ∈ (o,min(α, β)).

In C, we introduce polar coordinates 0 – pole,
−→
0p – polar.

Consider the points aλ = p + (w − p)λ, λ ∈ (0, 1). We show, that
aλ ∈ K−(w,α− ε, β − ε, ρ) for sufficiently small ρ¿0, when λ close to 1
and ε close to 0. If this is true, then one the one hand aλ ∈ Ω, which
follows from Theorem 1, and on the other hand aλ ∈ ∂K+(p, α, β) since
w ∈ ∂K+(p, α, β). This contradiction get us that the theorem is true.

To prove the inclusion aλ ∈ K−(p, α− ε, β − ε, ρ) it is enough to show
that

− (β − ε)π

2
< arg(aλ − w)− arg(−w) < (α− ε)π

2
. (3)

Since aλ−w = p+(w−p)λ−w = (p−w)(1−λ), (3) can be rewritten
as:

− (β − ε)π

2
< arg(p− w)− arg(−w) < (α− ε)π

2
. (4)

Here we get two ways:
1) Suppose that

−βπ
2
< arg(w)− arg(p) < 0;

this means that arg(w − p)− arg(p) = −βπ
2 .

We see that arg(p− w)− arg(−w) = arg(w − p)− arg(w), so

arg(p− w)− arg(−w) = −βπ
2

+ arg(p)− arg(w) < 0.

As arg(w)− arg(p) < 0, for sufficiently small ε > 0

arg(p)− arg(w) >
επ

2
,

and thus,

arg(p)− βπ

2
− arg(w) > −βπ

2
+
επ

2
. (5)

From inequality (5), it follows, that

− (β − ε)π

2
< arg(p− w)− arg(−w) < 0.
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2) Now let us suppose that

0 < arg(w)− arg(p) <
απ

2
;

this means that arg(w − p)− arg(p) = απ
2 .

We see that arg(p− w)− arg(−w) = arg(w − p)− arg(w) and so

0 < arg(p− w)− arg(−w) = απ

2
+ arg(p)− arg(w).

As arg(w)− arg(p) > 0, for sufficiently ε > 0, one has

arg(w)− arg(p) >
επ

2
,

so that
απ

2
+ arg(p)− arg(w) <

απ

2
− επ

2
. (6)

From (6), it follows, that

0 < arg(p− w)− arg(−w) < (α− ε)π

2
.

Thus, from cases 1) and 2), it follows, that inequality (3) is true, and
thus aλ ∈ K−(w,α − ε, β − ε, ρ) with λ close enough to 1. Hence we get
a contradiction. The proof is completed. □
Remark 1. Observe that (α, β)–accessible domains are bounded, if α, β ∈
∈ (0, 1), since these domains are α0–accessible, α0 = (min(α, β)), and in
[6] it was shown that α0–accessible domains are bounded for α0 > 0.

Theorem 3. If Ω ⊂ C, 0 ∈ Ω, α, β ∈ (0, 1), then the following assertions
are equivalent:

(i) Ω is (α, β)–accessible domain;
(ii) every unbounded cone K+(p, α, β) ⊂ Ω′, p ∈ ∂Ω;
(iii) every unbounded cone K+(p, α, β) ⊂ Ω′, p ∈ Ω′;
(iv) for every point p ∈ ∂Ω and for every ε ∈ (0,min(α, β)) there exists

an r = r(p) > 0 such that the bounded cone K−(p, α− ε, β − ε, r) ⊂ Ω.

Proof. In view of Theorems 1 and 2, it is sufficient to prove the implica-
tions (iv) ⇒ (i) and (ii) ⇒ (iii).

Let w = I(z) be the mapping inversion, defined as:

w =
1

z
. (7)
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For the proof of (iv) ⇒ (i), under this mapping, consider the image
of the cone K+(p

′, β, α) \ {p′} to K−(p, α, β), where p = 1/p′. Indeed,
(7) is a bilinear mapping, having a circular feature and the property of
preserving angles, so that the boundary of K+(p

′, α, β) transfers into arcs,
intersecting at points p and 0, and the angle of intersections of those circles
at the point p is (α+β)π/2, and the image will be lying inside intersection
of these circles.

Now, let us consider the condition (iv). Denote G ⊂ C as the image
I(Ω \ 0). We will show that domain G′ = C \G is (β, α)–accessible.

To show this, we note that 0 ∈ G′, and for every point p ∈ ∂Ω
there exists cone K−(p, α − ε, β − ε, ρ) ⊂ Ω, for sufficient small ρ =
= ρ(p, ε) > 0. Obviously, there exists a number r = r(p, ρ) > 0 such that
when z = 1/w follows the inclusion

I(K+(p
′, β − ε, α− ε, r) \ {p′}) ⊂ K−(p, α− ε, β − ε, ρ),

which means that I(K+(p
′, β − ε, α − ε, r) \ {p′}) ⊂ Ω for every point

p′ ∈ ∂G′. Thus G′ is (β − ε, α− ε)–accessible domain, ε ∈ (0,min(α, β)).
From Theorem 2 it follows, that K+(p

′, β − ε, α − ε) ⊂ G. Passing to
the limit ε → 0 we get that K+(p

′, β, α) ⊂ G′, so G′ is (β, α)–accessible.
Hence, from Theorem 1, it follows that for every point p ∈ ∂G′ and for
every ε ∈ (0,min(α, β)) there exists an r = r(p′, ε) > 0 such that the cone
K−(p

′, α− ε, β − ε, r) belongs to G′.
Note that under the mapping (7) the image of cone K−(p

′, α− ε, β −
− ε, r) belongs to K+(p, α− ε, β − ε,R) for some r = r(p,R) > 0, so that
I(K−(p

′, α−ε, β−ε, r)) ⊂ Ω′. Hence and from definition we see that Ω is
(α−ε, β−ε)–accessible domain. Using Theorem 1 and allowing ε→ 0 we
get, that Ω is (α, β)–accessible. This proves the implication (iv) ⇒ (i).

We now show, that if Ω satisfies the condition (ii), then Ω satisfies
the condition (iii). Take arbitrary point p ∈ Ω′ \ ∂Ω. The segment
[0, p] intersects ∂Ω. If this intersection has more than one point, then
we take the closest to p and denote it as p′, and the next one – as p′′.
Then the cone K+(p

′, α, β) contains inside sufficient small surroundings
of point p′′ and therefore points from Ω. On the other hand, Theorem 2
says that K+(p

′, α, β) ⊂ Ω′. This is a contradiction the fact that [0, p] ∩
∩∂Ω = p′. Hence, from Theorem 2, it follows that K+(p

′, α, β) ⊂ Ω′. We
will now show, that K+(p, α, β) ⊂ Ω′. Indeed, since |p| > |p′|, we have
K+(p, α, β)=K+(p

′, α, β) + (p − p′), so that arg(p) = arg(p′). Then for
every point z ∈ K+(p

′, α, β), one has z+(p−p′) ∈ K+(p, α, β). Let us show
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that z+ (p− p′) belongs to K+(p
′, α, β). Since z+ (p− p′) ∈ K+(p, α, β),

we see that

−βπ
2

≤ arg(z + (p− p′)− p)− arg(p) ≤ απ

2
,

and so, as arg(p) = arg(p′),

−βπ
2

≤ arg(z − p′)− arg(p′) ≤ απ

2
.

Hence, from definition of K+(p
′, α, β), we obtain that z + (p − p′) ∈

∈ K+(p
′, α, β). Thus K+(p, α, β) ⊂ Ω′. Since the point p ∈ Ω′ \ ∂Ω

is arbitrary, we get the implication (ii) ⇒ (iii). □

Remark 2. If {Ωγ} is a family of (α, β)–accessible domains, then the
union Ω =

∪
γ {Ωγ} is also a (α, β)–accessible domain. Actually, from

Theorem 3, it follows that Ω is (α, β)–accessible domain if and only if
K+(p, α, β) ∩ Ω = ∅ for every point p ∈ Ω

′
. If p /∈ Ω, then p /∈ Ωγ

for every γ. In this situation, K+(p, α, β) ∩ Ωγ = ∅ for every γ. Thus,
K+(p, α, β) ∩ (

∪
Ωγ) = ∅.

Theorem 4. If Ω is (α, β)–accessible domain, α, β ∈ (0, 1), then for every
ε ∈ (0,min(α, β)) there exists an R = R(ε) > 0 such that the cone
K−(p, α− ε, β − ε,R) ⊂ Ω for every point p ∈ ∂Ω.

Proof. From the implication (iv) ⇒ (i) in proof of Theorem 3, it follows
that for (α, β)–accessible domains Ω, the interior of complement I(Ω′) =
= G′, using z = I(w) = 1/w, is (β, α)–accessible domain. Therefore it
is enough to show that for every fixed ε ∈ (0,min(α, β)) there exists an
R = R(ε) > 0 such that for every point p ∈ ∂Ω, the image of every w ∈
∈ K−(p, α− ε, β − ε,R) using z = I(w) considered inside K+(p

′, β, α),
p′ = 1/p. Indeed, if it will be shown, then

I(K−(p, α− ε, β − ε,R)) ⊂ G = I(Ω).

Hence, as I(w) is homeomorphism, we get K−(p, α− ε, β − ε,R) ⊂ Ω.
Since w ∈ K−(p, α− ε, β − ε,R), w = p+ rei(ϕ+arg(p)), r ∈ (0, R],

ϕ ∈ ((2− β + ε)π/2, (2 + α− ε)π/2) ,

so that π − ϕ ∈ ((β − ε)π/2, (α+ ε)π/2) .
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By definition of the K+(p, β, α), we get I(w) = 1/w ∈ IntK+(p
′, β, α)

if and only if

−απ
2
< arg

(
1

w
− 1

p

)
− arg

(
1

p

)
<
βπ

2
. (8)

Now

arg

(
1

w
− 1

p

)
− arg

(
1

p

)
= arg

(
p− w

wp

)
− arg(p) = arg

(
p− w

w

)
=

= arg

(
−re−i(ϕ+arg(p))

p+ re−i(ϕ+arg(p))

)
= arg

(
ei(π−ϕ−arg(p))

)
+ arg

(
p+ rei(ϕ+arg(p))

)
=

= π − ϕ− arg(p) + arg
(
p+ rei(ϕ+arg(p))

)
.

Since 0 ∈ Ω, we have p ̸= 0. Then there exists an R ∈ (0, min
p∈∂Ω

|p|)
such that ∣∣∣arg (p+Rei(ϕ+arg(p))

)
− arg(p)

∣∣∣ < επ

2
,

therefore, for every r ∈ (0, R) and for every p ∈ ∂Ω, the following inequa-
lity holds: ∣∣∣arg (p+ rei(ϕ+arg(p))

)
− arg(p)

∣∣∣ < επ

2
,

thus the inequality (8) holds.
Hence we get that there exists an R = R(ε) > 0 such that for every p ∈

∈ ∂Ω, the image of the coneK−(p, α−ε, β−ε,R) belongs to IntK+(p
′, β, α).

This proves the theorem. □
Theorem 5. If a domain Ω ⊂ C (Ω ̸= C) is (α, β)–accessible, α, β ∈
∈ (0, 1), then for every ε ∈ (0,min(α, β)) there exists an R = R(ε) > 0
such that the cone K−(p, α− ε, β − ε,R) belongs to Ω for every p ∈ Ω.

Proof. Assume that theorem is wrong. Then for some ε ∈ (0,min(α, β))
there exists sequence of points wk ∈ Ω and a sequence of numbers rk such
that the cone

K−(wk, α− ε, β − ε, rk) ∩ Ω′ ̸= ∅ (9)

for every number k ∈ N, and rk → 0. Since Ω is compact, there exists
a convergent subsequence of sequence {wk}, that w′

k → w′
0. Denote this

subsequence as {w′
k}. If w′

0 ∈ Ω, then for sufficiently small ρ > 0 ball
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B(w′
0, ρ) ⊂ Ω. Starting from some number k ≥ N , points w′

k ∈ B(w′
0, ρ),

we have K−(w
′
k, α−ε, β−ε)∩B(w′

0, ρ) ⊂ Ω. Since the last fact contradicts
(9), we get that w′

0 ∈ ∂Ω.
Consider a sequence of points pk ∈ ∂Ω, pk = λkw

′
k, λk > 1. Note that

pk → w′
0 when k → ∞ and lim

k→∞
pk = p0 = w′

0. Indeed, if it is wrong,

then p0 = λ0w
′
0, λ0 > 0 and λ ̸= 1. Since p0 ∈ ∂Ω, for every surroundings

Up0 : Up0 ∩ Ω ̸= ∅. On the one hand Ω is (α, β)–accessible domain and
w′

0 ∈ ∂Ω, so the cone K+(w
′
0, α, β) belongs to Ω′. On the other hand,

since |p0| > |w′
0|, the sufficient small surroundigs Up0 ⊂ K+(w

′
0, α, β), so

that K+(w
′
0, α, β) ∩ Ω ̸= ∅, but this can not be true (see Theorem 2).

Hence we get that p0=w
′
0.

Since lim
k→∞

w′
k = p0 = lim

k→∞
pk, pk = λkw

′
k, λk → 1+ as k → ∞.

Therefore for number R from Theorem 4 and for sufficient large number
k, points w′

k ∈ K−(pk, α− ε, β − ε,R) and

K−(w
′
k, α− ε, β − ε, r′k) ⊂ K−(pk, α− ε, β − ε,R).

By Theorem 4, the cone K−(pk, α − ε, β − ε,R) ⊂ Ω for some fixed R =
= R(ε) > 0, so that K−(w

′
k, α − ε, β − ε, r′k) ⊂ Ω. The last contradicts

the relation (9). Theorem 5 is proved. □

3. Case of domains with smooth boundary. Here we assume
that the domain Ω ⊂ R2 has smooth boundary ∂Ω given by equation:

F (x, y) = 0,

and
F (x, y) < 0.

is Ω.
Smooth function F (x, y) can be set locally which means that F (x, y) =

= Fp(x, y) in the neighborhood of each point p ∈ ∂Ω. Since ∂Ω in the
neighborhood of each point p ∈ ∂Ω can be defined by the equation:

x = f(y) or y = f(x),

we can assume that gradF (p) ̸= 0 for every point p ∈ ∂Ω.

Denote by n(p) =
gradF (p)

∥gradF (p)∥
, the external unit normal vector at

point p ∈ ∂Ω.
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The following lemma is a consequence of the lemma from [6].

Lemma 1. Let Ω ⊂ C with smooth boundary ∂Ω, and n(p) is external
normal vector at point p ∈ ∂Ω. Then for every fixed α, β ∈ (0, 1) there
exists r > 0 such that

K+(p, α, β, r) =

=

{
z ∈ C : −βπ

2
< arg(z − p)− arg(n(p)) <

απ

2
, ∥z − p∥ < r

}
⊂ Ω′,

K−(p, α, β, r) =

=

{
z ∈ C : −βπ

2
< arg(z − p)− arg(−n(p)) < απ

2
, ∥z − p∥ < r

}
⊂ Ω.

Theorem 6. Let Ω ∈ C, ∂Ω be smooth boundary. Then for every fixed
α, β ∈ (0, 1) domain Ω is (α, β)–accessible if and only if

− (1− β)π

2
≤ arg(p)− arg(n(p)) ≤ (1− α)

2
(10)

for every point p ∈ ∂Ω.

Proof. Suppose that Ω is (α, β)–accessible. We will show that the in-
equality (10) holds. As Ω is (α, β)–accessible, it is starlike with respect
to 0, and under our assumptions about F (z) it follows from [7] that Ω

starlike if and only if
(

p
∥p∥ ,

grad(F (p))
∥gradF (p)∥

)
≥ 0 for every p ∈ ∂Ω. Indeed,

gradF (p)
∥gradF (p)∥ = n(p) is external normal vector at point p and(

p

∥p∥
,
n(p)

∥n(p)∥

)
≥ 0 ⇔ cosϕp ≥ 0,

which means that |ϕp| ≤ π/2. Let ϕp = arg(p) − arg(n(p)), arg(p) ∈
∈ [0, 2π]. arg(p) increases when crawling ∂Ω in positive direction, and
arg(n(p)) changes continuously with a continuous changing of p ∈ ∂Ω.
Suppose that at point p the inequality (10) doesn’t hold, then we get:

(1− α)π

2
< arg(p)− arg(n(p)) ≤ π

2
, (11)

or

−π
2
≤ arg(p)− arg(n(p)) < − (1− β)π

2
. (12)
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For simplicity, we assume that arg(p) = 0, p ∈ R (this could be achieved
by converting the rotation on which the domain Ω is not sensitive). Thus

−π
2
≤ arg(n(p)) <

(1− α)π

2
(13∗)

or
(1− β)π

2
< arg(n(p)) ≤ π

2
. (14∗)

As Ω is (α, β)–accessible, the cone K+(p, α, β) ⊂ Ω′. Let

K−(p, γ,m) =

=
{
z ∈ C : −γπ

2
≤ arg(z − p)− arg(−n(p)) ≤ γπ

2
, |z − p| < m

}
.

From a lemma proved in [6], it follows that for every fixed γ ∈ (0, 1)
there exists an m > 0 such that K−(p, γ,m) ⊂ Ω. Take a point z ∈
∈ ∂K+(p, α, β, r), z = p+ ρeiϕ, ϕ = {απ/2,−βπ/2}, 0 < ρ < r.

Separately consider the cases (13∗), (14∗).
1) Case (13∗). Let z+ = p+ ρeiαπ/2. We will show that z+ belongs to

K−(p, γ,m) if ρ < m. Choose arg(−n(p)) such that

arg(−n(p)) = π + arg(n(p)).

Then
π

2
≤ arg(−n(p)) < (1 + α)π

2
. (15)

Since arg(z+ − p) = απ/2, one has

−π
2
< arg(z+ − p)− arg(−n(p)) ≤ − (1− α)π

2
. (16)

From (16) it follows that for sufficiently smallm > 0 there exists γ ∈ (0, 1)
with

−γπ
2
< arg(z+ − p)− arg(−n(p)) ≤ γπ

2
.

Last inequality means that z+ ∈ K−(p, γ,m) with ρ < m. A lemma from
[6] guarantees that K−(p, γ,m) ⊂ Ω and thus z+ also belongs Ω, which
contradicts the fact that z+ ∈ ∂K+(p, α, β) ⊂ Ω

′
.

2) Case (14∗). Now let z− = p+ρe−i βπ
2 . We will show that z− belongs

to K−(p, γ,m) if ρ < m. Choose arg(−n(p)) such that

arg(−n(p)) = arg(n(p))− π.
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Then

− (1 + β)π

2
< arg(−n(p)) ≤ −π

2
. (17)

Since arg(z− − p) = −βπ/2, we have

(1− β)π

2
≤ arg(z− − p)− arg(−n(p)) < π

2
. (18)

From (18) it follows that for sufficiently smallm > 0 there exists γ ∈ (0, 1)
with

−γπ
2
< arg(z− − p)− arg(−n(p)) ≤ γπ

2
.

Last inequality means, that z− ∈ K−(p, γ,m) with ρ < m. A lemma from
[6] guarantees that K−(p, γ,m) ⊂ Ω. Thus z− also belongs to Ω, which
contradicts the fact that z− ∈ ∂K+(p, α, β) ⊂ Ω

′
.

Contradictions in cases 1) and 2) mean that if Ω is (α, β)–accessible
domain then inequality (10) holds.

Now let for every point p ∈ ∂Ω the inequality (10) hold. We show that
Ω is (α, β)–accessible domain. At first show that Ω is (η, θ)–accessible
domain for η ∈ (0, α), θ ∈ (0, β), i. e. for every point p ∈ ∂Ω the cone
K+(p, η, θ, r) ⊂ Ω

′
, r = r(p) > 0. Fix p and take a point z ∈ K+(p, η, θ, r)

with sufficiently small r then

−θπ
2

≤ arg(z − p)− arg(p) ≤ ηπ

2
. (19)

Compose (10) and (19):

− (1− β + θ)π

2
≤ arg(z − p)− arg(n(p)) ≤ (1− α+ η)π

2
.

Last inequality means that z belongs to K+(p, 1 − α + η, 1 − β + θ, r).
Denote ψ = max(1− α+ η, 1− β + θ), ψ ∈ (0, 1). Then

K+(p, 1− α+ η, 1− β + θ, r) ⊂ K+(p, ψ, r).

A lemma from [6] guarantees that K+(p, ψ, r) ⊂ Ω′ for sufficiently small
r > 0, and thus K+(p, 1− α+ η, 1− β + θ, r) ⊂ Ω′.

We get that z ∈ Ω′ for every point z ∈ K+(p, η, θ, r) with sufficiently
small r > 0. Thus Ω is (η, θ)–accessible domain. Now, applying Theorem
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2 and passing to a limit η → α, θ → β we get that Ω is a (α, β)–accessible
domain. Theorem 6 proved.
□

Corollary 1. Denote by e the symmetry axis of the cone K+(p, α, β).
Then a condition (10) is equivalent to(

e

∥e∥
, n(p)

)
≥ sin

(
(α+ β)π

4

)
.

Proof. Fix p ∈ ∂Ω. With rotation transformation, assume that arg(p)=0.

The solution of the cone K+(p, α, β, r) is (α+β)π
2 . Note that arg(e) ∈

∈ (−π
4 ,

π
4 ). Then

απ

2
− arg(e) =

(α+ β)π

4
if arg(e) ≥ 0,

or
βπ

2
+ arg(e) =

(α+ β)π

4
if arg(e) < 0.

From the last inequalities we get arg(e) = (α−β)π
4 . Thus from (10) we get:

− (2− α− β)π

4
≤ arg(e)− arg(n(p)) ≤ (2− α− β)π

4
,

and this is equivalent:(
e

∥e∥
, n(p)

)
≥ sin

(
(α+ β)π

4

)
.

□

The following theorem gives a sufficient condition for (α, β)–accessible
domains. Here A∗ denotes a matrix, conjugate to a matrix A. Let e, as
in corollary to Theorem 6, be a vector lying on the symmetry axis of the
cone K+(p, α, β).

Theorem 7. Let Ω ⊂ R2 be a bounded domain with 0 ∈ Ω, α, β ∈ (0, 1).

Let f =

(
u
v

)
be a diffeomorphism of a domain Ω at the unit circle

centered at the point 0, f(0) = 0, and Df(x) is nonsingular differential in
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every point x ∈ Ω.
If for a number δ > 0 the inequality:

f∗(x)Df(x)e

∥f∗(x)Df(x)∥∥e∥
≥ sin

(
(α+ β)π

4

)
holds in Ω(δ) = {x ∈ Ω : dist(x, ∂Ω) < δ}, then Ω is (α, β)–accessible do-
main.

Proof. Denote by Ωr =
{
x ∈ Ω : u2 + v2 < r2

}
with r ∈ (0, 1). Ωr ⊂ Ω

and ∂Ωr – smooth boundary, given by equation:

F (x) = u2 + v2 − r2 = 0.

Since Df(x) is nonsingular for every x ∈ Ω, then f∗(p)Df(p) ̸= 0 for
every point p ∈ ∂Ωr. Note that

f∗(x)Df(x) = (u, v)

( ∂u
∂x1

∂u
∂x2

∂v
∂x1

∂v
∂x2

)
=

= (u
∂u

∂x1
+ v

∂v

∂x1
, u

∂u

∂x2
+ v

∂v

∂x2
) =

(
1

2

∂

∂x1
(u2 + v2),

1

2

∂

∂x2
(u2 + v2)

)
=

=
1

2
gradF (x).

Then gradF (p) = 2f∗(p)Df(p) ̸= 0 for every point p ∈ ∂Ω.
As Ω is bounded, for fixed δ > 0 ∂Ωr ⊂ Ω(δ) for r ∈ (r0, 1), with r0
sufficiently close to 1.
By the condition in Theorem 7 we get,(

e

∥e∥
,
gradF ∗(x)

∥gradF ∗(x)∥

)
=

gradF (x)e

∥gradF (x)∥∥e∥
=

f∗(x)Df(x)e

∥f∗(x)Df(x)∥∥e∥
≥

≥ sin

(
(α+ β)π

4

)
.

Now, from the corollary after Theorem 6 we get that Ωr is (α, β)–accessible
domain, and from remark after Theorem 3 it follows that Ω =

∪
r∈(r0,1)

Ωr

is (α, β)–accessible. Thus, Theorem 7 is proved. □
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