
Probl. Anal. Issues Anal. Vol. 3 (21), No. 2, 2014, pp. 59–73 59
DOI: 10.15393/j3.art.2014.2729

UDC 517.54

V. V. Starkov

UNIVALENCE OF HARMONIC FUNCTIONS,
THE PROBLEM OF PONNUSAMY AND SAIRAM, AND
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Abstract. The criterion of the univalence of a harmonic map-
ping is obtained in this paper. Particularly, it permits to for-
mulate the conjecture of coincidence of the harmonic function
classes S0

H = S0
H(S) (the problem of Ponnusamy and Sairam), in

analytic form. The method of construction of the univalent har-
monic polynomials with desired properties, according to a given
harmonic function, is obtained by means of the univalence crite-
ria.
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1. Introduction. Let S be the class of all analytic and univalent

functions of the form f(z) = z +
∞∑

n=2

anz
n in the disk ∆ = {z ∈ C :

|z| < 1}. The problem of determining a necessary coefficient condition
in this class was set up by Bieberbach [1]. It consisted of validity of
the inequality |an| ≤ n for each n ∈ N (equality for the Koebe function
k(z) = z/(1− z)2 and its rotations kθ(z) = e−iθk(zeiθ)). The Bieberbach
hypothesis contributed largely to the origin and development of a great
number of ideas and methods in complex analysis. The full solution of
this problem was finally given by de Branges [2].

The theory of univalent harmonic functions began its active develop-
ment since the eighties of the previous century. Here the main object
of research is the class SH of harmonic univalent and sense-preserving
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functions f in ∆ given by f(z) = h(z) + g(z), where

h(z) =
∞∑

n=1

anz
n and g(z) =

∞∑
n=1

a−nz̄
n

S with a1 = 1 (see, for example, [3]). The class SH is an analog of the
class S. For obtaining information about the functions SH it is often con-
venient to have such information about the functions of the subclass S0

H ⊂
⊂ SH , where S0

H = {f ∈ SH : a−1 = 0}. This circumstance explains the
interest in studying S0

H . In [4] Clunie and Sheil-Small formulated the fol-
lowing conjecture (the problem about coefficients in S0

H): for all f ∈ S0
H

and n ∈ N, the inequalities

|an| ≤
(2n+ 1)(n+ 1)

6
, |a−n| ≤

(2n− 1)(n− 1)

6
, |an−a−n| ≤ n (1)

are true. A great deal of papers are dedicated to this conjecture. Particu-
larly, in the paper of Ponnusamy and Sairam Kaliraj [5] this conjecture,
together with some other results was proved for the subclass

S0
H(S) = {f = h+ ḡ ∈ S0

H : h+ eiϕg ∈ S for some ϕ ∈ R}

of S0
H . Besides, in this paper the authors conjectured that S0

H(S) = S0
H ,

whose prove would permit us to obtain the full solution of the coefficients
problems (1) of Clunie and Sheil-Small. In this paper the criterion of
univalency of harmonic functions (Theorem 1) is obtained. With the
aid of this, the criterion for functions belonging to S0

H(S) (Theorem 2)
is obtained and several examples are exhibited. Theorem 3 permits to
construct harmonic univalent polynomials for a given f ∈ SH .

2. The univalence criterion and the conjecture of hypothesis
of Ponnusamy and Sairam Kaliraj. The univalence criterion of an
arbitrary harmonic function in ∆ of the form

f(z) =
∞∑

n=1

(anz
n + a−nz̄

n) (2)

will be obtained by analogy to Bazilevich’s [6] univalence criterion for
analytic functions:
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Theorem A. [6] An analytic function f(z) =

∞∑
n=1

anz
n in ∆ is univalent

in ∆ if and only if for each z ∈ ∆ and each t ∈ [0, π/2],

∞∑
n=1

an
sinnt

sin t
zn−1 ̸= 0,

(
sinnt

sin t

) ∣∣∣
t=0

= n.

Theorem 1. Harmonic sense-preserving function in ∆, determined by
the formula (2), is univalent in ∆ if and only if for each z ∈ ∆ \ {0} and
each t ∈ (0, π/2],

∞∑
n=1

[
(anz

n − a−nz̄
n)

sinnt

sin t

]
̸= 0. (3)

Proof. Let f ∈ SH . Then, for z1, z2(z1 ̸= z2) from ∆, we have

f(z2)− f(z1)

z2 − z1
̸= 0.

Particularly, for z1 = reiθ1 ̸= reiθ2 = z2, r ∈ (0, 1), θk ∈ R, this is
equivalent to

f(reiθ2)− f(reiθ1)

reiθ2 − reiθ1
= (4)

=
∞∑

n=1

rn−1

(
an
einθ2 − einθ1

eiθ2 − eiθ1
+ a−n

e−inθ2 − e−inθ1

eiθ2 − eiθ1

)
̸= 0.

Without loss of generality, we may assume that θ1 < θ2 ≤ θ1 + π. Let

t =
θ2 − θ1

2
∈ (0, π/2] and θ =

θ2 + θ1
2

∈ R.

Then

einθ2 − einθ1

eiθ2 − eiθ1
= ei(n−1)

θ2+θ1
2

ein
θ2−θ1

2 − e−in
θ2−θ1

2

ei
θ2−θ1

2 − e−i
θ2−θ1

2

= ei(n−1)θ e
int − e−int

eit − e−it
,

and
e−inθ2 − e−inθ1

eiθ2 − eiθ1
=
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=

(
einθ2 − einθ1

eiθ2 − eiθ1

)
e−iθ2 − e−iθ1

eiθ2 − eiθ1
= e−i(n−1)θ e

int − e−int

eit − e−it
(−e−2iθ).

Hence (4) may be represented as

∞∑
n=1

[
(anr

n−1ei(n−1)θ − a−nr
n−1e−i(n−1)θe−2iθ)

sinnt

sin t

]
̸= 0

which is equivalent to

∞∑
n=1

[
(anz

n−1 − a−nz̄
n−1e−2iθ)

sinnt

sin t

]
̸= 0, (5)

where z = reiθ ∈ ∆, θ = arg z, t ∈ (0, π/2]. But (5) ⇐⇒ (3). Let us
note, that (5) is fulfilled for z = 0 as well, because |a1| > |a−1|, since f is
sense-preserving.

Let us next prove the inverse proposition. Suppose a harmonic function
(2) is sense-preserving in ∆ and condition (3) is fulfilled. According to
the accepted designations this is equivalent to fulfilling of the condition
(4), i. e.

f(z2)− f(z1)

z2 − z1
̸= 0 ∀z1 = reiθ1 ̸= reiθ2 = z2, r ∈ (0, 1), θk ∈ R.

Thus f is univalent on any circle {z ∈ C : |z| = r}.
The local univalence of the function f implies that ∂f(∆r) ⊂ f(∂∆r),

where ∆r = {z ∈ C : |z| < r}. Then the assumption that f is not univalent
(but locally univalent) in ∆ implies the existence of a disk ∆R (a disk of f
univalence), in which f is univalent, but on ∂∆R there exist points z1 ̸= z2
such that f(z1) = f(z2). This contradicts the univalence of f on the circle
{z ∈ C : |z| = R}. This contradiction proves Theorem 1. □

The following theorem represents the criterion of belonging of a func-
tion to the class S0

H(S).

Theorem 2. Let f ∈ S0
H . Define

A = A(z, t) =

∞∑
n=1

an
sinnt

sin t
zn, B = B(z, t) =

∞∑
n=1

a−n
sinnt

sin t
zn,

and
E = {(z, t) ∈ (∆ \ {0})× (0, π/2] : |A(z, t)| = |B(z, t)|}.
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Then f ∈ S0
H(S) if and only if there exists a ϕ ∈ [0, 2π) such that

A(z, t) ̸= −eiϕB(z, t) ∀ (z, t) ∈ E.

Proof. Let f = h+ ḡ ∈ S0
H(S) and let it be determined by (2). According

to the definition, S0
H(S) ∋ f if and only if there exists a ϕ ∈ [0, 2π) such

that h+ eiϕg ∈ S. Theorem A implies that

∞∑
n=1

(an + eiϕa−n)
sinnt

sin t
zn ̸= 0, for z ∈ ∆ \ {0}, t ∈ (0, π/2],

⇐⇒ A(z, t) ̸= −eiϕB(z, t) ∀ (z, t) ∈ E.

This completes the proof. □
Corollary 1. Let f ∈ S0

H and E be the set defined in Theorem 2. If
E = ∅, then f ∈ S0

H(S).

Remark 1. Denote q(z) =
∞∑

n=1

sinnt

sin t
zn. Then

A(z, t) =
1

2πi

∫
|ζ|=ρ

h

(
z

ζ

)
q(ζ)

dζ

ζ
, B(z, t) =

1

2πi

∫
|ζ|=ρ

g

(
z

ζ

)
q(ζ)

dζ

ζ
.

Hence the statement of Theorem 2 may be represented by means of these
integrals.

Example. For a fixed R ∈ (0, 1), consider the harmonic function f = h+g
in ∆, where

h(z) =
z

(1−Rz)2
and g(z) = kz2, k ∈ R.

By means of Theorem 1 we determine for which values of k and R, f ∈ S0
H .

Applying Theorem 2, let us show that for these values of parameters, the
function f ∈ S0

H(S).
Firstly we need to determine, for which values of the parameters, the

function f is sense-preserving in ∆. The condition of sense-preservation
means the validity for any z ∈ ∆ of the inequality

|h′| − |g′| =
∣∣∣∣ 1 +Rz

(1−Rz)3

∣∣∣∣− |2kz| > 0
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which holds if

min
|z|=r

∣∣∣∣ 1 +Rz

(1−Rz)3

∣∣∣∣ = 1−Rr

(1 +Rr)3
> 2|k|r, ∀ r ∈ [0, 1).

Since the function
1−Rr

r(1 +Rr)3
decreases with respect to r, the latter in-

equality gives

2|k| ≤ 1−R

(1 +R)3
. (6)

The values of parameters for which the function f is sense-preserving in ∆
is determined from (6). Further, let the condition (6) be valid. According
to Theorem 1, f is univalent if and only if A(z, t) ̸= B(z, t) (designations
from Theorem 2) in (∆ \ {0}) × (0, π/2]. Let us show that the equality
A(z, t) = B(z, t) is not possible. We see that

A(z, t) =
∞∑

n=1

nRn−1zn
eint − e−int

2i sin t
=

=
1

2i sin t

[
zeit

(1−Rzeit)2
− ze−it

(1−Rze−it)2

]
=

=
z(1−R2z2)

(1− 2Rz cos t+R2z2)2

and
B(z, t) = 2k̄z2 cos t.

Now we show that for t ∈ (0, π/2) and z ∈ ∆ \ {0}, the equation

z(1−R2z2)

(1− 2Rz cos t+R2z2)2
= 2kz̄2 cos t (7)

has no solution. It is sufficient to show that in (7) the absolute values of
the left hand and right hand sides are not equal. If

|2k| =
∣∣∣∣ 1−R2z2

z cos t(1− 2R cos tz +R2z2)2

∣∣∣∣ = L(z, t),

then for some t,

|2k| ≥ min
0<|z|≤1

L(z, t) = min
|z|=1

L(z, t) = L(−1, t) =
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=
1−R2

cos t(1 + 2R cos t+R2)2
>

1−R

(1 +R)3

for values of t under consideration. Thus a contradiction with (6) is ob-
tained. Therefore, if the condition (6) is fulfilled, then all functions f
from this example are univalent. As shown above, |A(z, t)| ̸= |B(z, t)|, in
(∆\{0})×(0, π/2] and therefore the set E defined in Theorem 2 is empty.
Hence, for parameters’ values satisfying the inequality (6), f ∈ S0

H(S).

3. Univalent harmonic polynomials are functions of the form
P = h+g, where h and g are classic polynomials in z. Generally speaking,
there is not much information about univalent harmonic polynomials than
about other functions from SH (here we speak about univalence in ∆) (see
[7]).

For example, in a survey paper [8] the authors note: “Finding a method
of constructing sense-preserving univalent harmonic polynomials is ano-
ther important problem”. In the analytic case, Bazilevich [6] proposed
a method of construction of univalent polynomials, associated with a given
function from S. Further, his idea has been transferred to harmonic case
in Theorem 3. Moreover, unlike with analytic case, the proof will be con-
structive. Thus, Theorem 3 gives an opportunity to construct harmonic
univalent polynomials of sufficiently high power for any function f ∈ S0

H .

Lemma 1. If f ∈ S0
H , r ∈ (0, 1), t, ϕ ∈ R, then∣∣∣∣f(reit)− f(reiϕ)

reit − reiϕ

∣∣∣∣ ≥ 1− r

4αr

(
1− r

1 + r

)α [
1−

(
1− r

1 + r

)2α ]
,

where α(= ordSH)
def
= supf∈SH

|a2|.

Proof. If f = h+ ḡ ∈ S0
H , then the linear invariance of the class SH (see

[9]) implies that

F (z) =
f
(
z + a
1 + āz

)
− f(a)

h′(a)(1− |a|2)
∈ SH ∀a ∈ ∆.

Let

a = reiϕ,
z + a

1 + āz
= reit, i. e. z =

reit − a

1− āreit
.
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From the affine invariance (see. [9]) of the class SH , it follows that the
function

ψ(z) =
F (z)− a−1F (z)

1− |a−1|2
∈ S0

H , where a−1 =
∂F

∂z̄
(0) =

g′(a)

h′(a)
.

Hence,

|F (z)|(1 + |a−1|) ≥ |F (z)− a−1F (z)| ≥ |ψ(z)|(1− |a−1|2),

so that |F (z)| ≥ |ψ(z)|(1 − |a−1|). Since f ∈ S0
H , then

∂f
∂z̄

(0) = 0, i. e.

g′(0) = 0. Since f is sense-preserving in ∆, we have |g′(z)/h′(z)| < 1 in ∆.
Therefore, according to Schwarz’s lemma, |a−1| = |g′(a)/h′(a)| ≤ r and

|F (z)| ≥ |ψ(z)|(1− r). (8)

For any function ψ = H + Ḡ ∈ S0
H and any z ∈ ∆, one has [9]:

1

2α

[
1−

(
1− |z|
1 + |z|

)α ]
≤ |ψ(z)| and

(1− |z|)α−1

(1 + |z|)α+1
≤ |H ′(z)|,

from which with regard to (8) we obtain

|f(reit)− f(reiϕ)| ≥ 1

2α

[
1−

(
1− |z|
1 + |z|

)α]
(1− r)(1− r2)|h′(reiϕ)| ≥

≥ 1− r

2α

(
1− r

1 + r

)α [
1−

(
1− |z|
1 + |z|

)α]
, (9)

where

z =
r(eit − eiϕ)

1− r2ei(t−ϕ)
.

Denote by w = eis = ei(t−ϕ) and ζ =
1− w

1− r2w
. Then

w =
1− ζ

1− r2ζ
, 0 ≤ |z| = r|ζ| ≤ 2r

1 + r2
, |1− w| = |ζ|(1− r2)

|1− r2ζ|
.

Represent (9) as follows∣∣∣∣f(reit)− f(reiϕ)

reit − reiϕ

∣∣∣∣ ≥ 1− r

2α

(
1− r

1 + r

)α [
1−

(
1− r|ζ|
1 + r|ζ|

)α] |1− r2ζ|
r|ζ|(1− r2)

≥
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≥ 1

2α

(
1− r

1 + r

)α [
1−

(
1− x

1 + x

)α]
1− rx

x(1 + r)
, (10)

x = r|ζ| ∈
[
0, 2r/(1 + r2)

]
.

Define

u(x) =
1

x

[
1−

(
1− x

1 + x

)α]
, x ∈

[
0,

2r

1 + r2

]
.

We show that u is decreasing on (0, 2r/(1 + r2)). Then,

x2u′(x) ≤ 0 ⇐⇒
(
1− x

1 + x

)α−1
2αx

(1 + x)2
− 1 +

(
1− x

1 + x

)α

≤ 0

⇐⇒ 2αx+ 1− x2 ≤ (1− x2)

(
1 + x

1− x

)α

⇐⇒

⇐⇒ u1(x) ≤ u2(x), (11)

where

u1(x) = ln(1+2αx−x2) and u2(x) = α(ln(1+x)− ln(1−x))+ln(1−x2).

Note that u1(0) = 0 = u2(0) and

u′1(x) =
2(α− x)

1 + 2αx− x2
≤ 2(α− x)

1− x2
= u′2(x),

since (see [9]) 3 ≤ α < 48, 9. This proves the validity of (11) and hence
u(x) is decreasing on (0, 2r/(1 + r2)) and hence

min
x∈[0,2r/(1+r2)]

u(x) = u

(
2r

1 + r2

)
=

1 + r2

2r

[
1−

(
1− r

1 + r

)2α
]
.

Then from (10) we obtain the desired inequality in Lemma 1. The proof
of the lemma is complete. □

In Lemma 2 below the estimates of coefficients of functions from S0
H

will be obtained. The estimates are not exact, but they are sufficient to
achieve the goal which we set up in this section (see Theorem 3).

Lemma 2. If α = ordSH , S0
H ∋ f with series expansion (2), then the

following inequality is true:

|a±n| <
(2e2)α

2α
nα, n ∈ N.
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Proof. Sheil-Small [9] proved for f ∈ S0
H the inequality

|f(z)| ≤ 1

2α

[(
1 + |z|
1− |z|

)α

− 1

]
, z ∈ △.

Hence for n ∈ N and r ∈ (0, 1),

|a−n| =

∣∣∣∣∣ 1

2πi

∫
|z|=r

f(z)dz̄

z̄n+1

∣∣∣∣∣ ≤ 1

2αrn

(
1 + r

1− r

)α

=
ψ(r)

2α
.

The same estimate is also true for |an|, n ∈ N. In order to find a minimum
of the right hand side of inequality we find the point of minimum of the
function lnψ(r):

(lnψ(r))′ =
2α

1− r2
− n

r
= 0 ⇐⇒ r2 +

2α

n
r − 1 = 0.

Therefore, r0 =
√
α2/n2 + 1− α/n is the point of minimum and

|an| ≤
ψ(r0)

2α
for all integer n,

where

ψ(r0) =

=

(√
α2

n2
+ 1 +

α

n

)n [
n

2α

(
1 +

√
α2

n2
+ 1 +

α

n

)(
1 +

√
α2

n2
+ 1− α

n

)]α
.

Using inequality
√
1 + x ≤ 1 +

√
x, x > 0, we obtain

ψ(r0) ≤
(n
α

)α [(
1 +

2α

n

) n
2α

]2α (
2 +

α

n

)α
=

= (2n)α
(

1

2n
+

1

α

)α
[(

1 +
2α

n

)n/(2α)
]2α

. (12)

Introduce

Ψ (y) = y ln

(
1 +

1

y

)
.
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Then supy>0 Ψ(y) = 1, since limy→+0 Ψ(y) < 1, limy→+∞ Ψ(y) = 1, and,
if Ψ(y) has a maximum on the interval (0, ∞) at the point y0, then
Ψ′(y0) = 0. This gives

ln

(
1 +

1

y0

)
=

1

1 + y0

which implies that

Ψ(y0) =
y0

1 + y0
< 1.

Hence from (12) we have

ψ(r0) < (2n)αe2α and |a±n| <
(2e2)α

2α
nα

and the proof of Lemma 2 is complete. □
Theorem 3. Let f ∈ S0

H and have the series expansion (1), α =
= ordSH , s = [α + 2], where [.] denotes the integer part of a number.
Let m ∈ N, ϵ ∈ (0, (2e2)α/(2α)) and

r ∈

([
1− 2αϵ

(2e2m)α

]1/m
, 1

)
(13)

let N ∈ N be so large that

2

| ln r|

[
α(2 + ln 2) + ln(s!)− (s+ 1) ln | ln r| − ln(1− r)− α ln

1− r

1 + r
+

+ ln 4− ln

[
1−

(
1− r

1 + r

)2α ]]
+ 2 < N, m < N,

lnN

N
≤ | ln r|

2[α+ 2]
.

Then the harmonic polynomial

P (z) =

N∑
k=1

(ckz
k + c−kz̄

k) =

N∑
k=1

(akr
kzk + a−kr

kz̄k)

is univalent in ∆ and moreover |a±k − c±k| < ϵ for all k = 1, . . . ,m.

Proof. Let us note that 2αϵ/(2e2)α < 1 for the indicated values ϵ. Hence
2αϵ

(2e2k)α
< 1 for k = 1, . . . ,m.
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The function ϕ(x) = (1 − xα(2αϵ)/(2e2)α)x decreases on (0, 1], since
d lnϕ(x)

dx
< 0 for x ∈ (0, 1]. Therefore, ϕ(1/k) ≤ ϕ(1/m) for each k =

= 1, . . . ,m, and (13) implies the inequality ϕ(1/k) ≤ ϕ(1/m) < r. Hence

(1− rk)
(2e2k)α

2α
< ϵ for k = 1, . . . ,m.

From these inequalities and Lemma 2 we obtain inequalities for the first
coefficients c±k = rka±k of the polynomial P (z):

|a±k − c±k| = |a±k − rka±k| < ϵ, k = 1, . . . ,m.

Let us verify, by the method of mathematical induction, that

| sinnt| ≤ n sin t ∀ t ∈ (0, π/2] and ∀ n ∈ N.

The inequality is true for n = 1. Assume that the inequality is true for
(n− 1). Then

| sinnt| ≤ | sin(n− 1)t| cos t+ | cos(n− 1)t| sin t ≤

≤ sin t[(n− 1) cos t+ | cos(n− 1)t|] ≤ n sin t.

Let us show under the hypothesis of the theorem that the polynomial
P (z) is univalent in △. For z ∈ ∆, let us estimate the remainder RN of
the series. We have

|RN | =

∣∣∣∣∣
∞∑

n=N+1

[
(anz

n − a−nz̄
n)rn

sinnt

sin t

]∣∣∣∣∣ ≤ (2e2)α

α

∞∑
n=N+1

nα+1rn

according to Lemma 2. By hypothesis, N | ln r| ≥ 2s lnN > α + 1, and

therefore, N >
α+ 1

| ln r|
. But for x ∈

[
α+ 1

| ln r|
,∞
)
, the function T (x) =

= xα+1rx decreases. Hence with the increasing values of n, the terms of

the series

∞∑
n=N

nα+1rn decrease and therefore,

∞∑
n=N+1

nα+1rn <

∫ ∞

N

T (x)dx ≤
∫ ∞

N

xsrxdx.
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Integrating by parts successfully s times, we obtain∫ ∞

N

xsrxdx =
NsrN

| ln r|
+
sNs−1rN

| ln r|2
+
s(s− 1)Ns−2rN

| ln r|3
+ · · ·+ s!rN

| ln r|s+1
.

Let us represent the conditionN | ln r| ≥ 2s lnN of the theorem as r
N
2 Ns ≤

≤ 1. Hence rNN j ≤ rN/2 for any j = 1, . . . , s. Taking into account these
inequalities, we have the estimate∫ ∞

N

xsrxdx ≤

≤ s!rN/2

| ln r|s+1

[
| ln r|s

s!
+

| ln r|s−1

(s− 1)!
+ . . .+

| ln r|
1!

+ rN/2

]
<
rN/2−1s!

| ln r|s+1
.

Hence

|RN | ≤ (2e2)α

α

rN/2−1s!

| ln r|s+1
. (14)

From (14), Theorem 1 and Lemma 1 we obtain∣∣∣∣∣
N∑

n=1

[
(anz

n − a−nz̄
n)rn

sinnt

sin t

]∣∣∣∣∣ ≥
≥

∣∣∣∣∣
∞∑

n=1

[
(anz

n − a−nz̄
n)rn

sinnt

sin t

]∣∣∣∣∣− |RN | ≥

≥ 1− r

4α

(
1− r

1 + r

)α
[
1−

(
1− r

1 + r

)2α
]
− (2e2)α

α

rN/2−1s!

| ln r|s+1
= Q.

If now Q > 0, then the univalency of the polynomial P follows from
Theorem 1. The latter inequality is equivalent to

2

| ln r|

[
α(2 + ln 2) + ln(s!)− (s+ 1) ln | ln r| − ln(1− r)− α ln

1− r

1 + r
+

+ ln 4− ln

[
1−

(
1− r

1 + r

)2α ]]
+ 2 < N,

which proves Theorem 3. □
The proof of Theorem 3 implies the following result.



72 V. V. Starkov

Corollary 2. Let f ∈ S0
H and f have the expansion (1), α = ordSH ,

r ∈ (0, 1) and 0 ̸= m ∈ Z. Then the m-th coefficient cm = amr
|m| of the

univalent function

f(rz) =

∞∑
n=1

(cnz
n + c−nz̄

n)

may be replaced by cm + λ, where λ ∈ C, and

|λ| < 1− r

4α|m|

(
1− r

1 + r

)α
[
1−

(
1− r

1 + r

)2α
]

without loss of univalence.

Proof. According to Lemma 1,∣∣∣∣∣
∞∑

n=1

[
(anz

n − a−nz̄
n)rn

sinnt

sin t

]∣∣∣∣∣ ≥ 1− r

4α

(
1− r

1 + r

)α
[
1−

(
1− r

1 + r

)2α
]
.

By Theorem 1, the condition of the univalence of the new function, ob-
tained by the variation of the m-th coefficient cm gives∣∣∣∣∣

∞∑
n=1

[
(anz

n − a−nz̄
n)rn

sinnt

sin t

]
+ σλρ|m| sinmt

sin t

∣∣∣∣∣ > 0, z ∈ ∆ \ 0, ρ = |z|,

t ∈ (0, π/2], where |σ| = 1. It is fulfilled provided that∣∣∣∣λ sinmtsin t

∣∣∣∣ < 1− r

4α

(
1− r

1 + r

)α
[
1−

(
1− r

1 + r

)2α
]
.

Hence it is certainly fulfilled if the inequality concerning |λ|, from the
statement of Lemma, is true. □
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