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Abstract. Motivated by a recent paper, the author provides
some new integral inequalities of Hermite – Hadamard type in-
volving the product of an s-convex function and a symmetric
function and applies these new established inequalities to con-
struct inequalities for special means.
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1. Introduction. Let f : I ⊆ R → R be a convex function on an
interval I of real numbers and a, b ∈ I with a < b. The inequality

f
(a+ b

2

)
≤ 1

b− a

b∫
a

f(x) dx ≤ f(a) + f(b)

2

is well known in literature as the Hermite – Hadamard inequality for con-
vex functions.

We recall that Hudzik and Maligranda in [1] defined a function
f : [0,∞)→ R to be called s-convex in the second sense if

f(λx+ (1− λ)y) ≤ λsf(x) + (1− λ)sf(y)

holds for all x, y ∈ [0,∞), λ ∈ [0, 1] and for some fixed s ∈ (0, 1]. The class
of s-convex functions in the second sense is usually denoted with K2

s . It
can be easily seen that for s = 1 s-convexity reduces to ordinary convexity
of functions defined on [0,∞). It is proved in [1] that all functions from
K2

s , s ∈ (0, 1) are nonnegative.
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Example 1. [1] Let s ∈ (0, 1) and a, b, c ∈ R. Define the function
f : [0,∞)→ R as

f(t) =

{
a, t = 0,
bts + c, t > 0.

It can be easily checked that
(i) if b ≥ 0 and 0 ≤ c ≤ a, then f ∈ K2

s ,
(ii) if b > 0 and c < 0, then f /∈ K2

s .
In the recent paper [2], Hua et al established the following integral

inequalities of Hermite – Hadamard type involving the product of an s-
convex function and a symmetric function.

Theorem 1.1-1.3. [2, Theorem 3.1, 3.2, 3.5.] Let f : I ⊆ R → R be
differentiable on int I and g : [a, b]→ [0,∞) be continuous and symmetric
to a+b

2 for a, b ∈ I with a < b such that f ′ ∈ L1[a, b]. If |f ′|q is s-convex
on [a, b] for q ≥ 1 and some fixed s ∈ (0, 1], then

∣∣∣f(a) + f(b)

2

b∫
a

g(x) dx−
b∫

a

f(x)g(x) dx
∣∣∣ ≤ γ,

where γ is the minimum of the following three values:

(b− a)2

8

[ 21−s

(s+ 1)(s+ 2)

]1/q
||g||∞{[(1 + s2s+1)|f ′(a)|q + |f ′(b)|q]1/q+

+[|f ′(a)|q + (1 + s2s+1)|f ′(b)|q]1/q},
(b− a)2

8

[ 2

(s+ 1)(s+ 2)

]1/q
||g||∞

{[
(s+ 1)|f ′(a)|q +

∣∣∣f ′(a+ b

2

)∣∣∣q]1/q+

+
[∣∣∣f ′(a+ b

2

)∣∣∣q + (s+ 1)|f ′(b)|q]1/q
}
,

and
b− a

2

[
|f ′(a)|q + |f ′(b)|q

2

]1/q ∫ 1

0

[ ∫ U(t)

L(t)

g(x) dx

]
dt.

Theorem 1.4-1.6. [2, Theorem 3.3, 3.4, 3.6.] Let f : I ⊆ R → R be
differentiable on int I and g : [a, b]→ [0,∞) be continuous and symmetric
to a+b

2 for a, b ∈ I with a < b. If |f ′|q for q > 1 is convex on [a, b], then∣∣∣f(a) + f(b)

2

∫ b

a

g(x) dx−
∫ b

a

f(x)g(x) dx
∣∣∣ ≤ δ,
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where δ is the minimum of the following three values:

(b− a)2

4

(
q − 1

2q − 1

)1−1/q[ 1

2s(s+ 1)

]1/q
||g||∞{[(2s+1 − 1)|f ′(a)|q+

+|f ′(b)|q]1/q + [|f ′(a)|q + (2s+1 − 1)|f ′(b)|q]1/q},

(b− a)2

4(s+ 1)1/q

(
q − 1

2q − 1

)1−1/q

||g||∞
{[
|f ′(a)|q +

∣∣∣f ′(a+ b

2

)∣∣∣q]1/q+

+
[∣∣∣f ′(a+ b

2

)∣∣∣q + |f ′(b)|q
]1/q}

,

and

b− a
4

{(
3|f ′(a)|q + |f ′(b)|q

4

)1/q

+

(
|f ′(a)|q + 3|f ′(b)|q

4

)1/q}
×

×
[ ∫ 1

0

[ ∫ U(t)

L(t)

g(x) dx

]q/(q−1)
dt

]1−1/q
.

Within them,

L(t) =
1 + t

2
a+

1− t
2

b = ta+ (1− t)a+ b

2
(1)

and

U(t) =
1− t

2
a+

1 + t

2
b = tb+ (1− t)a+ b

2
. (2)

It should be noticed that we here have improved the expression of
Theorem 3.6 in [2].

In this work, corresponding to Theorems 1.1-1.6, we will further estab-
lish some integral inequalities of Hermite – Hadamard type involving the
product of an s-convex function and a symmetric function in two different
ways. Finally, applications to some special means of positive real numbers
are considered.

2. Main Results.
Lemma 2.1. (see [3]) Let f : I ⊆ R → R be differentiable on int I and
g : [a, b] → [0,∞) be continuous and symmetric to a+b

2 for a, b ∈ I with
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a < b. If f ′ ∈ L1[a, b], then

b∫
a

f(x)g(x) dx− f
(a+ b

2

) b∫
a

g(x) dx =

=
b− a

2

1∫
0

[ L(t)∫
a

g(x) dx

]
[f ′(U(t))− f ′(L(t))] dt,

(3)

where L and U are defined by (1) and (2). In particular, we then have

∣∣∣∣
b∫

a

f(x)g(x) dx− f
(a+ b

2

) b∫
a

g(x) dx

∣∣∣∣ ≤
≤ b− a

2

1∫
0

[ L(t)∫
a

g(x) dx

]
[|f ′(L(t))|+ |f ′(U(t))|] dt

(4)

and ∣∣∣∣
b∫

a

f(x)g(x) dx− f
(a+ b

2

) b∫
a

g(x) dx

∣∣∣∣ ≤
≤ (b− a)2

4
||g||∞

1∫
0

(1− t)[|f ′(L(t)|+ |f ′(U(t)|] dt,

(5)

where ||g||∞ = sup
t∈[a,b]

g(t).

Proof. Since g(x) is symmetric to a+b
2 , then

L(t)∫
a

g(x) dx =
b∫

U(t)

g(x) dx for

all t ∈ [0, 1]. So we have

1∫
0

[ L(t)∫
a

g(x) dx

]
f ′(L(t)) dt =

2

a− b

1∫
0

[ L(t)∫
a

g(x) dx

]
d[f(L(t))] =

=
2

a− b

{[ L(t)∫
a

g(x) dx

]
f(L(t))

∣∣∣∣∣
1

0

+
b− a

2

1∫
0

f(L(t))g(L(t)) dt

}
=
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=
2

a− b

{
− f

(a+ b

2

) a+b
2∫

a

g(x) dx+

a+b
2∫

a

f(x)g(x) dx

}
(6)

and

1∫
0

[ L(t)∫
a

g(x) dx

]
f ′(U(t)) dt =

1∫
0

[ b∫
U(t)

g(x) dx

]
f ′(U(t)) dt =

=
2

b− a

1∫
0

[ b∫
U(t)

g(x) dx

]
d[f(U(t))] =

=
2

b− a

{[ b∫
U(t)

g(x) dx

]
f(U(t))

∣∣∣∣∣
1

0

+
b− a

2

1∫
0

f(U(t))g(U(t)) dt

}
=

=
2

b− a

{
− f

(a+ b

2

) b∫
a+b
2

g(x) dx+

b∫
a+b
2

f(x)g(x) dx

}
. (7)

Consequently, inequality (3) follows from (6) and (7), and Lemma 2.1 is
thus proved. �

Theorem 2.1. Let f : I ⊆ R → R be differentiable on int I and
g : [a, b] → [0,∞) be continuous and symmetric to a+b

2 for a, b ∈ I with
a < b such that f ′ ∈ L1[a, b]. If |f ′|q is s-convex on [a, b] for q ≥ 1 and
some fixed s ∈ (0, 1], then

∣∣∣∣
b∫

a

f(x)g(x) dx− f
(a+ b

2

) b∫
a

g(x) dx

∣∣∣∣ ≤
≤ (b− a)2

8

(
21−s

s+ 2

)1/q

||g||∞
{[

2s+2 − s− 3

s+ 1
|f ′(a)|q + |f ′(b)|q

]1/q
+

+

[
|f ′(a)|q +

2s+2 − s− 3

s+ 1
|f ′(b)|q

]1/q}
. (8)
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Proof. Notice that |f ′|q is s-convex on [a, b], by (5) in Lemma 2.1 with
the first equality in (1) and (2), and using the Hölder inequality, we have∣∣∣∣

b∫
a

f(x)g(x) dx− f
(a+ b

2

) b∫
a

g(x) dx

∣∣∣∣ ≤
≤ (b− a)2

4
||g||∞

1∫
0

(1− t)[|f ′(L(t))|+ |f ′(U(t))|] dt ≤

≤ (b− a)2

4
||g||∞

[ 1∫
0

(1− t) dt
]1−1/q

×

×
{[ 1∫

0

(1− t)
((

1 + t

2

)s

|f ′(a)|q +

(
1− t

2

)s

|f ′(b)|q
)
dt

]1/q
+

+

[ 1∫
0

(1− t)
((

1− t
2

)s

|f ′(a)|q +

(
1 + t

2

)s

|f ′(b)|q
)
dt

]1/q}
=

(b− a)2

4
×

×||g||∞
(

1

2

)1−1/q{[
2s+2 − s− 3

2s(s+ 1)(s+ 2)
|f ′(a)|q +

1

2s(s+ 2)
|f ′(b)|q

]1/q
+

+

[
1

2s(s+ 2)
|f ′(a)|q +

2s+2 − s− 3

2s(s+ 1)(s+ 2)
|f ′(b)|q

]1/q}
=

=
(b− a)2

8
||g||∞

(
21−s

s+ 2

)1/q{[
2s+2 − s− 3

s+ 1
|f ′(a)|q+

+|f ′(b)|q
]1/q

+

[
|f ′(a)|q +

2s+2 − s− 3

s+ 1
|f ′(b)|q

]1/q}
.

Inequality (8) follows, and Theorem 2.1 is proved. �

Corollary 2.1.1. Under conditions of Theorem 2.1,
(i) if q = 1, then∣∣∣∣

b∫
a

f(x)g(x) dx− f
(a+ b

2

) b∫
a

g(x) dx

∣∣∣∣ ≤
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≤ (b− a)2

2
||g||∞

[
2s+1 − 1

2s(s+ 1)(s+ 2)

]
[|f ′(a)|+ |f ′(b)|];

(ii) if q = 1 and s = 1, we have

∣∣∣∣
b∫

a

f(x)g(x) dx− f
(a+ b

2

) b∫
a

g(x) dx

∣∣∣∣ ≤ (b− a)2

8
||g||∞[|f ′(a)|+ |f ′(b)|].

Corollary 2.1.2. Under conditions of Theorem 2.1,
(i) if q = 1 and g(x) = 1 for x ∈ [a, b], then

∣∣∣∣ 1

b− a

b∫
a

f(x) dx− f
(a+ b

2

)∣∣∣∣ ≤ (2s+1 − 1)(b− a)

2s+1(s+ 1)(s+ 2)
[|f ′(a)|+ |f ′(b)|];

(ii) if q = 1, g(x) = 1 for x ∈ [a, b], and s = 1, we have

∣∣∣∣ 1

b− a

b∫
a

f(x) dx− f
(a+ b

2

)∣∣∣∣ ≤ b− a
8

[|f ′(a)|+ |f ′(b)|], (9)

and it should be noticed that inequality (9) first appeared in [4].

Theorem 2.2. Let f : I ⊆ R → R be differentiable on int I and
g : [a, b] → [0,∞) be continuous and symmetric to a+b

2 for a, b ∈ I with
a < b such that f ′ ∈ L1[a, b]. If |f ′|q is s-convex on [a, b] for q ≥ 1 and
some fixed s ∈ (0, 1], then

∣∣∣∣
b∫

a

f(x)g(x) dx− f
(a+ b

2

) b∫
a

g(x) dx

∣∣∣∣ ≤ (b− a)2

8

[
2

(s+ 1)(s+ 2)

]1/q
×

×||g||∞
{[
|f ′(a)|q + (s+ 1)

∣∣∣∣f ′(a+ b

2

)∣∣∣∣q]1/q+

+

[
(s+ 1)

∣∣∣∣f ′(a+ b

2

)∣∣∣∣q + |f ′(b)|q
]1/q}

. (10)
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Proof. Notice that |f ′|q is s-convex on [a, b], by (5) in Lemma 2.1 with
the second equality in (1) and (2), and using the Hölder inequality in a
different way, we have

∣∣∣∣
b∫

a

f(x)g(x) dx− f
(a+ b

2

) b∫
a

g(x) dx

∣∣∣∣ ≤

≤ (b− a)2

4
||g||∞

1∫
0

(1− t)[|f ′(L(t))|+ |f ′(U(t))|] dt =

=
(b− a)2

4
||g||∞

1∫
0

(1− t)
[∣∣∣∣f ′(ta+ (1− t)a+ b

2

)∣∣∣∣+
+

∣∣∣∣f ′(tb+ (1− t)a+ b

2

)∣∣∣∣] dt ≤ (b− a)2

4
||g||∞

[ 1∫
0

(1− t) dt
]1−1/q

×

×
{[ 1∫

0

(1− t)
(
ts|f ′(a)|q + (1− t)s

∣∣∣∣f ′(a+ b

2

)∣∣∣∣q) dt]1/q+

+

[ 1∫
0

(1− t)
(

(1− t)s
∣∣∣∣f ′(a+ b

2

)∣∣∣∣q + ts|f ′(b)|q
)
dt

]1/q}
=

(b− a)2

4
×

×||g||∞
(

1

2

)1−1/q{[
1

(s+ 1)(s+ 2)
|f ′(a)|q +

1

s+ 2

∣∣∣∣f ′(a+ b

2

)∣∣∣∣q]1/q+

+

[
1

s+ 2

∣∣∣∣f ′(a+ b

2

)∣∣∣∣q +
1

(s+ 1)(s+ 2)
|f ′(b)|q

]1/q}
=

(b− a)2

8
×

×||g||∞
[

2

(s+ 1)(s+ 2)

]1/q{[
|f ′(a)|q + (s+ 1)

∣∣∣∣f ′(a+ b

2

)∣∣∣∣q]1/q+

+

[
(s+ 1)

∣∣∣∣f ′(a+ b

2

)∣∣∣∣q + |f ′(b)|q
]1/q}

.

Inequality (10) follows, and Theorem 2.2 is proved. �



On inequalities of Hermite – Hadamard type 11

Corollary 2.2.1. Under conditions of Theorem 2.2,
(i) if q = 1, then

∣∣∣∣
b∫

a

f(x)g(x) dx− f
(a+ b

2

) b∫
a

g(x) dx

∣∣∣∣ ≤
≤ (b− a)2

4(s+ 1)(s+ 2)
||g||∞

[
|f ′(a)|+ 2(s+ 1)

∣∣∣∣f ′(a+ b

2

)∣∣∣∣+ |f ′(b)|
]
;

(ii) if q = 1 and s = 1, we have

∣∣∣∣
b∫

a

f(x)g(x) dx− f
(a+ b

2

) b∫
a

g(x) dx

∣∣∣∣ ≤
≤ (b− a)2

24
||g||∞

[
|f ′(a)|+ 4

∣∣∣∣f ′(a+ b

2

)∣∣∣∣+ |f ′(b)|
]
.

Corollary 2.2.2. Under conditions of Theorem 2.2,
(i) if q = 1 and g(x) = 1 for x ∈ [a, b], then

∣∣∣∣ 1

b− a

b∫
a

f(x) dx− f
(a+ b

2

)∣∣∣∣ ≤
≤ b− a

4(s+ 1)(s+ 2)

[
|f ′(a)|+ 2(s+ 1)

∣∣∣∣f ′(a+ b

2

)∣∣∣∣+ |f ′(b)|
]
;

(ii) if q = 1, g(x) = 1 for x ∈ [a, b], and s = 1, we have

∣∣∣∣ 1

b− a

b∫
a

f(x) dx− f
(a+ b

2

)∣∣∣∣ ≤
≤ b− a

24

[
|f ′(a)|+ 4

∣∣∣∣f ′(a+ b

2

)∣∣∣∣+ |f ′(b)|
]
, (11)

and it should be noticed that inequality (11) can also be derived from
(2.8) of [5].

Theorem 2.3. Let f : I ⊆ R → R be differentiable on int I and
g : [a, b] → [0,∞) be continuous and symmetric to a+b

2 for a, b ∈ I with
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a < b such that f ′ ∈ L1[a, b]. If |f ′|q is s-convex on [a, b] for q > 1 and
some fixed s ∈ (0, 1], then

∣∣∣∣
b∫

a

f(x)g(x) dx− f
(a+ b

2

) b∫
a

g(x) dx

∣∣∣∣ ≤
≤ (b− a)2

4
||g||∞

(
q − 1

2q − 1

)1−1/q[
1

2s(s+ 1)

]1/q{[
(2s+1 − 1)|f ′(a)|q+

+ |f ′(b)|q
]1/q

+

[
|f ′(a)|q + (2s+1 − 1)|f ′(b)|q

]1/q}
. (12)

Proof. Notice that |f ′|q is s-convex on [a, b], by (5) in Lemma 2.1 with
the first equality in (1) and (2), and using the Hölder inequality, we have

∣∣∣∣
b∫

a

f(x)g(x) dx− f
(a+ b

2

) b∫
a

g(x) dx

∣∣∣∣ ≤

≤ (b− a)2

4
||g||∞

1∫
0

(1− t)[|f ′(L(t))|+ |f ′(U(t))|] dt ≤

≤ (b− a)2

4
||g||∞

[ 1∫
0

(1− t)q/q−1 dt
]1−1/q

×

×
{[ 1∫

0

((
1 + t

2

)s

|f ′(a)|q +

(
1− t

2

)s

|f ′(b)|q
)
dt

]1/q
+

+

[ 1∫
0

((
1− t

2

)s

|f ′(a)|q +

(
1 + t

2

)s

|f ′(b)|q
)
dt

]1/q}
=

=
(b− a)2

4
||g||∞

(
q − 1

2q − 1

)1−1/q[
1

2s(s+ 1)

]1/q
{[(2s+1 − 1)|f ′(a)|q+

+|f ′(b)|q]1/q + [|f ′(a)|q + (2s+1 − 1)|f ′(b)|q]1/q}.
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Inequality (12) follows, and Theorem 2.3 is proved. �

Corollary 2.3. Under conditions of Theorem 2.3, if s = 1, then

∣∣∣∣
b∫

a

f(x)g(x) dx− f
(a+ b

2

) b∫
a

g(x) dx

∣∣∣∣ ≤
≤ (b− a)2

41+1/q
||g||∞

(
q − 1

2q − 1

)1−1/q

×

×{[3|f ′(a)|q + |f ′(b)|q]1/q + [|f ′(a)|q + 3|f ′(b)|q]1/q}.

Theorem 2.4. Let f : I ⊆ R → R be differentiable on int I and
g : [a, b] → [0,∞) be continuous and symmetric to a+b

2 for a, b ∈ I with
a < b such that f ′ ∈ L1[a, b]. If |f ′|q is s-convex on [a, b] for q > 1 and
some fixed s ∈ (0, 1], then

∣∣∣∣
b∫

a

f(x)g(x) dx− f
(a+ b

2

) b∫
a

g(x) dx

∣∣∣∣ ≤ (b− a)2

4(s+ 1)
1
q

(
q − 1

2q − 1

)1− 1
q

||g||∞×

×
{[
|f ′(a)|q +

∣∣∣∣f ′(a+ b

2

)∣∣∣∣q]1/q +

[∣∣∣∣f ′(a+ b

2

)∣∣∣∣q + |f ′(b)|q
]1/q}

. (13)

Proof. Notice that |f ′|q is s-convex on [a, b], by (4) in Lemma 2.1 with
the second equality in (1) and (2), and using the Hölder inequality, we
have ∣∣∣∣

b∫
a

f(x)g(x) dx− f
(a+ b

2

) b∫
a

g(x) dx

∣∣∣∣ ≤
≤ (b− a)2

4
||g||∞

1∫
0

(1− t)[|f ′(L(t))|+ |f ′(U(t))|] dt =
(b− a)2

4
||g||∞×

×
1∫

0

(1− t)
[∣∣∣∣f ′(ta+ (1− t)a+ b

2

)∣∣∣∣+

∣∣∣∣f ′(tb+ (1− t)a+ b

2

)∣∣∣∣] dt ≤
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≤ (b− a)2

4
||g||∞

[ 1∫
0

(1− t)q/q−1 dt
]1−1/q

×

×
{[ 1∫

0

(
ts|f ′(a)|q + (1− t)s

∣∣∣∣f ′(a+ b

2

)∣∣∣∣q) dt]1/q+

+

[ 1∫
0

(
(1− t)s

∣∣∣∣f ′(a+ b

2

)∣∣∣∣q + ts|f ′(b)|q
)
dt

]1/q}
=

=
(b− a)2

4
||g||∞

(
q − 1

2q − 1

)1−1/q(
1

s+ 1

)1/q{[
|f ′(a)|q+

+

∣∣∣∣f ′(a+ b

2

)∣∣∣∣q]1/q +

[∣∣∣∣f ′(a+ b

2

)∣∣∣∣q + |f ′(b)|q
]1/q}

.

Inequality (13) follows, and Theorem 2.4 is proved. �

Corollary 2.4. Under conditions of Theorem 2.4, if s = 1, then

∣∣∣∣
b∫

a

f(x)g(x) dx− f
(a+ b

2

) b∫
a

g(x) dx

∣∣∣∣ ≤
≤ (b− a)2

22+1/q
||g||∞

(
q − 1

2q − 1

)1−1/q

×

×
{[
|f ′(a)|q +

∣∣∣∣f ′(a+ b

2

)∣∣∣∣q]1/q +

[∣∣∣∣f ′(a+ b

2

)∣∣∣∣q + |f ′(b)|q
]1/q}

.

Theorem 2.5. Let f : I ⊆ R → R be differentiable on int I and
g : [a, b] → [0,∞) be continuous and symmetric to a+b

2 for a, b ∈ I with
a < b. If |f ′|q for q ≥ 1 is convex on [a, b], then

∣∣∣∣
b∫

a

f(x)g(x) dx− f
(a+ b

2

) b∫
a

g(x) dx

∣∣∣∣ ≤



On inequalities of Hermite – Hadamard type 15

≤ (b− a)

[
|f ′(a)|q + |f ′(b)|q

2

]1/q 1∫
0

[ L(t)∫
a

g(x) dx

]
dt. (14)

Proof. Notice that |f ′|q is convex on [a, b], by (4) in Lemma 2.1 and using
the Hölder inequality, we have

∣∣∣∣
b∫

a

f(x)g(x) dx− f
(a+ b

2

) b∫
a

g(x) dx

∣∣∣∣ ≤ b− a
2
×

×
{ 1∫

0

[ L(t)∫
a

g(x) dx

]
|f ′(L(t))| dt+

1∫
0

[ L(t)∫
a

g(x) dx

]
|f ′(U(t))| dt

}
≤

≤ b− a
2

{ 1∫
0

[ L(t)∫
a

g(x) dx

]
dt

}1− 1
q
{( 1∫

0

[ L(t)∫
a

g(x) dx

]
|f ′(L(t))|q dt

) 1
q

+

+

( 1∫
0

[ L(t)∫
a

g(x) dx

]
|f ′(U(t))|q dt

) 1
q
}
. (15)

From the power-mean inequality (ar + br) ≤ 21−r(a+ b)r for a, b > 0 and
r ≤ 1 and convexity of |f ′|q on [a, b], with the second equality in (1) and
(2), we obtain

( 1∫
0

[ L(t)∫
a

g(x) dx

]
|f ′(L(t))|q dt

) 1
q

+

( 1∫
0

[ L(t)∫
a

g(x) dx

]
|f ′(U(t))|q dt

) 1
q

≤

≤ 21−1/q
{ 1∫

0

[ L(t)∫
a

g(x) dx

][
|f ′(L(t))|q + |f ′(U(t))|q

]
dt

}1/q

≤ 21−1/q×

×
{ 1∫

0

[ L(t)∫
a

g(x) dx

][
t|f ′(a)|q + 2(1− t)

∣∣∣∣f ′(a+ b

2

)∣∣∣∣q + t|f ′(b)|q
]
dt

}1/q

≤
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≤ 21−1/q
{ 1∫

0

[ L(t)∫
a

g(x) dx

][
t|f ′(a)|q + (1− t)(|f ′(a)|q + |f ′(b)|q) + t×

× |f ′(b)|q
]
dt

} 1
q

= 21−
1
q [|f ′(a)|q + |f ′(b)|q]

1
q

{ 1∫
0

L(t)∫
a

g(x) dx dt

} 1
q

. (16)

Inequality (14) follows from (15) and (16), and Theorem 2.5 is proved. �

Corollary 2.5.1. Under conditions of Theorem 2.5, if q = 1, then∣∣∣∣
b∫

a

f(x)g(x) dx− f
(a+ b

2

) b∫
a

g(x) dx

∣∣∣∣ ≤

≤ b− a
2

[|f ′(a)|+ |f ′(b)|]
1∫

0

[ L(t)∫
a

g(x) dx

]
dt.

Theorem 2.6. Let f : I ⊆ R → R be differentiable on int I and
g : [a, b] → [0,∞) be continuous and symmetric to a+b

2 for a, b ∈ I with
a < b. If |f ′|q for q > 1 is convex on [a, b], then∣∣∣∣

b∫
a

f(x)g(x) dx− f
(a+ b

2

) b∫
a

g(x) dx

∣∣∣∣ ≤
≤ b− a

2

{[
3|f ′(a)|q + |f ′(b)|q

4

]1/q
+

[
|f ′(a)|q + 3|f ′(b)|q

4

]1/q}
×

×
{ 1∫

0

[ L(t)∫
a

g(x) dx

]q/q−1
dt

}1−1/q

. (17)

Proof. Notice that |f ′|q is convex on [a, b], by (4) in Lemma 2.1 with the
second equality in (1) and (2), and using the Hölder inequality, we have

∣∣∣∣
b∫

a

f(x)g(x) dx− f
(a+ b

2

) b∫
a

g(x) dx

∣∣∣∣ ≤ b− a
2

{ 1∫
0

[ L(t)∫
a

g(x) dx

]
×
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×[|f ′(L(t))|+ |f ′(U(t))|] dt
}
≤ b− a

2

{ 1∫
0

[ L(t)∫
a

g(x) dx

] q
q−1

dt

}1− 1
q

×

×
{[ 1∫

0

|f ′(L(t))|q dt
] 1

q

+

[ 1∫
0

|f ′(U(t))|q dt
] 1

q
}
≤ b− a

2
×

×
{ 1∫

0

[ L(t)∫
a

g(x) dx

] q
q−1

dt

}1− 1
q
{( 1∫

0

[
t|f ′(a)|q + (1− t)×

×
∣∣∣∣f ′(a+ b

2

)∣∣∣∣q] dt) 1
q

+

( 1∫
0

[
(1− t)

∣∣∣∣f ′(a+ b

2

)∣∣∣∣q + t|f ′(a)|q
]
dt

) 1
q
}
≤

≤ b− a
2

{ 1∫
0

[ L(t)∫
a

g(x) dx

] q
q−1

dt

}1− 1
q
{( 1∫

0

[
1 + t

2
|f ′(a)|q+

+
1− t

2
|f ′(b)|q

]
dt

) 1
q

+

( 1∫
0

[
1− t

2
|f ′(a)|q +

1 + t

2
|f ′(b)|q

]
dt

) 1
q
}

=

=
b− a

2

{[
3|f ′(a)|q + |f ′(b)|q

4

] 1
q

+

[
|f ′(a)|q + 3|f ′(b)|q

4

] 1
q
}
×

×
{ 1∫

0

[ L(t)∫
a

g(x) dx

] q
q−1

dt

}1− 1
q

.

Inequality (17) follows, and Theorem 2.6 is proved. �

3. Applications to special means. Now we apply some of the
above inequalities of Hermite – Hadamard type involving the product of
an s-convex function and a symmetric function to construct inequalities
for special means.

For positive numbers a > 0 and b > 0, define
(i) the arithmetic mean:

A(a, b) =
a+ b

2
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and
(ii) the generalized logarithmic mean:

Lr(a, b) =

[
br+1 − ar+1

(r + 1)(b− a)

]1/r
, r 6= −1, 0.

Let

f(x) =
xs+1

s+ 1
(18)

for x > 0, s > 0, and q ≥ 1. If 0 < sq ≤ 1 and 0 < s ≤ 1, we have

|f ′(tx+ (1− t)y)|q ≤ tsqxsq + (1− t)sqysq ≤ ts|f ′(x)|q + (1− t)s|f ′(y)|q

for x, y > 0 and t ∈ [0, 1]. At this time, it is easy to verify that the
function |f ′(x)|q = xsq ∈ K2

s for x ∈ [a, b].
For b > a > 0, define

g(x) =

(
x− a+ b

2

)2

(19)

for x ∈ [a, b]. Applying Theorems 2.1–2.4 to the concrete functions (18)
and (19) straightforwardly yields the following inequalities involving spe-
cial means A and Lr.

Theorem 3.1. For b > a > 0, q ≥ 1, and 0 < s ≤ 1 such that 0 < sq ≤ 1,
we have∣∣∣∣(b− a)2As+1(a, b)− 12

[
Ls+3
s+3(a, b)− 2A(a, b)Ls+2

s+2(a, b)+

+A2(a, b)Ls+1
s+1(a, b)

]∣∣∣∣ ≤ 3× 2(1−s)/q(b− a)3(s+ 1)1−1/q

8(s+ 2)1/q
×

×{[(2s+2 − s− 3)asq + (s+ 1)bsq]1/q + [(s+ 1)asq + (2s+2 − s− 3)bsq]1/q}

and ∣∣∣∣(b− a)2As+1(a, b)− 12

[
Ls+3
s+3(a, b)− 2A(a, b)Ls+2

s+2(a, b)+

+A2(a, b)Ls+1
s+1(a, b)

]∣∣∣∣ ≤ 3× 21/q(b− a)3(s+ 1)1−1/q

8(s+ 2)1/q
×
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×{[asq + (s+ 1)Asq(a, b)]1/q + [(s+ 1)Asq(a, b) + bsq]1/q}.

Corollary 3.1.1. For b > a > 0 and 0 < s ≤ 1, we have∣∣∣∣(b− a)2As+1(a, b)− 12

[
Ls+3
s+3(a, b)− 2A(a, b)Ls+2

s+2(a, b)+

+A2(a, b)Ls+1
s+1(a, b)

]∣∣∣∣ ≤ 3(b− a)3

2s+1(s+ 2)
(2s+1 − 1)(as + bs)

and ∣∣∣∣(b− a)2As+1(a, b)− 12

[
Ls+3
s+3(a, b)− 2A(a, b)Ls+2

s+2(a, b)+

+A2(a, b)Ls+1
s+1(a, b)

]∣∣∣∣ ≤ 3(b− a)3

2(s+ 2)
[A(as, bs) + (s+ 1)As(a, b)].

Theorem 3.2. For b > a > 0, q > 1, and 0 < s < 1 such that 0 < sq ≤ 1,
we have∣∣∣∣(b− a)2As+1(a, b)− 12

[
Ls+3
s+3(a, b)− 2A(a, b)Ls+2

s+2(a, b)+

+A2(a, b)Ls+1
s+1(a, b)

]∣∣∣∣ ≤ 3(b− a)3(s+ 1)1−1/q

22+s/q

(
q − 1

2q − 1

)1−1/q

×

×{[(2s+1 − 1)asq + bsq]1/q + [asq + (2s+1 − 1)bsq]1/q}

and ∣∣∣∣(b− a)2As+1(a, b)− 12

[
Ls+3
s+3(a, b)− 2A(a, b)Ls+2

s+2(a, b)+

+A2(a, b)Ls+1
s+1(a, b)

]∣∣∣∣ ≤ 3(b− a)3(s+ 1)1−1/q

4

(
q − 1

2q − 1

)1−1/q

×

×{[asq +Asq(a, b)]1/q + [Asq(a, b) + bsq]1/q}.
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