ON INEQUALITIES RELATED TO SOME QUASI-CONVEX FUNCTIONS

Abstract

Estimations of errors in inequalities related to some quasi-convex functions in literature are simplified. Two new general inequalities for functions whose n-th derivatives for any positive integer n in absolute values are quasi-convex have been established. Some special cases are discussed with applications in numerical integration and special means.

Key words: inequalities, quasi-convex function, Simpson type rule, numerical integration, special means

2010 Mathematical Subject Classification: 26D15

1. Introduction. It is well known that a function $f:[a, b] \rightarrow \mathbb{R}$ is called quasi-convex on $[a, b]$ if

$$
f(\lambda x+(1-\lambda) y) \leq \max \{f(x), f(y)\}
$$

for all $x, y \in[a, b]$ and $\lambda \in[0,1]$ (e.g., see [1] and [2]). Thus we see clearly that if $f:[a, b] \rightarrow \mathbb{R}$ is quasi-convex on $[a, b]$ then for any $t \in[a, b]$ we have

$$
f(t) \leq \max \{f(a), f(b)\}
$$

It should be noticed that any convex function is a quasi-convex function and there exist quasi-convex functions which are neither convex nor continuous (e.g., see [3] and [4]).

Along this paper, we consider a real interval $I \subset \mathbb{R}$, and denote that I° is the interior of I.

In [5-7], we see the following three inequalities for quasi-convex functions.

[^0]
(c) Er $^{\text {r-No }}$

Theorem A. [7, Theorem 6] Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable mapping on $I^{\circ}, a, b \in I^{\circ}$ with $a<b$ and $f^{\prime} \in L^{1}[a, b]$. If $\left|f^{\prime}\right|^{q}$ is quasiconvex on $[a, b]$ and $q \geq 1$, then the following inequality holds:

$$
\begin{gather*}
\left|\frac{1}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right| \leq \tag{1}\\
\leq \frac{5(b-a)}{36}\left(\max \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\}\right)^{\frac{1}{q}}
\end{gather*}
$$

Theorem B. [5, Theorem 4] Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable mapping on $I^{\circ}, a, b \in I^{\circ}$ with $a<b$ and $f^{\prime \prime} \in L^{1}[a, b]$. If $\left|f^{\prime \prime}\right|^{\frac{p}{p-1}}$ is quasi-convex on $[a, b]$, for $p>1$, then the following inequality holds:

$$
\begin{gather*}
\left|\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right| \leq \\
\leq \frac{(b-a)^{2}}{8}\left(\frac{\sqrt{\pi}}{2}\right)^{\frac{1}{p}}\left(\frac{\Gamma(1+p)}{\Gamma\left(\frac{3}{2}+p\right)}\right)^{\frac{1}{p}}\left(\max \left\{\left|f^{\prime \prime}(a)\right|^{q},\left|f^{\prime \prime}(b)\right|^{q}\right\}\right)^{\frac{1}{q}} \tag{2}
\end{gather*}
$$

where $q=\frac{p}{p-1}$.
Theorem C. [6, Theorem 3] Let $f^{\prime \prime}: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be an absolutely continuous function on I° such that $f^{\prime \prime \prime} \in L^{1}[a, b]$, where $a, b \in I^{\circ}$ with $a<b$. If $\left|f^{\prime \prime \prime}\right|^{q}, q=\frac{p}{p-1}$ is quasi-convex on $[a, b]$, for some fixed $p>1$, then the following inequality holds:

$$
\begin{align*}
& \left|\int_{a}^{b} f(t) d t-\frac{b-a}{6}\left[f(a)+4\left(\frac{f(a)+f(b)}{2}\right)+f(b)\right]\right| \leq \\
& \leq \frac{2^{-\frac{1}{p}}(b-a)^{4}}{48}(B(p+1,2 p+1))^{\frac{1}{p}}\left[\left(\max \left\{\left|f^{\prime \prime \prime}(a)\right|^{q},\left|f^{\prime \prime \prime}\left(\frac{a+b}{2}\right)\right|^{q}\right\}\right)^{\frac{1}{q}}+\right. \\
& \left.+\left(\max \left\{\left|f^{\prime \prime \prime}(b)\right|^{q},\left|f^{\prime \prime \prime}\left(\frac{a+b}{2}\right)\right|^{q}\right\}\right)^{\frac{1}{q}}\right] . \tag{3}
\end{align*}
$$

It should be noticed that

$$
\left(\max \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\}\right)^{\frac{1}{q}}=\max \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}(b)\right|\right\}
$$

which has been overlooked in the literature (see e.g., [3-13]). The inequalities (1), (2) and (3) have a uniform bound independent of q. Indeed, for any $q>0$ and positive integer $n,\left|f^{(n)}\right|^{q}$ is quasi-convex on $[a, b]$ if
and only if $\left|f^{(n)}\right|$ is quasi-convex on $[a, b]$. Thus, instead of Theorem A, Theorem B and Theorem C, we actually just have the following three theorems as:

Theorem 1. Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable mapping on I°, $a, b \in I^{\circ}$ with $a<b$ and $f^{\prime} \in L^{1}[a, b]$. If $\left|f^{\prime}\right|$ is quasi-convex on $[a, b]$, then the following inequality holds:

$$
\begin{align*}
\left\lvert\, \frac{1}{6}[f(a)\right. & \left.+4 f\left(\frac{a+b}{2}\right)+f(b)\right] \left.-\frac{1}{b-a} \int_{a}^{b} f(t) d t \right\rvert\, \leq \tag{4}\\
& \leq \frac{5(b-a)}{36} \max \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}(b)\right|\right\} .
\end{align*}
$$

Theorem 2. Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable mapping on $I^{\circ}, a, b \in I^{\circ}$ with $a<b$ and $f^{\prime \prime} \in L^{1}[a, b]$. If $\left|f^{\prime \prime}\right|$ is quasi-convex on $[a, b]$, then the following inequality holds:

$$
\begin{equation*}
\left|\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(t) d t\right| \leq \frac{(b-a)^{2}}{12} \max \left\{\left|f^{\prime \prime}(a)\right|,\left|f^{\prime \prime}(b)\right|\right\} . \tag{5}
\end{equation*}
$$

Theorem 3. Let $f^{\prime \prime}: I \subset \mathbb{R} \rightarrow \mathbf{R}$ be an absolutely continuous function on I° such that $f^{\prime \prime \prime} \in L^{1}[a, b]$, where $a, b \in I^{\circ}$ with $a<b$. If $\left|f^{\prime \prime \prime}\right|$ is quasi-convex on $[a, b]$, then the following inequality holds:

$$
\begin{gather*}
\left|\int_{a}^{b} f(t) d t-\frac{b-a}{6}\left[f(a)+4\left(\frac{f(a)+f(b)}{2}\right)+f(b)\right]\right| \leq \\
\leq \frac{(b-a)^{4}}{1152}\left[\max \left\{\left|f^{\prime \prime \prime}(a)\right|,\left|f^{\prime \prime \prime}\left(\frac{a+b}{2}\right)\right|\right\}+\max \left\{\left|f^{\prime \prime \prime}\left(\frac{a+b}{2}\right)\right|,\left|f^{\prime \prime \prime}(b)\right|\right\}\right] \tag{6}
\end{gather*}
$$

In this work, we will derive two new general inequalities for functions whose nth derivatives for any positive integer n in absolute values are quasi-convex, which provide some generalizations of the above three inequalities and some other interesting inequalities as special cases. Some applications in numerical integration and to special means are also given.

2. The Results.

Lemma. (see [14]) Let $f:[a, b] \rightarrow \mathbb{R}$ be such that the $(n-1)$ th derivative $f^{(n-1)}(n \geq 1)$ is absolutely continuous on $[a, b]$ and $f^{(n)} \in L^{1}[a, b]$. Then
we have the identity

$$
\begin{gather*}
\int_{a}^{b} f(x) d x=\frac{b-a}{2}\left[\theta f(a)+2(1-\theta) f\left(\frac{a+b}{2}\right)+\theta f(b)\right]+ \\
+\sum_{k=1}^{\frac{n-1}{2}} \frac{[1-(2 k+1) \theta](b-a)^{2 k+1}}{(2 k+1)!2^{2 k}} f^{(2 k)}\left(\frac{a+b}{2}\right)+ \tag{7}\\
+(-1)^{n} \int_{a}^{b} K_{n}(x, \theta) f^{(n)}(x) d x
\end{gather*}
$$

where $\theta \in[0,1]$ and

$$
K_{n}(x, \theta):= \begin{cases}\frac{(x-a)^{n}}{n!}-\frac{\theta(b-a)(x-a)^{n-1}}{2(n-1)!}, & \text { if } x \in\left[a, \frac{a+b}{2}\right] \tag{8}\\ \frac{(x-b)^{n}}{n!}+\frac{\theta(b-a)(x-b)^{n-1}}{2(n-1)!}, & \text { if } x \in\left(\frac{a+b}{2}, b\right]\end{cases}
$$

Theorem 4. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that the $(n-1)$ th derivative $f^{(n-1)}(n \geq 1)$ is absolutely continuous on $[a, b]$ and $f^{(n)} \in L^{1}[a, b]$. If $\left|f^{(n)}\right|$ is quasi-convex on $[a, b]$, then we have

$$
\begin{gather*}
\left\lvert\, \int_{a}^{b} f(x) d x-\frac{b-a}{2}\left[\theta f(a)+2(1-\theta) f\left(\frac{a+b}{2}\right)+\theta f(b)\right]-\right. \\
\left.-\sum_{k=1}^{\frac{n-1}{2}} \frac{[1-(2 k+1) \theta](b-a)^{2 k+1}}{(2 k+1)!2^{2 k}} f^{(2 k)}\left(\frac{a+b}{2}\right) \right\rvert\, \leq \tag{9}\\
\leq I(n, \theta) \max \left\{\left|f^{(n)}(a)\right|,\left|f^{(n)}(b)\right|\right\},
\end{gather*}
$$

where $\theta \in[0,1]$ and

$$
I(n, \theta)= \begin{cases}\frac{\left[1-(n+1) \theta+2 n^{n} \theta^{n+1}\right](b-a)^{n+1}}{(n+1)!2^{n}}, & n<\frac{1}{\theta} \tag{10}\\ \frac{[(n+1) \theta-1](b-a)^{n+1}}{(n+1)!2^{n}}, & n \geq \frac{1}{\theta} .\end{cases}
$$

Proof. From (7) of the Lemma, we have

$$
\begin{align*}
& \left\lvert\, \int_{a}^{b} f(x) d x-\frac{b-a}{2}\left[\theta f(a)+2(1-\theta) f\left(\frac{a+b}{2}\right)+\theta f(b)\right]-\right. \\
& \left.-\sum_{k=1}^{\frac{n-1}{2}} \frac{[1-(2 k+1) \theta](b-a)^{2 k+1}}{(2 k+1)!2^{2 k}} f^{(2 k)}\left(\frac{a+b}{2}\right) \right\rvert\,= \\
& =\left|\int_{a}^{b} K_{n}(x, \theta) f^{(n)}(x) d x\right| \leq \int_{a}^{b}\left|K_{n}(x, \theta) f^{(n)}(x)\right| d x \leq \tag{11}\\
& \quad \leq \max _{x \in[a, b]}\left|f^{(n)}(x)\right| \int_{a}^{b}\left|K_{n}(x, \theta)\right| d x \leq \\
& \quad \leq \max \left\{\left|f^{(n)}(a)\right|,\left|f^{(n)}(b)\right|\right\} \int_{a}^{b}\left|K_{n}(x, \theta)\right| d x .
\end{align*}
$$

By elementary calculus, it is not difficult to get the following results:

$$
\int_{a}^{b}\left|K_{n}(x, \theta)\right| d x= \begin{cases}\frac{\left[1-(n+1) \theta+2 n^{n} \theta^{n+1}\right](b-a)^{n+1}}{(n+1)!2^{n}}, & n<\frac{1}{\theta} \tag{12}\\ \frac{[(n+1) \theta-1](b-a)^{n+1}}{(n+1)!2^{n}}, & n \geq \frac{1}{\theta}\end{cases}
$$

Consequently, the inequality (9) with (10) follows from (11) and (12). The proof is completed.

Corollary 1. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that the $(n-1)$ th derivative $f^{(n-1)}(n \geq 1)$ is absolutely continuous on $[a, b]$ and $f^{(n)} \in L^{1}[a, b]$. If $\left|f^{(n)}\right|$ is quasi-convex on $[a, b]$, then we get a midpoint type inequality

$$
\begin{aligned}
\mid \int_{a}^{b} f(x) d x & \left.-\frac{b-a}{2} f\left(\frac{a+b}{2}\right)-\sum_{k=1}^{\frac{n-1}{2}} \frac{(b-a)^{2 k+1}}{(2 k+1)!2^{2 k}} f^{(2 k)}\left(\frac{a+b}{2}\right) \right\rvert\, \leq \\
& \leq \frac{(b-a)^{n+1}}{(n+1)!2^{n}} \max \left\{\left|f^{(n)}(a)\right|,\left|f^{(n)}(b)\right|\right\}
\end{aligned}
$$

a trapezoid type inequality

$$
\begin{gathered}
\left|\int_{a}^{b} f(x) d x-\frac{b-a}{2}[f(a)+f(b)]+\sum_{k=1}^{\frac{n-1}{2}} \frac{k(b-a)^{2 k+1}}{(2 k+1)!2^{2 k-1}} f^{(2 k)}\left(\frac{a+b}{2}\right)\right| \leq \\
\leq \frac{n(b-a)^{n+1}}{(n+1)!2^{n}} \max \left\{\left|f^{(n)}(a)\right|,\left|f^{(n)}(b)\right|\right\}
\end{gathered}
$$

a Simpson type inequality

$$
\begin{aligned}
& \left\lvert\, \int_{a}^{b} f(x) d x-\frac{b-a}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]+\right. \\
& \left.\quad+\sum_{k=1}^{\frac{n-1}{2}} \frac{(k-1)(b-a)^{2 k+1}}{3(2 k+1)!2^{2 k-1}} f^{(2 k)}\left(\frac{a+b}{2}\right) \right\rvert\, \leq \\
& \quad \leq I\left(n, \frac{1}{3}\right) \max \left\{\left|f^{(n)}(a)\right|,\left|f^{(n)}(b)\right|\right\}
\end{aligned}
$$

where

$$
I\left(n, \frac{1}{3}\right)= \begin{cases}\frac{5}{36}, & n=1 \\ \frac{1}{81}, & n=2 \\ \frac{(n-2)(b-a)^{n+1}}{3(n+1)!2^{n}}, & n \geq 3\end{cases}
$$

and an averaged midpoint-trapezoid type inequality

$$
\begin{aligned}
& \left\lvert\, \int_{a}^{b} f(x) d x-\frac{b-a}{4}\left[f(a)+2 f\left(\frac{a+b}{2}\right)+f(b)\right]+\right. \\
& \left.\quad+\sum_{k=1}^{\frac{n-1}{2}} \frac{(2 k-1)(b-a)^{2 k+1}}{(2 k+1)!2^{2 k+1}} f^{(2 k)}\left(\frac{a+b}{2}\right) \right\rvert\, \leq \\
& \quad \leq I\left(n, \frac{1}{2}\right) \max \left\{\left|f^{(n)}(a)\right|,\left|f^{(n)}(b)\right|\right\},
\end{aligned}
$$

where

$$
I\left(n, \frac{1}{2}\right)= \begin{cases}\frac{1}{48}, & n=1 \\ \frac{(n-1)(b-a)^{n+1}}{(n+1)!2^{n+1}}, & n \geq 2\end{cases}
$$

Proof. Set $\theta=0,1, \frac{1}{3}, \frac{1}{2}$ in (9) and (10).
Remark 1. For $n=1$, we have

$$
\begin{align*}
& \left|\int_{a}^{b} f(x) d x-\frac{b-a}{2}\left[\theta f(a)+2(1-\theta) f\left(\frac{a+b}{2}\right)+\theta f(b)\right]\right| \leq \tag{13}\\
& \quad \leq \frac{1-2 \theta+2 \theta^{2}}{4}(b-a)^{2} \max \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}(b)\right|\right\} .
\end{align*}
$$

If we take $\theta=0,1, \frac{1}{3}, \frac{1}{2}$ in (13), then we get a midpoint inequality

$$
\left|\int_{a}^{b} f(x) d x-(b-a) f\left(\frac{a+b}{2}\right)\right| \leq \frac{(b-a)^{2}}{4} \max \left\{\left|f^{(n)}(a)\right|,\left|f^{(n)}(b)\right|\right\}
$$

a trapezoid inequality

$$
\left|\int_{a}^{b} f(x) d x-\frac{b-a}{2}[f(a)+f(b)]\right| \leq \frac{(b-a)^{2}}{4} \max \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}(b)\right|\right\}
$$

a Simpson inequality

$$
\begin{gather*}
\left|\int_{a}^{b} f(x) d x-\frac{b-a}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]\right| \leq \tag{14}\\
\leq \frac{5(b-a)^{2}}{36} \max \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}(b)\right|\right\}
\end{gather*}
$$

which recapture the inequality (4), and an averaged midpoint-trapezoid inequality

$$
\begin{gathered}
\left|\int_{a}^{b} f(x) d x-\frac{b-a}{4}\left[f(a)+2 f\left(\frac{a+b}{2}\right)+f(b)\right]\right| \leq \\
\leq \frac{(b-a)^{2}}{8} \max \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}(b)\right|\right\} .
\end{gathered}
$$

Remark 2. For $n=2$, we have

$$
\begin{gather*}
\left\lvert\, \int_{a}^{b} f(x) d x-\frac{b-a}{2}\left[\theta f(a)+2(1-\theta) f\left(\frac{a+b}{2}\right)+\theta f(b)\right] \leq\right. \tag{15}\\
\leq I(2, \theta) \max \left\{\left|f^{\prime \prime}(a)\right|,\left|f^{\prime \prime}(b)\right|\right\},
\end{gather*}
$$

where

$$
I(2, \theta)= \begin{cases}\frac{\left[1-3 \theta+8 \theta^{3}\right](b-a)^{3}}{24}, & n<\frac{1}{2} \tag{16}\\ \frac{[3 \theta-1](b-a)^{3}}{24}, & n \geq \frac{1}{2}\end{cases}
$$

If we take $\theta=0,1, \frac{1}{3}, \frac{1}{2}$ in (15) and (16), then we get a midpoint inequality

$$
\left|\int_{a}^{b} f(x) d x-(b-a) f\left(\frac{a+b}{2}\right)\right| \leq \frac{(b-a)^{3}}{24} \max \left\{\left|f^{\prime \prime}(a)\right|,\left|f^{\prime \prime}(b)\right|\right\}
$$

a trapezoid inequality

$$
\left|\int_{a}^{b} f(x) d x-\frac{b-a}{2}[f(a)+f(b)]\right| \leq \frac{(b-a)^{3}}{12} \max \left\{\left|f^{\prime \prime}(a)\right|,\left|f^{\prime \prime}(b)\right|\right\}
$$

which recapture the inequality (5), a Simpson inequality

$$
\begin{gather*}
\left|\int_{a}^{b} f(x) d x-\frac{b-a}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]\right| \leq \tag{17}\\
\leq \frac{(b-a)^{3}}{81} \max \left\{\left|f^{\prime \prime}(a)\right|,\left|f^{\prime \prime}(b)\right|\right\}
\end{gather*}
$$

and an averaged midpoint-trapezoid inequality

$$
\begin{gathered}
\left|\int_{a}^{b} f(x) d x-\frac{b-a}{4}\left[f(a)+2 f\left(\frac{a+b}{2}\right)+f(b)\right]\right| \leq \\
\leq \frac{(b-a)^{2}}{48} \max \left\{\left|f^{\prime \prime}(a)\right|,\left|f^{\prime \prime}(b)\right|\right\} .
\end{gathered}
$$

Remark 3. For $n=3$, we have

$$
\begin{align*}
\mid \int_{a}^{b} f(x) d x & -\frac{b-a}{2}\left[\theta f(a)+2(1-\theta) f\left(\frac{a+b}{2}\right)+\theta f(b)\right]- \\
& \left.-\frac{(1-3 \theta)(b-a)^{3}}{24} f^{\prime \prime}\left(\frac{a+b}{2}\right) \right\rvert\, \leq \tag{18}\\
& \leq I(3, \theta) \max \left\{\left|f^{\prime \prime \prime}(a)\right|,\left|f^{\prime \prime \prime}(b)\right|\right\},
\end{align*}
$$

where

$$
I(3, \theta)= \begin{cases}\frac{\left[1-4 \theta+54 \theta^{4}\right](b-a)^{4}}{192}, & n<\frac{1}{2} \tag{19}\\ \frac{[4 \theta-1](b-a)^{4}}{192}, & n \geq \frac{1}{2} .\end{cases}
$$

If we take $\theta=0,1, \frac{1}{3}, \frac{1}{2}$ in (18) and (19), then we get a midpoint type inequality

$$
\begin{aligned}
& \left|\int_{a}^{b} f(x) d x-(b-a) f\left(\frac{a+b}{2}\right)-\frac{(b-a)^{3}}{24} f^{\prime \prime}\left(\frac{a+b}{2}\right)\right| \leq \\
& \leq \frac{(b-a)^{4}}{192} \max \left\{\left|f^{\prime \prime \prime}(a)\right|,\left|f^{\prime \prime \prime}(b)\right|\right\}
\end{aligned}
$$

a trapezoid type inequality

$$
\begin{gathered}
\left|\int_{a}^{b} f(x) d x-\frac{b-a}{2}[f(a)+f(b)]+\frac{(b-a)^{3}}{12} f^{\prime \prime}\left(\frac{a+b}{2}\right)\right| \\
\leq \frac{(b-a)^{4}}{64} \max \left\{\left|f^{\prime \prime \prime}(a)\right|,\left|f^{\prime \prime \prime}(b)\right|\right\},
\end{gathered}
$$

a Simpson inequality

$$
\begin{gather*}
\left|\int_{a}^{b} f(x) d x-\frac{b-a}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]\right| \leq \tag{20}\\
\leq \frac{(b-a)^{4}}{576} \max \left\{\left|f^{\prime \prime \prime}(a)\right|,\left|f^{\prime \prime \prime}(b)\right|\right\}
\end{gather*}
$$

and a midpoint-trapezoid type inequality

$$
\begin{gathered}
\left\lvert\, \int_{a}^{b} f(x) d x-\frac{b-a}{4}\left[f(a)+2 f\left(\frac{a+b}{2}\right)+f(b)\right]+\right. \\
+\frac{(b-a)^{3}}{48} f^{\prime \prime}\left(\frac{a+b}{2}\right) \left\lvert\, \leq \frac{(b-a)^{4}}{192} \max \left\{\left|f^{\prime \prime \prime}(a)\right|,\left|f^{\prime \prime \prime}(b)\right|\right\} .\right.
\end{gathered}
$$

Theorem 5. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that the $(n-1)$ th derivative $f^{(n-1)}(n \geq 1)$ is absolutely continuous on $[a, b]$ and $f^{(n)} \in L^{1}[a, b]$. If $\left|f^{(n)}\right|$ is quasi-convex on $[a, b]$, then we have

$$
\begin{align*}
& \left\lvert\, \int_{a}^{b} f(x) d x-\frac{b-a}{2}\left[\theta f(a)+2(1-\theta) f\left(\frac{a+b}{2}\right)+\theta f(b)\right]-\right. \\
& \left.-\sum_{k=1}^{\frac{n-1}{2}} \frac{[1-(2 k+1) \theta](b-a)^{2 k+1}}{(2 k+1)!2^{2 k}} f^{(2 k)}\left(\frac{a+b}{2}\right) \right\rvert\, \leq \tag{21}\\
& \quad \leq \frac{I(n, \theta)}{2}\left[\max \left\{\left|f^{(n)}(a)\right|,\left|f^{(n)}\left(\frac{a+b}{2}\right)\right|\right\}+\right. \\
& \left.\quad+\max \left\{\left|f^{(n)}\left(\frac{a+b}{2}\right)\right|,\left|f^{(n)}(b)\right|\right\}\right]
\end{align*}
$$

where $\theta \in[0,1]$ and $I(n, \theta)$ is as in (10).

Proof. From (7) of the Lemma, we have

$$
\begin{align*}
& \left\lvert\, \int_{a}^{b} f(x) d x-\frac{b-a}{2}\left[\theta f(a)+2(1-\theta) f\left(\frac{a+b}{2}\right)+\theta f(b)\right]-\right. \\
& \left.-\sum_{k=1}^{\frac{n-1}{2}} \frac{[1-(2 k+1) \theta](b-a)^{2 k+1}}{(2 k+1)!2^{2 k}} f^{(2 k)}\left(\frac{a+b}{2}\right) \right\rvert\,= \\
& =\left|\int_{a}^{b} K_{n}(x, \theta) f^{(n)}(x) d x\right| \leq \int_{a}^{b}\left|K_{n}(x, \theta) f^{(n)}(x)\right| d x= \\
& =\int_{a}^{\frac{a+b}{2}}\left|K_{n}(x, \theta) f^{(n)}(x)\right| d x+\int_{\substack{b+b}}^{\frac{a+b}{a+b}}\left|K_{n}(x, \theta) f^{(n)}(x)\right| d x \leq \\
& \quad \leq \max _{x \in\left[a, \frac{a+b}{2}\right]}\left|f^{(n)}(x)\right| \int_{a}^{\frac{a+b}{2}}\left|K_{n}(x, \theta)\right| d x+ \tag{22}\\
& \quad+\max _{x \in\left[\frac{a+b}{2}, b\right]}\left|f^{(n)}(x)\right| \int_{\frac{a+b}{2}}^{b}\left|K_{n}(x, \theta)\right| d x \leq \\
& \quad \leq \max \left\{\left|f^{(n)}(a)\right|,\left|f^{(n)}\left(\frac{a+b}{2}\right)\right|\right\} \int_{a}^{\frac{a+b}{2}}\left|K_{n}(x, \theta)\right| d x+ \\
& \quad+\max \left\{\left|f^{(n)}\left(\frac{a+b}{2}\right)\right|,\left|f^{(n)}(b)\right|\right\} \int_{\frac{a+b}{b}}^{b}\left|K_{n}(x, \theta)\right| d x,
\end{align*}
$$

Observe that

$$
\int_{a}^{\frac{a+b}{2}}\left|K_{n}(x, \theta)\right| d x=\int_{\frac{a+b}{2}}^{b}\left|K_{n}(x, \theta)\right| d x=\frac{1}{2} \int_{a}^{b}\left|K_{n}(x, \theta)\right| d x=\frac{I(n, \theta)}{2},
$$

the inequality (21) follows from (22). The proof is completed.
Corollary 2. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that the $(n-1)$ th derivative
$f^{(n-1)}(n \geq 1)$ is absolutely continuous on $[a, b]$ and $f^{(n)} \in L^{1}[a, b]$. If
$\left|f^{(n)}\right|$ is quasi-convex on $[a, b]$, then we get a midpoint type inequality
Corollary 2. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that the $(n-1)$ th derivative
$f^{(n-1)}(n \geq 1)$ is absolutely continuous on $[a, b]$ and $f^{(n)} \in L^{1}[a, b]$. If
$\left|f^{(n)}\right|$ is quasi-convex on $[a, b]$, then we get a midpoint type inequality
Corollary 2. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that the $(n-1)$ th derivati
$f^{(n-1)}(n \geq 1)$ is absolutely continuous on $[a, b]$ and $f^{(n)} \in L^{1}[a, b]$.
$\left|f^{(n)}\right|$ is quasi-convex on $[a, b]$, then we get a midpoint type inequality

$$
\begin{gathered}
\left|\int_{a}^{b} f(x) d x-\frac{b-a}{2} f\left(\frac{a+b}{2}\right)-\sum_{k=1}^{\frac{n-1}{2}} \frac{(b-a)^{2 k+1}}{(2 k+1)!2^{2 k}} f^{(2 k)}\left(\frac{a+b}{2}\right)\right| \leq \\
\leq \frac{(b-a)^{n+1}}{(n+1)!2^{n+1}}\left[\max \left\{\left|f^{(n)}(a)\right|,\left|f^{(n)}\left(\frac{a+b}{2}\right)\right|\right\}+\right. \\
\left.+\max \left\{\left|f^{(n)}\left(\frac{a+b}{2}\right)\right|,\left|f^{(n)}(b)\right|\right\}\right]
\end{gathered}
$$

a trapezoid type inequality

$$
\begin{gathered}
\left|\int_{a}^{b} f(x) d x-\frac{b-a}{2}[f(a)+f(b)]+\sum_{k=1}^{\frac{n-1}{2}} \frac{k(b-a)^{2 k+1}}{(2 k+1)!2^{2 k-1}} f^{(2 k)}\left(\frac{a+b}{2}\right)\right| \leq \\
\leq \frac{n(b-a)^{n+1}}{(n+1)!2^{n+1}}\left[\max \left\{\left|f^{(n)}(a)\right|,\left|f^{(n)}\left(\frac{a+b}{2}\right)\right|\right\}+\right. \\
\left.+\max \left\{\left|f^{(n)}\left(\frac{a+b}{2}\right)\right|,\left|f^{(n)}(b)\right|\right\}\right]
\end{gathered}
$$

a Simpson type inequality

$$
\begin{aligned}
& \left\lvert\, \int_{a}^{b} f(x) d x-\frac{b-a}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]+\right. \\
& \left.\quad+\sum_{k=1}^{\frac{n-1}{2}} \frac{(k-1)(b-a)^{2 k+1}}{3(2 k+1)!2^{2 k-1}} f^{(2 k)}\left(\frac{a+b}{2}\right) \right\rvert\, \leq \\
& \leq \frac{I\left(n, \frac{1}{3}\right)}{2}\left[\max \left\{\left|f^{(n)}(a)\right|,\left|f^{(n)}\left(\frac{a+b}{2}\right)\right|\right\}+\right. \\
& \left.\quad+\max \left\{\left|f^{(n)}\left(\frac{a+b}{2}\right)\right|,\left|f^{(n)}(b)\right|\right\}\right],
\end{aligned}
$$

where

$$
I\left(n, \frac{1}{3}\right)= \begin{cases}\frac{5}{36}, & n=1 \\ \frac{1}{81}, & n=2 \\ \frac{(n-2)(b-a)^{n+1}}{3(n+1)!2^{n}}, & n \geq 3\end{cases}
$$

and an averaged midpoint-trapezoid type inequality

$$
\begin{aligned}
& \left\lvert\, \int_{a}^{b} f(x) d x-\frac{b-a}{4}\left[f(a)+2 f\left(\frac{a+b}{2}\right)+f(b)\right]+\right. \\
& \left.\quad+\sum_{k=1}^{\frac{n-1}{2}} \frac{(2 k-1)(b-a)^{2 k+1}}{(2 k+1)!2^{2 k+1}} f^{(2 k)}\left(\frac{a+b}{2}\right) \right\rvert\, \leq \\
& \leq \frac{I\left(n, \frac{1}{2}\right)}{2}\left[\max \left\{\left|f^{(n)}(a)\right|,\left|f^{(n)}\left(\frac{a+b}{2}\right)\right|\right\}+\right. \\
& \left.\quad+\max \left\{\left|f^{(n)}\left(\frac{a+b}{2}\right)\right|,\left|f^{(n)}(b)\right|\right\}\right],
\end{aligned}
$$

where

$$
I\left(n, \frac{1}{2}\right)= \begin{cases}\frac{1}{48}, & n=1 \\ \frac{(n-1)(b-a)^{n+1}}{(n+1)!2^{n+1}}, & n \geq 2\end{cases}
$$

Proof. Set $\theta=0,1, \frac{1}{3}, \frac{1}{2}$ in (21) and (10).
Remark 4. For $n=1$, we have

$$
\begin{align*}
& \left|\int_{a}^{b} f(x) d x-\frac{b-a}{2}\left[\theta f(a)+2(1-\theta) f\left(\frac{a+b}{2}\right)+\theta f(b)\right]\right| \leq \\
& \quad \leq \frac{1-2 \theta+2 \theta^{2}}{8}(b-a)^{2}\left[\max \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}\left(\frac{a+b}{2}\right)\right|\right\}+\right. \tag{23}\\
& \left.+\max \left\{\left|f^{\prime}\left(\frac{a+b}{2}\right)\right|,\left|f^{\prime}(b)\right|\right\}\right]
\end{align*}
$$

If we take $\theta=0,1, \frac{1}{3}, \frac{1}{2}$ in (23), then we get a midpoint inequality

$$
\begin{gathered}
\left|\int_{a}^{b} f(x) d x-(b-a) f\left(\frac{a+b}{2}\right)\right| \leq \\
\leq \frac{(b-a)^{2}}{8}\left[\max \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}\left(\frac{a+b}{2}\right)\right|\right\}+\right. \\
\left.\quad+\max \left\{\left|f^{\prime}\left(\frac{a+b}{2}\right)\right|,\left|f^{\prime}(b)\right|\right\}\right],
\end{gathered}
$$

a trapezoid inequality

$$
\begin{gathered}
\left|\int_{a}^{b} f(x) d x-\frac{b-a}{2}[f(a)+f(b)]\right| \leq \\
\leq \frac{(b-a)^{2}}{8}\left[\max \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}\left(\frac{a+b}{2}\right)\right|\right\}+\right. \\
\left.\quad+\max \left\{\left|f^{\prime}\left(\frac{a+b}{2}\right)\right|,\left|f^{\prime}(b)\right|\right\}\right]
\end{gathered}
$$

a Simpson inequality

$$
\begin{gathered}
\left|\int_{a}^{b} f(x) d x-\frac{b-a}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]\right| \leq \\
\leq \frac{5(b-a)^{2}}{72}\left[\max \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}\left(\frac{a+b}{2}\right)\right|\right\}+\right. \\
\left.+\max \left\{\left|f^{\prime}\left(\frac{a+b}{2}\right)\right|,\left|f^{\prime}(b)\right|\right\}\right]
\end{gathered}
$$

and an averaged midpoint-trapezoid inequality

$$
\begin{aligned}
& \left|\int_{a}^{b} f(x) d x-\frac{b-a}{4}\left[f(a)+2 f\left(\frac{a+b}{2}\right)+f(b)\right]\right| \leq \\
& \leq \frac{(b-a)^{2}}{16}\left[\max \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}\left(\frac{a+b}{2}\right)\right|\right\}+\right. \\
& \left.+\max \left\{\left|f^{\prime}\left(\frac{a+b}{2}\right)\right|,\left|f^{\prime}(b)\right|\right\}\right] .
\end{aligned}
$$

Remark 5. For $n=2$, we have

$$
\begin{gather*}
\left|\int_{a}^{b} f(x) d x-\frac{b-a}{2}\left[\theta f(a)+2(1-\theta) f\left(\frac{a+b}{2}\right)+\theta f(b)\right]\right| \leq \\
\leq \frac{I(2, \theta)}{2}\left[\max \left\{\left|f^{\prime \prime}(a)\right|,\left|f^{\prime \prime}\left(\frac{a+b}{2}\right)\right|\right\}+\right. \tag{24}\\
\left.+\max \left\{\left|f^{\prime \prime}\left(\frac{a+b}{2}\right)\right|,\left|f^{\prime \prime}(b)\right|\right\}\right],
\end{gather*}
$$

where $I(2, \theta)$ is as expressed in (16).
If we take $\theta=0,1, \frac{1}{3}, \frac{1}{2}$ in (24) and (16), then we get a midpoint inequality

$$
\begin{gathered}
\left|\int_{a}^{b} f(x) d x-(b-a) f\left(\frac{a+b}{2}\right)\right| \leq \\
\leq \frac{(b-a)^{3}}{48}\left[\max \left\{\left|f^{\prime \prime}(a)\right|,\left|f^{\prime \prime}\left(\frac{a+b}{2}\right)\right|\right\}+\right. \\
\left.\quad+\max \left\{\left|f^{\prime \prime}\left(\frac{a+b}{2}\right)\right|,\left|f^{\prime \prime}(b)\right|\right\}\right],
\end{gathered}
$$

a trapezoid inequality

$$
\begin{gathered}
\left|\int_{a}^{b} f(x) d x-\frac{b-a}{2}[f(a)+f(b)]\right| \leq \\
\leq \frac{(b-a)^{3}}{8}\left[\max \left\{\left|f^{\prime \prime}(a)\right|,\left|f^{\prime \prime}\left(\frac{a+b}{2}\right)\right|\right\}+\right. \\
\left.\quad+\max \left\{\left|f^{\prime \prime}\left(\frac{a+b}{2}\right)\right|,\left|f^{\prime \prime}(b)\right|\right\}\right],
\end{gathered}
$$

a Simpson inequality

$$
\begin{gathered}
\left|\int_{a}^{b} f(x) d x-\frac{b-a}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]\right| \leq \\
\leq \frac{(b-a)^{3}}{162}\left[\max \left\{\left|f^{\prime \prime}(a)\right|,\left|f^{\prime \prime}\left(\frac{a+b}{2}\right)\right|\right\}+\right. \\
\left.\quad+\max \left\{\left|f^{\prime \prime}\left(\frac{a+b}{2}\right)\right|,\left|f^{\prime \prime}(b)\right|\right\}\right]
\end{gathered}
$$

and an averaged midpoint-trapezoid inequality

$$
\begin{aligned}
& \left|\int_{a}^{b} f(x) d x-\frac{b-a}{4}\left[f(a)+2 f\left(\frac{a+b}{2}\right)+f(b)\right]\right| \leq \\
& \leq \frac{(b-a)^{2}}{96}\left[\max \left\{\left|f^{\prime \prime}(a)\right|,\left|f^{\prime \prime}\left(\frac{a+b}{2}\right)\right|\right\}+\right. \\
& \left.+\max \left\{\left|f^{\prime \prime}\left(\frac{a+b}{2}\right)\right|,\left|f^{\prime \prime}(b)\right|\right\}\right] .
\end{aligned}
$$

Remark 6. For $n=3$, we have

$$
\begin{gather*}
\left\lvert\, \int_{a}^{b} f(x) d x-\frac{b-a}{2}\left[\theta f(a)+2(1-\theta) f\left(\frac{a+b}{2}\right)+\theta f(b)\right]-\right. \\
-\frac{(1-3 \theta)(b-a)^{3}}{24} f^{\prime \prime}\left(\frac{a+b}{2}\right) \left\lvert\, \leq \frac{I(3, \theta)}{2}\left[\max \left\{\left|f^{\prime \prime \prime}(a)\right|,\left|f^{\prime \prime \prime}\left(\frac{a+b}{2}\right)\right|\right\}+\right.\right. \tag{25}\\
\left.+\max \left\{\left|f^{\prime \prime \prime}\left(\frac{a+b}{2}\right)\right|,\left|f^{\prime \prime \prime}(b)\right|\right\}\right],
\end{gather*}
$$

where $I(3, \theta)$ is as expressed in (19).
If we take $\theta=0,1, \frac{1}{3}, \frac{1}{2}$ in (25) and (19), then we get a midpoint type inequality

$$
\begin{gathered}
\left|\int_{a}^{b} f(x) d x-(b-a) f\left(\frac{a+b}{2}\right)-\frac{(b-a)^{3}}{24} f^{\prime \prime}\left(\frac{a+b}{2}\right)\right| \leq \\
\leq \frac{(b-a)^{4}}{384}\left[\max \left\{\left|f^{\prime \prime \prime}(a)\right|,\left|f^{\prime \prime \prime}\left(\frac{a+b}{2}\right)\right|\right\}+\right. \\
\left.\quad+\max \left\{\left|f^{\prime \prime \prime}\left(\frac{a+b}{2}\right)\right|,\left|f^{\prime \prime \prime}(b)\right|\right\}\right]
\end{gathered}
$$

a trapezoid type inequality

$$
\begin{aligned}
& \left|\int_{a}^{b} f(x) d x-\frac{b-a}{2}[f(a)+f(b)]+\frac{(b-a)^{3}}{12} f^{\prime \prime}\left(\frac{a+b}{2}\right)\right| \leq \\
& \quad \leq \frac{(b-a)^{4}}{128}\left[\max \left\{\left|f^{\prime \prime \prime}(a)\right|,\left|f^{\prime \prime \prime}\left(\frac{a+b}{2}\right)\right|\right\}+\right. \\
& \left.\quad+\max \left\{\left|f^{\prime \prime \prime}\left(\frac{a+b}{2}\right)\right|,\left|f^{\prime \prime \prime}(b)\right|\right\}\right],
\end{aligned}
$$

a Simpson inequality

$$
\begin{aligned}
& \left|\int_{a}^{b} f(x) d x-\frac{b-a}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]\right| \leq \\
& \leq \frac{(b-a)^{4}}{1152}\left[\max \left\{\left|f^{\prime \prime \prime}(a)\right|,\left|f^{\prime \prime \prime}\left(\frac{a+b}{2}\right)\right|\right\}+\right. \\
& \left.\quad+\max \left\{\left|f^{\prime \prime \prime}\left(\frac{a+b}{2}\right)\right|,\left|f^{\prime \prime \prime}(b)\right|\right\}\right]
\end{aligned}
$$

which recapture the inequality (6) and an averaged midpoint-trapezoid type inequality

$$
\begin{gathered}
\left\lvert\, \int_{a}^{b} f(x) d x-\frac{b-a}{4}\left[f(a)+2 f\left(\frac{a+b}{2}\right)+f(b)\right]+\right. \\
+\frac{(b-a)^{3}}{48} f^{\prime \prime}\left(\frac{a+b}{2}\right) \left\lvert\, \leq \frac{(b-a)^{4}}{384}\left[\max \left\{\left|f^{\prime \prime \prime}(a)\right|,\left|f^{\prime \prime \prime}\left(\frac{a+b}{2}\right)\right|\right\}+\right.\right. \\
\left.+\max \left\{\left|f^{\prime \prime \prime}\left(\frac{a+b}{2}\right)\right|,\left|f^{\prime \prime \prime}(b)\right|\right\}\right]
\end{gathered}
$$

3. Applications in numerical integration. We restrict further considerations to the Simpson quadrature rule.

Theorem 6. Let $\pi=\left\{x_{0}=a<x_{1}<\cdots<x_{n}=b\right\}$ be a given subdivision of the interval $[a, b]$ such that $h_{i}=x_{i+1}-x_{i}=h=\frac{b-a}{n}$ and let the assumptions of Theorem 1 hold. Then we have

$$
\begin{align*}
\mid \int_{a}^{b} f(t) d t & \left.-\frac{h}{6} \sum_{i=0}^{n-1}\left[f\left(x_{i}\right)+4 f\left(\frac{x_{i}+x_{i+1}}{2}\right)+f\left(x_{i+1}\right)\right] \right\rvert\, \leq \tag{26}\\
& \leq \frac{5(b-a)^{2}}{36 n} \max \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}(b)\right|\right\}
\end{align*}
$$

Proof. From the inequality (14) in Remark 1 we obtain

$$
\begin{align*}
\mid \int_{x_{i}}^{x_{i+1}} f(t) & \left.d t-\frac{h}{6}\left[f\left(x_{i}\right)+4 f\left(\frac{x_{i}+x_{i+1}}{2}\right)+f\left(x_{i+1}\right)\right] \right\rvert\, \leq \\
& \leq \frac{5 h^{2}}{36} \max \left\{\left|f^{\prime}\left(x_{i}\right)\right|,\left|f^{\prime}\left(x_{i+1}\right)\right|\right\} \leq \tag{27}\\
& \leq \frac{5(b-a)^{2}}{36 n^{2}} \max \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}(b)\right|\right\} .
\end{align*}
$$

By summing (27) over i from 0 to $n-1$, we get

$$
\begin{gather*}
\sum_{i=0}^{n-1}\left|\int_{x_{i}}^{x_{i+1}} f(t) d t-\frac{h}{6}\left[f\left(x_{i}\right)+4 f\left(\frac{x_{i}+x_{i+1}}{2}\right)+f\left(x_{i+1}\right)\right]\right| \leq \tag{28}\\
\leq \frac{5(b-a)^{2}}{36 n} \max \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}(b)\right|\right\}
\end{gather*}
$$

Consequently, the inequality (26) follows from (28).
Theorem 7. Let $\pi=\left\{x_{0}=a<x_{1}<\cdots<x_{n}=b\right\}$ be a given subdivision of the interval $[a, b]$ such that $h_{i}=x_{i+1}-x_{i}=h=\frac{b-a}{n}$ and let the assumptions of Theorem 2 hold. Then we have

$$
\begin{align*}
\mid \int_{a}^{b} f(t) d t & \left.-\frac{h}{6} \sum_{i=0}^{n-1}\left[f\left(x_{i}\right)+4 f\left(\frac{x_{i}+x_{i+1}}{2}\right)+f\left(x_{i+1}\right)\right] \right\rvert\, \leq \tag{29}\\
& \leq \frac{(b-a)^{3}}{81 n^{2}} \max \left\{\left|f^{\prime \prime}(a)\right|,\left|f^{\prime \prime}(b)\right|\right\}
\end{align*}
$$

Proof. From the inequality (17) in Remark 2 we obtain

$$
\begin{align*}
\mid \int_{x_{i}}^{x_{i+1}} f(t) & \left.d t-\frac{h}{6}\left[f\left(x_{i}\right)+4 f\left(\frac{x_{i}+x_{i+1}}{2}\right)+f\left(x_{i+1}\right)\right] \right\rvert\, \leq \\
& \leq \frac{h^{3}}{81} \max \left\{\left|f^{\prime \prime}\left(x_{i}\right)\right|,\left|f^{\prime \prime}\left(x_{i+1}\right)\right|\right\} \leq \tag{30}\\
& \leq \frac{(b-a)^{3}}{81 n^{3}} \max \left\{\left|f^{\prime \prime}(a)\right|,\left|f^{\prime \prime}(b)\right|\right\} .
\end{align*}
$$

By summing (30) over i from 0 to $n-1$, we get

$$
\begin{gather*}
\sum_{i=0}^{n-1}\left|\int_{x_{i}}^{x_{i+1}} f(t) d t-\frac{h}{6}\left[f\left(x_{i}\right)+4 f\left(\frac{x_{i}+x_{i+1}}{2}\right)+f\left(x_{i+1}\right)\right]\right| \leq \tag{31}\\
\leq \frac{(b-a)^{3}}{81 n^{2}} \max \left\{\left|f^{\prime \prime}(a)\right|,\left|f^{\prime \prime}(b)\right|\right\}
\end{gather*}
$$

Consequently, the inequality (29) follows from (31).
Theorem 8. Let $\pi=\left\{x_{0}=a<x_{1}<\cdots<x_{n}=b\right\}$ be a given subdivision of the interval $[a, b]$ such that $h_{i}=x_{i+1}-x_{i}=h=\frac{b-a}{n}$ and let the assumptions of Theorem 3 hold. Then we have

$$
\begin{align*}
\mid \int_{a}^{b} f(t) d t & \left.-\frac{h}{6} \sum_{i=0}^{n-1}\left[f\left(x_{i}\right)+4 f\left(\frac{x_{i}+x_{i+1}}{2}\right)+f\left(x_{i+1}\right)\right] \right\rvert\, \leq \tag{32}\\
& \leq \frac{(b-a)^{4}}{576 n^{3}} \max \left\{\left|f^{\prime \prime \prime}(a)\right|,\left|f^{\prime \prime \prime}(b)\right|\right\} .
\end{align*}
$$

Proof. From the inequality (20) in Remark 3 we obtain

$$
\begin{gather*}
\left|\int_{x_{i}}^{x_{i+1}} f(t) d t-\frac{h}{6}\left[f\left(x_{i}\right)+4 f\left(\frac{x_{i}+x_{i+1}}{2}\right)+f\left(x_{i+1}\right)\right]\right| \leq \\
\quad \leq \frac{h^{4}}{576} \max \left\{\left|f^{\prime \prime \prime}\left(x_{i}\right)\right|,\left|f^{\prime \prime \prime}\left(x_{i+1}\right)\right|\right\} \leq \tag{33}\\
\quad \leq \frac{(b-a)^{4}}{576 n^{4}} \max \left\{\left|f^{\prime \prime \prime}(a)\right|,\left|f^{\prime \prime \prime}(b)\right|\right\} .
\end{gather*}
$$

By summing (33) over i from 0 to $n-1$, we get

$$
\begin{gather*}
\sum_{i=0}^{n-1}\left|\int_{x_{i}}^{x_{i+1}} f(t) d t-\frac{h}{6}\left[f\left(x_{i}\right)+4 f\left(\frac{x_{i}+x_{i+1}}{2}\right)+f\left(x_{i+1}\right)\right]\right| \leq \tag{34}\\
\leq \frac{(b-a)^{4}}{576 n^{3}} \max \left\{\left|f^{\prime \prime \prime}(a)\right|,\left|f^{\prime \prime \prime}(b)\right|\right\} .
\end{gather*}
$$

Consequently, the inequality (32) follows from (34).
4. Applications to special means. We now consider the applications of the Simpson inequalities (14), (17) and (20) to the following special means:
(1) The arithmetic mean: $A(a, b):=\frac{a+b}{2}, a, b \geq 0$.
(2) The Geometric mean: $G(a, b):=\sqrt{a b}, a, b \geq 0$.
(3) The harmonic mean: $H(a, b):=\frac{2 a b}{a+b}, a, b>0$.
(4) The logarithmic mean: $L(a, b):=\frac{b-a}{\ln b-\ln a}, a \neq b, a, b>0$.
(5) The identric mean: $I(a, b):=\frac{1}{e}\left(\frac{b^{b}}{a^{a}}\right)^{1 /(b-a)}, a \neq b, a, b>0$.
(6) The p-logarithmic mean: $L_{p}(a, b)=\left[\frac{b^{p+1}-a^{p+1}}{(p+1)(b-a)}\right]^{\frac{1}{p}}, a \neq b, a, b>$ $>0, p \neq-1,0$.

Using the Simpson inequalities (14), (17) and (20), some new inequalities are derived for the above means.

Proposition 1. Let $a, b \in \mathbb{R}, 0<a<b$ and $n \in \mathbf{N}, n \geq 3$. Then we have

$$
\begin{aligned}
\left|\frac{1}{3} A\left(a^{n}, b^{n}\right)+\frac{2}{3} A^{n}(a, b)-L_{n}^{n}(a, b)\right| & \leq \frac{5 n(b-a) b^{n-1}}{36} \\
\left|\frac{1}{3} A\left(a^{n}, b^{n}\right)+\frac{2}{3} A^{n}(a, b)-L_{n}^{n}(a, b)\right| & \leq \frac{n(n-1)(b-a)^{2} b^{n-2}}{81}
\end{aligned}
$$

and

$$
\left|\frac{1}{3} A\left(a^{n}, b^{n}\right)+\frac{2}{3} A^{n}(a, b)-L_{n}^{n}(a, b)\right| \leq \frac{n(n-1)(n-2)(b-a)^{3} b^{n-3}}{576}
$$

Proof. The assertion follows from applying the inequalities (14), (17) and (20) to the mapping $f(x)=x^{n}, x \in[a, b]$ and $n \in \mathbf{N}$ which implies that $\left|f^{\prime}(x)\right|=n x^{n-1},\left|f^{\prime \prime}(x)\right|=n(n-1) x^{n-2}$ and $\left|f^{\prime \prime \prime}(x)\right|=$ $=n(n-1)(n-2) x^{n-3}$ are quasi-convex on $[a, b]$.

Proposition 2. Let $a, b \in \mathbb{R}, 0<a<b$. Then we have

$$
\begin{aligned}
\left|\frac{1}{3} H^{-1}(a, b)+\frac{2}{3} A^{-1}(a, b)-L^{-1}(a, b)\right| & \leq \frac{5(b-a)}{36 a^{2}} \\
\left|\frac{1}{3} H^{-1}(a, b)+\frac{2}{3} A^{-1}(a, b)-L^{-1}(a, b)\right| & \leq \frac{(b-a)^{2}}{81 a^{3}}
\end{aligned}
$$

and

$$
\left|\frac{1}{3} H^{-1}(a, b)+\frac{2}{3} A^{-1}(a, b)-L^{-1}(a, b)\right| \leq \frac{(b-a)^{3}}{288 a^{4}} .
$$

Proof. The assertion follows from applying the inequalities (14), (17) and (20) to the mapping $f(x)=\frac{1}{x}, x \in[a, b]$ which implies that $\left|f^{\prime}(x)\right|=\frac{1}{x^{2}}$, $\left|f^{\prime \prime}(x)\right|=\frac{2}{x^{3}}$ and $\left|f^{\prime \prime \prime}(x)\right|=\frac{6}{x^{4}}$ are quasi-convex on $[a, b]$.

Proposition 3. Let $a, b \in \mathbb{R}, 0<a<b$. Then we have

$$
\begin{aligned}
& \left|\frac{1}{3}[\ln G(a, b)+2 \ln A(a, b)]-\ln I(a, b)\right| \leq \frac{5(b-a)}{36 a} \\
& \left|\frac{1}{3}[\ln G(a, b)+2 \ln A(a, b)]-\ln I(a, b)\right| \leq \frac{(b-a)^{2}}{81 a^{2}}
\end{aligned}
$$

and

$$
\left|\frac{1}{3}[\ln G(a, b)+2 \ln A(a, b)]-\ln I(a, b)\right| \leq \frac{(b-a)^{3}}{288 a^{3}}
$$

Proof. The assertion follows from applying the inequalities (14), (17) and (10) to the mapping $f(x)=\ln x, x \in[a, b]$ which implies that $\left|f^{\prime}(x)\right|=\frac{1}{x}$, $\left|f^{\prime \prime}(x)\right|=\frac{1}{x^{2}}$ and $\left|f^{\prime \prime \prime}(x)\right|=\frac{2}{x^{3}}$ are quasi-convex on $[a, b]$.

Acknowledgment. The author would like to thank the referees for their helpful comments and suggestions.

References

[1] Ponstein J. Seven kinds of convexity. SIAM Review, 1967, vol. 9, pp. 115119.
[2] Roberts A. W., Varberg D. E. Convex functions. Academic Press, New York and London, 1973.
[3] Alomari M., Darus M., Kirmaci U. S. Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means. Computers Math. Applic., 2010, vol. 59, pp. 225-232.
[4] Ion D. A. Some estimates on the Hermite-Hadamard inequality through quasi-convex functions. Annals of University of Craiova, Math. Comp. Sci. Ser., 2007, vol. 34, pp. 82-87.
[5] Alomari M., Darus M., Dragomir S. S. New inequalities of HermiteHadamard's type for functions whose second derivatives absolute values are quasi-convex. Tamkang J. Math., 2010, vol. 41, no. 4, pp. 353-359.
[6] Alomari M., Hussain S. Two inequalities of Simpson type for quasi-convex functions and applications. Appl. Math. E-Notes, 2011, vol. 11, pp. 110117.
[7] Set E., Özdemir M. E., Sarikaya M. Z. On new inequalities of Simpson's type for quasi-convex functions with applications. Tamkang J. Math., 2012, vol. 43, no. 3, pp. 357-364
[8] Alomari M., Darus M. On some inequalities of Simpson-type via quasiconvex functions with applicstions. Transylv. J. Math. Mech., 2010, vol. 2, no. 1, pp. 15-24.
[9] Ardic M. A. Inequalities via n-times differentiable quasi-convex functions. arXiv:1311.5736v1 [math.CA] 22Nov2013.
[10] Hussain S., Qaisar S. New integral inequalities of the type of HermiteHadamard through quasi convexity. Punjab University journal of Mathematics, 2013, vol. 45, pp. 33-38.
[11] Hwang D. Y. Some inequalities for differentiable convex mapping with application to weighted trapezoidal formula and higher moments of random variables. Appl. Math. Comput., 2011, vol. 217, pp. 9598-9605.
[12] Hwang D. Y. Some inequalities for differentiable convex mapping with application to weighted midpoint formula and higher moments of random variables. Appl. Math. Comput., 2014, vol. 232, pp. 68-75.
[13] Özdemir M. E., Yildiz Ç., Akdemir A. O. On some new Hadamardtype inequalities for co-ordinated quasi-convex functions. Hacettepe Journal of Mathematics and Statistics, 2012, vol. 41, no. 5, pp. 697-707.
[14] Liu Z. On generalizations of some classical integral inequalities. J. Math. Inequal., 2013, vol. 7, no. 2, pp. 255-269.

Received September 5, 2015.
In revised form, November 11, 2015.

University of Science and Technology Liaoning
Institute of Applied Mathematics, School of Science
Anshan 114051, Liaoning, China;
Room 2004, 4 Lane 123
Guiping Road, Shanghai 200233, China
E-mail: lewzheng@163.net

[^0]: (C) Petrozavodsk State University, 2015

