
12 Probl. Anal. Issues Anal. Vol. 4 (22), No. 2, 2015, pp. 12–22

DOI: 10.15393/j3.art.2015.2849

UDC 517.58

Barkat Ali Bhayo

ON THE INEQUALITIES FOR THE VOLUME
OF THE UNIT BALL Ωn IN Rn

Abstract. The inequalities about the volume of the unit ball
Ωn in Rn were studies by several authors, especially Horst Alzer
has a great contribution to this topic. Thereafter many authors
produced numerous papers on this topic. Motivated by the work
of the several authors, we make a contribution to the topic by
giving the new inequalities about the volume of the unit ball Ωn.
Our inequalities refine the recent results existing in the literature.

Key words: inequalities, gamma function, psi function, volume
of the unit ball

2010 Mathematical Subject Classification: 26D07, 33B15

1. Introduction. Let Ωn = πn/2/Γ(n/2 + 1) be the volume of the
unit ball in Rn, n = 1, 2, . . ., where Γ is the Euler gamma function.

Since the last few decades, several authors got interested to study
the volume of the unit ball Ωn, and presented interesting monotonicity
properties of it. The sequence Ωn is not monotone itself, it attains its
maximum at n = 5, see [1, p.264]. In [2], Anderson et al. proved that

Ω
1/n
n , n = 1, 2, . . . is strictly decreasing with lim

x→∞
Ω

1/n
n = 0. In [3], An-

derson and Qiu showed that Ω
1/(n logn)
n , n = 2, 3, . . . is strictly decrea-

sing with limx→∞ Ω
1/(n logn)
n = e−1/2. Klain and Rota [4] proved that

nΩn/Ωn−1, 1, 2, . . . is strictly increasing.
Below we recall some inequalities which are the consequences of some

monotonicity theorems. In [2, 4], authors proved that

Ω
n/(n+1)
n+1 < Ωn, n = 1, 2, . . . , (1)

and
Ω2

n

Ωn−1Ωn+1
< 1 +

1

n
, n = 1, 2, . . . . (2)
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In [5], Alzer proved that for n = 1, 2, . . .(
1 +

1

n

)a1

<
Ω2

n

Ωn−1Ωn+1
<

(
1 +

1

n

)b1

, (3)

a2Ω
n/(n+1)
n+1 < Ωn < b2Ω

n/(n+1)
n+1 , (4)

with the best possible constants

a1 = 2− (log π)/ log 2 = 0.3485 . . . , b1 = 1/2,

and
a2 = 2/

√
π = 1.1283 . . . , b2 =

√
e = 1.6487 . . . .

Inequalities (3) and (4) were slightly improved by Mortici [6] for n ≥ 4
as follows: (

1 +
1

n

)1/2−1/(4n)

<
Ω2

n

Ωn−1Ωn+1
<

(
1 +

1

n

)1/2

, (5)

k

(2π)1/(2n)
≤ Ωn

Ω
n/(n+1)
n+1

<

√
e

(2π)1/(2n)
, (6)

where k = 1.5714 . . ., the first inequality in (6) turns to equality if and
only if n = 11.

Recently, Yin [7] proved that for n = 1, 2, . . .

(n+ 1)(n+ 1/6)

(n+ b)2
<

Ω2
n

Ωn−1Ωn+1
<

(n+ 1)(n+ b/2)

(n+ 1/3)2
, (7)

√
e

2n+2
√

2π

(√
n+ 4/3

)(2n+1)/(n+1)

√
(n+ 1)(n+ 1 + b/2)

<
Ωn

Ω
n/(n+1)
n+1

< (8)

<

√
e

2n+2
√

2π

(√
n+ 1 + b

)(2n+1)/(n+1)√
(n+ 1)(n+ 7/6)

,

where b = 3
√

391/30− 2 = 0.3533 . . .
For the detailed study of volume of the unit ball Ωn ∈ Rn and its

related inequalities, we refer to [8 – 14].
Our main results are as follows:
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Theorem 1. For n = 1, 2, . . . and β = 1/1620, we have

Bl(n) <
Ω2

n

Ωn−1Ωn+1
< Bu(n),

where

Bl(n) =
(1 + n) (cosh(1/n))

−n

n(1 + 32β/n5)4
,

and

Bu(n) =
(1 + n) (cosh(1/n))

−n

n11(β + n5)−2
.

Theorem 2. For n = 1, 2, . . . and β = 1/1620, we have

Bl(n) <
Ωn

Ω
n/(n+1)
n+1

< Bu(n),

where

Bl(n) =
2(n+2n2)/(4m)en/(2m)mn/mπ−1/(2m)n(18+35n)/(4m)

(sinh(1/n))n/(4m)((32β + n5)(2 cosh(1/n))n(2n+1)/(4m)

and

Bu(n) =
2(n+2n2)/(4m)en/(2m)mn/mπ−1/(2m)n−(2+25n)/(4m)(β + n5)n/m

(sinh(1/n))n/(4m)(2 cosh(1/n))n(2n+1)/(4m)
,

with m = 1 + n.

2. Preliminaries and proofs. We recall the following Legendre
duplication formula

Γ(2z) = π−1/222z−1Γ(z)Γ

(
z +

1

2

)
, 2z 6= 0,−1,−2, . . . , (9)

see [15, 5.5.5].

Lemma 1. [16] For all x > 0,

C(α, x) < Γ(1 + x) < C(β, x),

where
C(a, x) =

√
2πx

(x
e

)x(
x sinh

1

x

)x/2 (
1 +

a

x5

)
with the best possible constants α = 0 and β = 1/1620.
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Lemma 2. For n ≥ 1, the following identities hold true

Γ ((n+ 1)/2) Γ ((n+ 3)/2)

Γ ((n+ 2)/2)
2 =

π(n+ 1)(n!)2

22n+1Γ
(
n
2 + 1

)4 , (10)

Γ((n+ 3)/2)n/(n+1)

Γ(n/2 + 1)
=

2n+1Γ((n+ 1)/2 + 1)n/(n+1)

√
π(n+ 1)!

. (11)

Proof. Letting z = (n+ 1)/2 and z = (n+ 3)/2 in (9) we get

Γ

(
n+ 1

2

)
=

√
π

2n
Γ(n+ 1)

Γ((n+ 2)/2)
(12)

and

Γ

(
n+ 3

2

)
=

√
π

22+n

Γ(n+ 3)

Γ((n+ 4)/2)
, (13)

respectively. Now using (12) and (13) we get

Γ ((n+ 1)/2) Γ ((n+ 3)/2)

Γ ((n+ 2)/2)
2 =

π

22n+2

Γ(n+ 1)Γ(n+ 3)

Γ((n+ 2)/2)3Γ((n+ 4)/2)
=

=
π

22n+2

(n+ 2)!n!

(n+ 2)Γ((n+ 4)/2)4
=

=
π

22n+2

(n+ 1)(n!)2

Γ((n+ 4)/2)4
.

The proof of (11) follows similarly. �

Proof of Theorem 1. By definition and from (10), we get

Ω2
n

Ωn−1Ωn+1
=

Γ ((n+ 1)/2) Γ ((n+ 3)/2)

Γ ((n+ 2)/2)
2 =

π(n+ 1)(n!)2

22n+1Γ
(
n
2 + 1

)4 .
Now applying Lemma 1, we get

π(n+ 1)

22n+1

C(α, n)2

C(β, n/2)
<

Ω2
n

Ωn−1Ωn+1
<
π(n+ 1)

22n+1

C(β, n)2

C(α, n/2)
.

After simple calculation and letting α = 0 and β = 1/1620 we arrive at
the proof. �
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Proof of Theorem 2. It is easy to see that

G(n) =
Ωn

Ω
n/(n+1)
n+1

=

(
n+ 1

2

) n
n+1

(√
π

2n

) n
n+1 Γ(n+ 1)n/(n+1)

Γ(n/2 + 1)(2n+1)/(n+1)
.

Now by utilizing Lemma 1, we get

ξ0

(
e−nnn+1/2

(
n sinh

(
1
n

))n/2)n/(n+1)

(
2−3n/4e−n/2n(n−9)/2 (32b+ n5)

(
n sinh

(
2
n

))n/4)(2n+1)/(n+1)
< G(n) <

<
ξ0

(
e−nnn−9/2

(
b+ n5

) (
n sinh

(
1
n

))n/2)n/(n+1)

(
2−3n/4e−n/2n(n+1)/2

(
n sinh

(
2
nx

))n/4)(2n+1)/(n+1)
,

where

ξ0 =
2−(n(2n+1))/(2(n+1))(n+ 1)n/(n+1)

π1/(2n+2)
,

and this completes the proof. �

In [17, Theorem 3.1], Alzer proved that for n = 1, 2, . . .

c1(n) = a
(2πe)n/2

n(n−1)/2
< (n+ 1)Ωn − nΩn+1 < b

(2πe)n/2

n(n−1)/2
= c2(n), (14)

with the best possible constant

a =
1

e

(
4− 9π

8

)(
2

πe

)1/2

= 0.0829 . . . and b =
1√
π

= 0.5641 . . .

Our next theorem refines the inequalities given in (14), see Figure 1.

Theorem 3. For n = 1, 2, . . . and β = 1/1620, the following relations
hold true

b1(n) < (n+ 1)Ωn − nΩn+1 < b2(n),

where

b1(n) =
23n/4n−3n/4(eπ)n/2(sinh (2/n))−n/4

(n+ 1) (32β + n5)
ξ,
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ξ =

(
n9/2(n+ 1)2√

π
−
√

2
(
32β + n5

)2
(cosh (1/n))n/2

n4

)
,

and

b2(n) =
23n/4n−3n/4(eπ)n/2(sinh (2/n))−n/4

n+ 1
×

×

(
(n+ 1)2√

nπ
−
√

2n6(cosh (1/n))n/2

n5 + β

)
.

Proof. Clearly,

(n+ 1)Ωn − nΩn+1 = πn/2

(
2(n+ 1)

nΓ (n/2)
− 2nnΓ (n/2)

(n+ 1)Γ(n)

)
.

From Lemma 1, we get

23n/4en/2n(9−n)/2(n+ 1) (n sinh (2/n))
−n/4

√
π (32β + n5)

<

<
n+ 1

Γ (n/2 + 1)
<

<
23n/4en/2n−(n+1)/2(n+ 1) (n sinh (2/n))

−n/4
√
π

,

and

2(n+2)/4en/2n6−n/2 (n sinh (1/n))
−n/2

(n sinh (2/n))
n/4

(n+ 1) (β + n5)
<

<
2n+1nΓ (n/2 + 1)

(n+ 1)Γ(n+ 1)
<

<
2(n+2)/4en/2n−n/2−4

(
32β + n5

)
(n sinh (1/n))

−n/2
(n sinh (2/n))

n/4

n+ 1
.

Now by combining the above relations we get the proof. �
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Figure 1: In this picture we plot log(b1(n)/c1(n)) and b2/c2

Figure 2: In this picture we plot log(b1(n)/c1(n)) and b2/c2
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3. Graphical and numerical comparison. We denote the lower
and upper bounds of F (n) = Ω2

n/(Ωn−1Ωn+1) given in (3), (5), (7) by
Al(n), Au(n), Ml(n), Mu(n), and Y l(n), Y u(n) respectively. In the
following table we compare the above lower and upper bounds numerically.
Recall that the inequalities in (5) are valid for n ≥4.

n Ml(n) Al(n) Y l(n) Bl(n) F (n) Bu(n) Y u(n) Au(n)

1 − 1.2732 1.2740 1.1986 1.2732 1.2977 1.3238 1.4142
2 − 1.1518 1.1737 1.1768 1.1781 1.1797 1.1994 1.2247
3 − 1.1055 1.1264 1.1317 1.1318 1.1320 1.1436 1.1547
4 − 1.0809 1.0993 1.1044 1.1045 1.1045 1.1121 1.1180
5 1.0855 1.0656 1.0817 1.0865 1.0865 1.0865 1.0920 1.0954
6 1.0732 1.0552 1.0694 1.0738 1.0738 1.0738 1.0779 1.0801
7 1.0640 1.0476 1.0603 1.0643 1.0643 1.0643 1.0676 1.0690
8 1.0568 1.0419 1.0533 1.0570 1.0570 1.0570 1.0597 1.0607
9 1.0510 1.0374 1.0478 1.0512 1.0512 1.0512 1.0534 1.0541
10 1.0463 1.0338 1.0433 1.0464 1.0464 1.0464 1.0484 1.0488
11 1.0424 1.0308 1.0396 1.0425 1.0425 1.0425 1.0442 1.0445
12 1.0391 1.0283 1.0364 1.0392 1.0392 1.0392 1.0407 1.0408
13 1.0363 1.0262 1.0338 1.0363 1.0363 1.0363 1.0377 1.0377
14 1.0338 1.0243 1.0315 1.0339 1.0339 1.0339 1.0351 1.0351
15 1.0317 1.0227 1.0294 1.0317 1.0317 1.0317 1.0328 1.0328

It is clear from the above table that the bounds given in Theorem 1
refine the other bounds. We also see that the first inequality in (7) is not
valid for n = 1, so we compare our bound Bl with Y l for n = 2, 3, . . ., see
Figure 2. Graphical and numerical comparison are made with the help of
MathematicaR© Software [18].

On the basis of the computer experiments we come up to the following
conjecture, which refines the inequalities given in [19, 20].

Conjecture. The function

f(x) =
2

x

((
sinh(x)

x

)1/x

− 1

)

is increasing from (0, 1) onto (1/3, c). In particular,

x(6 + x)x

6x
≤ sinh(x) ≤ x(2 + cx)x

2x
,

where c = 2(sinh(1)− 1) = 0.3504 . . .
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Figure 3: Here we plot Y u(n) − Bu(n) and Bl(n) − Y l(n), and see that
the estimations given in Theorem 1 are better than the (7)

Again we denote the lower and upper bounds of G(n) = Ωn/Ω
n/(n+1)
n+1

given in (4), (6), (8) by Al, Au, Ml(n), Mu(n) and Yl(n), Yu(n), respec-
tively. The numerical comparison of these bounds is given in the following
table. We do not include the comparison of Yn(n) in the following table,
because it is an invalid bound.

n Al Yl(n) M1(n) Bl(n) G(n) Bu(n) Mu(n) Au

1 1.1284 0.9423 − 1.1032 1.1284 1.1364 − 1.6487
2 1.1284 1.0723 − 1.2084 1.2090 1.2097 − 1.6487
3 1.1284 1.1565 − 1.2651 1.2651 1.2653 − 1.6487
4 1.1284 1.2165 − 1.3069 1.3069 1.3069 − 1.6487
5 1.1284 1.2619 1.3076 1.3393 1.3393 1.3393 1.3719 1.6487
6 1.1284 1.2975 1.3482 1.3654 1.3654 1.3654 1.4146 1.6487
7 1.1284 1.3265 1.3781 1.3869 1.3869 1.3869 1.4459 1.64872
8 1.1284 1.3505 1.4009 1.4049 1.4049 1.4049 1.4698 1.6487
9 1.1284 1.3708 1.4189 1.4204 1.4204 1.4204 1.4887 1.6487
10 1.1284 1.3882 1.4334 1.4337 1.4337 1.4337 1.5040 1.6487
11 1.1284 1.4033 1.4455 1.4454 1.4454 1.4454 1.5166 1.6487
12 1.1284 1.4166 1.4556 1.4558 1.4558 1.4558 1.5272 1.6487
13 1.1284 1.4284 1.4642 1.4650 1.4650 1.4650 1.5362 1.6487
14 1.1284 1.4389 1.4716 1.4733 1.4733 1.4733 1.5440 1.6487
15 1.1284 1.4483 1.4780 1.4807 1.4807 1.4807 1.5507 1.6487
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