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REMARKS ON COMPLETE MONOTONICITY
OF A FUNCTION INVOLVING THE GAMMA FUNCTION

Abstract. In the note, the authors give several remarks on the
paper in ”Chen and Haigang Zhou On completely monotone of an
arbitrary real parameter function involving the gamma function.
Applied Mathematics and Computation, 2014, vol. 242, pp. 658–
663; DOI: 10.1016/j.amc.2014.05.034.” By virtue of these, the
authors point out several trivial extensions and generalizations
and establish some new results on the complete monotonicity of
a function involving the classical Euler gamma function.
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Recall from [1, Chapter XIII], [2, Chapter 1], or [3, Chapter IV] that
a function f is said to be completely monotonic on an interval I if it has
derivatives of all orders on I and satisfies

0 ≤ (−1)k−1f (k−1)(x) <∞

for x ∈ I and k ∈ N, where f (0)(x) means f(x) and N stands for the set
of all positive integers. The class of completely monotonic functions may
be characterized by the famous Hausdorff–Bernstein–Widder theorem [3,
p. 161, Theorem 12b]: A necessary and sufficient condition that f(x)
should be completely monotonic for 0 < x <∞ is that

f(x) =

∫ ∞
0

e−xt dα(t),

where α(t) is non-decreasing and the above integral converges on (0,∞).
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Recall from [2, Chapter 5] and [4]–[8] that an infinitely differentiable
and positive function f is said to be logarithmically completely monotonic
on an interval I if

(−1)k[ln f(x)](k) ≥ 0

on I for all k ≥ 1.
It is well known [9, p. 31, (1.01)] that the classical Euler’s gamma

function may be defined by

Γ(z) =

∫ ∞
0

tz−1e−t d t

for Re(z) > 0. The logarithmic derivative of Γ(z), denoted by

ψ(z) =
Γ′(z)

Γ(z)
,

is called the psi function or digamma function, and the derivatives ψ′(z)
and ψ′′(z) are respectively called the trigamma and tetragamma func-
tions. As a whole, the derivatives ψ(m)(z) for m ∈ {0} ∪ N are called the
polygamma functions. See [10, pp. 255–260].

In this note, we will give several remarks on the paper [11].

Remark 1. Let

q(t) =


1

t
ln Γ(t+ 1), t 6= 0

−γ, t = 0

on (−1,∞), where γ = 0.57721 . . . denotes Euler-Mascheroni’s constant.
Comparing the function f(t) defined by (3) below with

h(t) = 1− ln(t+ 1) + q(t), t > −1

in [11, p. 659, (8)], whose complete monotonicity on (−1,∞) was estab-
lished in [12], one may pose the following problem: What is the range of
β such that the function

hβ(t) = 1− ln(t+ β) + q(t) (1)

is completely monotonic, or equivalently, such that the function

Hβ(t) =
1

t+ β
eq(t) (2)

is logarithmically completely monotonic, on (max{−1,−β},∞)?
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If the function hβ(t) is completely monotonic on (max{−1,−β},∞),
then its first derivative satisfies

h′β(t) =
eq(t)[(β + t)q′(t)− 1]

(β + t)2
≤ 0

which is equivalent to

β ≤ 1

q′(t)
− t.

When β > 1, the function hβ(t) is defined on (−1,∞) and, by the
L’Hôspital rule,

lim
t→−1+

[
1

q′(t)
− t
]

= lim
t→−1+

[
t2

tψ(t+ 1)− ln Γ(t+ 1)
− t
]

= 1.

This means that, when β > 1, the function hβ(t) is not completely mono-
tonic on (−1,∞).

When 0 < β ≤ 1, the function hβ(t) is defined on (−β,∞) ⊃ (0,∞)
and

hβ(t) = h(t) + ln
t+ 1

t+ β

for t > −β. When β ≤ 0, the function hβ(t) is defined on (−β,∞) ⊆
⊆ (0,∞) and

hβ(t) = f(t) + ln
t

t+ β

for t > −β. By virtue of

ln
b

a
=

∫ ∞
0

e−au − e−bu

u
du

in [10, p. 230, 5.1.32], it follows that the functions

ln
t+ 1

t+ β
=

∫ ∞
0

e−(t+β)u − e−(t+1)u

u
du =

∫ ∞
0

e−βu − e−u

u
e−tu du

for 0 < β ≤ 1 and

ln
t

t+ β
=

∫ ∞
0

e−(t+β)u − e−tu

u
du =

∫ ∞
0

e−βu − 1

u
e−tu du
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for β ≤ 0 are both completely monotonic on (−β,∞). Since the sum of
finitely many completely monotonic functions is still a completely mono-
tonic function, the function hβ(t) for β ≤ 1 is completely monotonic on
(−β,∞).

In conclusion, if and only if β ≤ 1, the function hβ(t) defined by (1) is
completely monotonic, or equivalently, the function Hβ(t) defined by (2) is
logarithmically completely monotonic, on the interval (max{−1,−β},∞).

Remark 2. The first main result of the paper [11] is [11, p. 659, Theo-
rem 1] which reads that the function

fα(x) = 1− ln(x+ α) +
1

x+ α
ln Γ(x+ α+ 1)

is completely monotone on x > −α. Moreover, the function fα(x) is
decreasing on x > −α, tends to 0 for x→∞ and to ∞ for x→ −α.

Replacing x+ α by t we obtain that the function fα(x) becomes

f(t) = 1− ln t+
1

t
ln Γ(t+ 1), t > 0, (3)

whose complete monotonicity has been proved in [6, p. 605, Theorem 2]
which was cited in [11, p. 659, (5)]. Conversely, since f(t) is completely
monotonic on (0,∞), by definition, it is easy to see that f(t+α) = fα(x)
is completely monotonic in x ∈ (−α,∞).

Remark 3. The second main result of the paper [11] is [11, p. 659, Theo-
rem 2] which states that the function

gα(x) =
[Γ(x+ α+ 1)]1/(x+α)

x+ α

is completely monotone on x > −α.
Replacing x+ α by t we obtain that the function gα(x) becomes

g(t) =
[Γ(t+ 1)]1/t

t
, t > 0,

whose logarithmically complete monotonicity has also been proved in [6,
p. 605, Theorem 2] which was cited in [11, p. 659, (6)]. Conversely, since
g(t) is logarithmically completely monotonic on (0,∞), by definition, it is
easy to see that g(t+α) = gα(x) is logarithmically completely monotonic
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in x ∈ (−α,∞). Furthermore, the inclusion L[I] ⊂ C[I] was proved and
verified in [5, 6, 7, 13] once again, where L[I] and C[I] denote respectively
the set of all logarithmically completely monotonic functions on an interval
I and the set of all completely monotonic functions on I. As a result, the
complete monotonicity of g(t) on (0,∞) and gα(x) on (−α,∞) are direct
and simple consequences of the logarithmically complete monotonicity of
g(t) on (0,∞) and gα(x) on (−α,∞).

Remark 4. The function f(t) defined by (3) above may be rearranged
as

f(t) = ln
e[Γ(t+ 1)]1/t

t
= ln[eg(t)], t > 0.

By definition, it is clear that the product between a positive scalar and
a logarithmically completely monotonic function is still a logarithmically
completely monotonic function and that a logarithm of a logarithmically
completely monotonic function whose values are not less than 1 is surely
a completely monotonic function. Consequently, the complete monotonici-
ty of f(t) may be derived from the logarithmically complete monotonicity
of g(t), it also may be conversely. In conclusion, the complete monotoni-
city of f(t) and the logarithmically complete monotonicity of g(t) are the
same one.

Remark 5. In a word, for any function f(x) on an interval I and any
real scalar α, one should not regard the functions f(x + α) and f(x) as
different ones, and then one should not regard all the conclusions on the
function f(x+ α) as generalizations of those on f(x).

Remark 6. This paper is a shortened and simplified version of the pre-
print [14].
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[1] Mitrinović D. S., Pečarić J. E., and Fink A. M. Classical and New Inequali-
ties in Analysis. Dordrecht; Boston; London: Kluwer Academic Publishers,
1993. DOI: 10.1007/978-94-017-1043-5.



Remarks on complete monotonicity of a function. . . 71

[2] Schilling R. L., Song R., and Vondraček Z. Bernstein Functions—Theory
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