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INEQUALITIES CONCERNING B-OPERATORS

Abstract. Let Pn be the class of polynomials of degree at most
n. Rahman introduced the class Bn of operators B that map Pn

into itself. In this paper we prove some results concerning such
operators and thereby obtain generalizations of some well known
polynomial inequalities.
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1. Introduction. Let Pn be the class of polynomials f(z) :=
n∑
j=0

ajz
j

of degree at most n with complex coefficients and f ′(z) be their deriva-
tives. It is well known (for reference see [1]) that

max
|z|=1

|f ′(z)| ≤ n max
|z|=1

|f(z)| (1)

and [2, p. 158]

max
|z|=R>1

|f(z)| ≤ Rn max
|z|=1

|f(z)|. (2)

For the class of polynomials f ∈ Pn satisfying f(z) 6= 0 in |z| < 1,
inequalities (1) and (2) have been respectively replaced by (see [3] and
[4])

max
|z|=1

|f ′(z)| ≤ n

2
max
|z|=1

|f(z)| (3)

and

max
|z|=R>1

|f(z)| ≤ Rn + 1

2
max
|z|=1

|f(z)|. (4)
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Concerning refinements of inequalities (1) and (2) for polynomials f(z)
satisfying f(0) = 0 one can refer to [5, p. 70]. Formulated a little diffe-
rently, inequalities (1) and (2) say that if f is a polynomial of degree at
most n such that |f(z)| ≤M(= |Mzn|) for |z| = 1, then

|f ′(z)| ≤
∣∣∣∣ ddz (Mzn)

∣∣∣∣ (5)

and
|f(Rz)| ≤ |MRnzn|, for |z| = 1 and R > 1. (6)

Inequality (5) can be seen as a special case of the following result (see [6]
or [7]).

Theorem A. Let F (z) :=
n∑
j=0

Ajz
j be a polynomial of degree n, having

all its zeros in the closed unit disk. Further, if f(z) :=
n∑
j=0

ajz
j is a

polynomial of degree at most n such that |f(z)| ≤ |F (z)| for |z| = 1, then

|f ′(z)| ≤ |F ′(z)|, (1 ≤ |z| <∞). (7)

Equality holds in (7) at some point outside the closed unit disk if and only
if f(z) ≡ eiγF (z) for some γ ∈ R.
Inequality (6) follows immediately from the following result which is a
special case of the Bernstein – Walsh lemma (see [8, Corollary 12.1.3]).

Theorem B. Let F (z) be a polynomial of degree n, having all its zeros
in the closed unit disk |z| ≤ 1. Furthermore, let f(z) be a polynomial of
degree at most n such that |f(z)| ≤ |F (z)| for |z| = 1. Then

|f(z)| < |F (z)| for |z| > 1,

unless f(z) ≡ eiγF (z) for some γ ∈ R.

2. A class of Bn-operators. Let B be a linear operator carrying
polynomials in Pn into polynomials in Pn. We say B is a Bn-operator, if
for every polynomial P of degree n having all its zeros in the closed unit
disk, B[P ] has all its zeros in the closed unit disk.

Rahman [9] introduced this class Bn of operators B and observed that
if λ0, λ1 and λ2 be such that

λ0 + C(n, 1)λ1z + C(n, 2)λ2z
2 6= 0, C(n, r) =

n!

r!(n− r)!
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for Re(z) ≥ n
4 , then the operator B, which associates with a polynomial

P of degree at most n the polynomial

B [P ] (z) := λ0P (z) + λ1

(nz
2

) P ′(z)
1!

+ λ2

(nz
2

)2 P ′′(z)
2!

(8)

is a Bn-operator. This can also be deduced from the result of Marden [10,
Corollary 18.3]. Concerning this class of operators Rahman [9] observed:

Theorem C. If P (z) is a polynomial of degree n, then

|P (z)| ≤M, |z| = 1,

implies
|B[P ](z)| ≤M |B[En]|, |z| ≥ 1, (9)

where En(z) := zn.
As an improvement of (9), Shah and Liman [11] proved the following:

Theorem D. If P ∈ Pn and P (z) 6= 0 in |z| < 1, then

|B[P ](z)| ≤ 1

2
(|B[En]|+ |λ0|) max

|z|=1
|P (z)|, |z| ≥ 1.

The result is sharp and the equality holds for a polynomial with all zeros
on the unit disk.

For suitable choices of λ0, λ1 and λ2 (see [11]), Theorem C yields
inequalities (1) and (2), whereas Theorem D yields inequalities (3) and
(4).

In this paper we inter alia prove a more general result which includes
Theorem A and Theorem B as special cases and as such provides a com-
bined generalization of inequalities (1) and (2). We further show that
many known polynomial inequalities can also be deduced from our result.
In fact, we prove the following results.

3. Main results.

Theorem 1. Let f(z) and F (z) be two polynomials of degree m and n
(m ≤ n) respectively. If F (z) has all its zeros in |z| ≤ 1 and |f(z)| ≤ |F (z)|
for |z| = 1, then for any complex number β with |β| ≤ 1 and R ≥ r ≥ 1,
we have for |z| ≥ 1

|B[f ](Rz)− βB[f ](rz) + λ1
n−m

2
z{(f(Rz))′ − β(f(rz))′}+ (10)

+λ2
n2 −m2

8
z2{(f(Rz))′′ − β(f(rz))′′}| ≤ |B[F ](Rz)− βB[F ](rz)|,
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where λ0, λ1, λ2 are such that if u(z) := λ0 + C(n, 1)λ1z + C(n, 2)λ2z
2

has all zeros in Re(z) ≤ n
4 then v(z) := λ0 + C(m, 1)λ1z + C(m, 2)λ2z

2

has all zeros in Re(z) ≤ m
4 . The strict inequality holds in (10), if |z| > 1,

unless f(z) ≡ eiγF (z), γ ∈ R.

Theorem 2. If F (z) and f(z) are polynomials of degree n such that F (z)
has all its zeros in |z| ≤ 1, and |f(z)| ≤ |F (z)| for |z| = 1, then for |z| ≥ 1

|λn2f(z)− zf ′(z)− z2f
′′
(z)| ≤ |λn2F (z)− zF ′(z)− z2F

′′
(z)|,

where λ belongs to the set

4 :=

{
w = ρ+ iσ : 0 ≤ σ2 ≤ n

n− 1
(
n+ 1

4n
− ρ), ρ ≤ n+ 1

4n

}
.

4. Applications. The following result is an immediate application
of Theorem 1, if m = n.

Corollary 1. Let f(z) and F (z) be two polynomials of degree n. If F (z)
has all its zeros in |z| ≤ 1 and |f(z)| ≤ |F (z)| for |z| = 1, then for any
complex number β with |β| ≤ 1 and R ≥ r ≥ 1, we have for |z| ≥ 1

|B[f ](Rz)− βB[f ](rz)| ≤ |B[F ](Rz)− βB[F ](rz)|.

Equivalently,∣∣∣∣λ0{f(Rz)− βf(rz)}+ λ1

(nz
2

) Rf ′(Rz)− βrf ′(rz)
1!

+

+ λ2

(nz
2

)2 R2f ′′(Rz)− βr2f ′′(rz)
2!

∣∣∣∣ ≤
≤
∣∣∣∣λ0{F (Rz)− βF (rz)}+ λ1

(nz
2

) RF ′(Rz)− βrF ′(rz)
1!

+

+ λ2

(nz
2

)2 R2F
′′
(Rz)− βr2F ′′(rz)

2!

∣∣∣∣ for |z| ≥ 1. (11)

The result is sharp and equality holds for the polynomial f(z) ≡ eiγF (z),
where γ ∈ R and F (z) is any polynomial having all its zeros in |z| ≤ 1.

If in inequality (11) we choose λ1 = λ2 = 0, we get the result of Govil
et. al [12]. Further if we choose λ0 = λ2 = 0, we get for R ≥ r ≥ 1 and
|β| ≤ 1,

|Rf
′
(Rz)− βrf

′
(rz)| ≤ |RF

′
(Rz)− βrF

′
(rz)| for |z| ≥ 1.
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Similarly for λ0 = λ1 = 0, we have

|R2f
′′
(Rz)− βr2f

′′
(rz)| ≤ |R2F

′′
(Rz)− βr2F

′′
(rz)| for |z| ≥ 1.

In case we choose λ1 = λ2 = β = 0 and R = 1 in inequality (11), we get
Theorem B, whereas Theorem A easily follows from this inequality if we
set λ0 = λ2 = β = 0, R = 1.

Remark 1. If in inequality (10) we take β = r = 1 and then divide both
sides by (R− 1), we get after making R→ 1, the following generalization
of Theorem A.

Corollary 2. Let f(z) and F (z) be two polynomials of degree n. If F (z)
has all its zeros in |z| ≤ 1 and |f(z)| ≤ |F (z) for |z| = 1, then

|B
′
[f ](z)| ≤ |B

′
[F ](z)| for |z| ≥ 1.

Equivalently∣∣∣∣(λ0 +
nλ1

2

)
zf ′(z) +

(
n

2
λ1 +

n2λ2
4

)
z2f ′′(z) +

n2λ2
8

z3f ′′′(z)

∣∣∣∣ ≤ (12)

≤
∣∣∣∣(λ0 +

nλ1
2

)zF ′(z) +

(
n

2
λ1 +

n2λ2
4

)
z2F ′′(z) +

n2λ2
8

z3F ′′′(z)

∣∣∣∣
for |z| ≥ 1.

Theorem A is a special case of Corollary 2, when we take λ1 = λ2 = 0.
Setting λ0 = λ2 = 0 and λ0 = λ1 = 0 respectively in inequality (12), we
get the following results.

Let f(z) and F (z) be two polynomials of degree n such that F (z) has
all its zeros in |z| ≤ 1 and |f(z)| ≤ |F (z)| for |z| = 1; then,

|f
′
(z) + zf

′′
(z)| ≤ |F

′
(z) + zF

′′
(z)|

and

|f
′′
(z) +

z

2
f
′′′

(z)| ≤ |F
′′
(z) +

z

2
F
′′′

(z)| for |z| ≥ 1.

In Corollary 1, if we take F (z) = Mzn, where M = max|z|=1 |f(z)|,
then we get the following:
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Corollary 3. If f(z) is a polynomial of degree n, then for any complex
number β with |β| ≤ 1 and R ≥ r ≥ 1 we have

|B[f ](Rz)−βB[f ](rz)| ≤ |Rn−βrn||B[En]|max
|z|=1

|f(z)| for |z| ≥ 1, (13)

where En(z) = zn. The result is sharp and equality holds for f(z) ≡
≡ γzn, γ 6= 0.

If we choose β = 0 in inequality (13), we get the following generaliza-
tion of inequality (2).

Corollary 4. If f(z) is a polynomial of degree n, then for R ≥ 1 we have

|B[f ](Rz)| ≤ Rn|B[En]|max
|z|=1

|f(z)|, for |z| ≥ 1.

Equivalently∣∣∣∣λ0 f(Rz) + λ1R
(nz

2

) f ′(Rz)
1!

+ λ2R
2
(nz

2

)2 f ′′(Rz)
2!

∣∣∣∣ ≤ (14)

≤ Rn
∣∣∣∣λ0 zn + λ1

(nz
2

) nzn−1
1!

+ λ2

(nz
2

)2 n(n− 1)zn−2

2!

∣∣∣∣max
|z|=1

|f(z)|,

for |z| ≥ 1. The result is sharp and equality holds for f(z) ≡ γzn, γ 6= 0.

Setting λ1 = λ2 = 0 in inequality (14), we get in particular inequality
(2).

Remark 2. Theorem C is a special case of Corollary 4, when R = 1.

Note that if P (z) is a polynomial of degree n that does not vanish in
|z| < 1, then the polynomial Q(z) = znP (1/z) has all its zeros lying in
|z| ≤ 1. Hence, if we replace f(z) by P (z) and F (z) by Q(z) in inequality
(10), we get the following generalization of the result due to Aziz and
Rather [13, Lemma 12].

Corollary 5. If P (z) is a polynomial of degree n which does not vanish
in |z| < 1, then for any complex number β with |β| ≤ 1, R > r ≥ 1 and
|z| = 1 we have

|B[P ](Rz)− βB[P ](rz)| ≤ |B[Q](Rz)− βB[Q](rz)|,

where Q(z) = znP (1/z).
The result is sharp and equality holds for any polynomial with all its zeros
on |z| = 1.
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Further, let M = max
|z|=1

|P (z)|. Since P (z) is a polynomial of degree n,

the polynomial P (z) +αM for any α > 1 does not vanish in |z| < 1; thus,
applying Corollary 5 to the polynomial P (z) + αM , we get for |z| ≥ 1,

|B[P ](Rz)− βB[P ](rz) + α(1− β)B[1]M | ≤
≤ |B[Q](Rz)− βB[Q](rz) + ᾱ(Rn − βrn)B[En]M |.

Equivalently

|B[P ](Rz)−βB[P ](rz) + α(1− β)λ0M | ≤ (15)

≤ |B[Q](Rz)− βB[Q](rz) + ᾱ(Rn − βrn)B[En]M |.

Choosing argument of α in the right hand side of (15) suitably, we get

|B[P ](Rz)−βB[P ](rz)| − |α||1− β||λ0|M ≤ (16)

≤ |α||Rn − βrn||B[En]|M − |B[Q](Rz)− βB[Q](rz)|.

In (16), if we make |α| → 1, we get for |z| ≥ 1,

|B[P ](Rz)−βB[P ](rz)|+ |B[Q](Rz)− βB[Q](rz)| ≤ (17)

≤ (|Rn − βrn||B[En]|+ |1− β||λ0|)M.

The above inequality includes many known polynomial inequalities as
special cases. For example, taking β = 1 and r = 1 in (17), then dividing
both sides by (R− 1) and making R→ 1, we get for any polynomial P (z)
of degree n

|B
′
[P ](z)|+ |B

′
[Q](z)| ≤ n|B[En]|max

|z|=1
|P (z)| for |z| = 1,

where Q(z) = znP (1/z).
Equivalently,∣∣∣∣ ddz

{
λ0 + λ1(

nz

2
)P ′(z) + λ2(

nz

2
)2P ′′(z)

}∣∣∣∣+
+

∣∣∣∣ ddz
{
λ0 + λ1(

nz

2
)Q′(z) + λ2(

nz

2
)2Q′′(z)

}∣∣∣∣ ≤
≤ n

∣∣∣∣λ0zn + λ1(
nz

2
)
nzn−1

1!
+ λ2(

nz

2
)2
n(n− 1)zn−2

2!

∣∣∣∣max
|z|=1

|P (z)|.
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Setting λ0 = λ2 = 0, we have∣∣∣∣ ddz (zP ′(z))

∣∣∣∣+

∣∣∣∣ ddz (zQ′(z))

∣∣∣∣ ≤ n2 max
|z|=1

|P (z)|,

that is,

|P
′
(z) + zP

′′
(z)|+ |Q

′
(z) + zQ

′′
(z)| ≤ n2 max

|z|=1
|P (z)|.

Combining (17) with Corollary 5, we get the following generalization
of inequalities (3) and (4).

Corollary 6. If P (z) is a polynomial of degree n that does not vanish in
|z| < 1, then for a complex number β with |β| ≤ 1, R ≥ r ≥ 1 and |z| ≥ 1,

|B[P ](Rz)−βB[P ](rz)| ≤
{ |Rn − βrn||B[En]|+ |λ0||1− β|

2

}
max
|z|=1

|P (z)|.

The result is sharp and equality holds for P (z) = eiγ
(
zn+1

2

)
, where γ ∈ R.

Remark 3. Theorem D is a special case of Corollary 6, if we choose
β = 0 and R = 1.

Let m = min
|z|=1

|P (z)|. If the polynomial P (z) has no zeros in |z| ≤ 1,

then for any α with |α| < 1, the polynomial P (z) +mαzn has no zeros in
|z| ≤ 1. Hence it follows that the polynomial Q(z) + ᾱm, where Q(z) =
= znP (1/z) has all its zeros in |z| ≤ 1. Thus, if in inequality (10) we take
f(z) = P (z) + mαzn and F (z) = Q(z) + ᾱm, we get for R ≥ r ≥ 1 and
|z| ≥ 1,

|B[P ](Rz)−βB[P ](rz) + αm(Rn − βrn)B[zn]| ≤ (18)

≤ |B[Q](Rz)− βB[Q](rz) + ᾱm(1− β)λ0|.

We choose argument of α in the left hand side of inequality (18) such that

|B[P ](Rz)−βB[P ](rz) + αm(Rn − βrn)B[zn]| =
= |B[P ](Rz)− βB[P ](rz)|+ |α|m|Rn − βrn||B[zn|,

so that from (18) for |z| ≥ 1 and R ≥ r ≥ 1, we have

|B[P ](Rz)−βB[P ](rz)|+ |α|m|Rn − βrn||B[zn]| ≤
≤ |B[Q](Rz)− βB[Q](rz)|+ |α|m|1− β||λ0|.
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If we now let |α| → 1, we obtain for every β with |β| ≤ 1 and R ≥ r ≥ 1,

|B[P ](Rz)− βB[P ](rz)| ≤ (19)

≤ |B[Q](Rz)− βB[Q](rz)| −m
{
|Rn − βrn||B[zn]| − |1− β||λ0|

}
for |z| ≥ 1. Inequality (19) in conjunction with Corollary 6 gives the
following result, which is a compact generalization of results due to Aziz
and Dawood [14].

Corollary 7. If P (z) is a polynomial of degree n, which does not vanish
in |z| < 1, then for every complex number β with |β| ≤ 1 and R ≥ r ≥ 1,
we have for |z| ≥ 1,

|B[P ](Rz)− βB[P ](rz)| ≤
{ |Rn − βrn||B[En]|+ |λ0||1− β|

2

}
×

×max
|z|=1

|P (z)| −
{ |Rn − βrn||B[En]| − |λ0||1− β|

2

}
min
|z|=1

|P (z)|.

The above inequality is sharp and equality holds for P (z) ≡ zn+γ, |γ| = 1.

If we take β = 0 in Corollary 7, we get the following generalization of
the result due to Shah and Liman [11] .

Corollary 8. If P (z) is a polynomial of degree n, which does not vanish
in |z| < 1, then for R ≥ 1 and |z| ≥ 1, we have

|B[P ](Rz)| ≤
{Rn|B[En]|+ |λ0|

2

}
max
|z|=1

|P (z)|−

−
{Rn|B[En]| − |λ0||

2

}
min
|z|=1

|P (z)|.

A polynomial P (z) is said to be self-inversive if P ∗(z) = uP (z), |u| = 1,

where P ∗(z) = znP ( 1
z ). For the class of self-inversive polynomials, we

have the following result which includes some known polynomial inequa-
lities for this class as special cases.

Corollary 9. If P (z) is a self-inversive polynomial of degree n, then for
every complex number β with |β| ≤ 1, R ≥ r ≥ 1 and |z| ≥ 1,

|B[P ](Rz)−βB[P ](rz)| ≤
{ |Rn − βrn||B[En]|+ |λ0||1− β|

2

}
max
|z|=1

|P (z)|.
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The result is sharp and equality holds for P (z) ≡ zn + 1.

If we take β = 0 in Corollary 9, we get the following generalized
analogue of inequalities (3) and (4) for self-inversive polynomials.

Corollary 10. If P (z) is a self-inversive polynomial of degree n, then for
R ≥ 1 and |z| ≥ 1,

|B[P ](Rz)| ≤
{Rn|B[En]|+ |λ0|

2

}
max
|z|=1

|P (z)|.

Equivalently∣∣∣∣∣λ0 P (Rz) + λ1R
(nz

2

) P ′(Rz)
1!

+ λ2R
2
(nz

2

)2 P ′′(Rz)
2!

∣∣∣∣∣ ≤
≤
{Rn|λ0 zn + λ1

(
nz
2

)
nzn−1

1! + λ2
(
nz
2

)2 n(n−1)zn−2

2! |+ |λ0|
2

}
max
|z|=1

|P (z)|

for |z| ≥ 1.

In Corollary 10, if we choose λ1 = λ2 = 0, we get the result [11,
Corollary 1.5]. Further, if we choose λ0 = λ1 = 0, we get for R > 1,

|P
′′
(Rz)| ≤ n(n− 1)Rn−2|z|n−2

2!
max
|z|=1

|P (z)| for |z| ≥ 1,

where P (z) is a self-inversive polynomial.

Remark 4. The result of Rahman and Schmeisser [8, inequality 4.5.6] is
a special case of Theorem 2, if we take F (z) = zn.

Let P (z) be a polynomial of degree n having no zeros in |z| < 1, then

Q(z) = znP ( 1
z ) is a polynomial of degree n, having all zeros in |z| ≤ 1

and |P (z)| ≤ |Q(z)| for |z| = 1. Therefore by Theorem 2, for |z| ≥ 1,

|λn2P (z)− zP ′(z)− z2P
′′
(z)| ≤ |λn2Q(z)− zQ′(z)− z2Q

′′
(z)|,

where λ belongs to the set

4 :=

{
w = ρ+ iσ : 0 ≤ σ2 ≤ n

n− 1
(
n+ 1

4n
− ρ), ρ ≤ n+ 1

4n

}
.
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Proceeding similarly as in Corollary 6 and Corollary 10, we get ine-
qualities (14.5.6) and (14.5.7) of [8] as special cases.

5. Lemmas. To prove the theorems we need the following lemmas.
The first lemma is due to Aziz and Zargar [15] (see also Govil et. al. [12]).

Lemma 1. If f(z) :=
∑n
ν=0 aνz

ν is a polynomial of degree n having all
its zeros in |z| ≤ k where k ≥ 0, then for every R ≥ r and rR ≥ k2,

|f(Rz)| ≥
(
R+ k

r + k

)n
|f(rz)| for |z| = 1.

The next Lemma which we need follows from [14, Corollary 18.3].

Lemma 2. If f(z) is a polynomial of degree n having all its zeros in
|z| ≤ 1, then all zeros of B[P ](z) also lie in |z| ≤ 1.

Lemma 3. For every a > 0 and w ∈ C the following equivalence hold:

|Re(w)| ≤ a

if and only if

w2 ∈ 4 :=

{
x+ iy ∈ C : x, y ∈ R, x ≤ a2 − y2

4a2

}
.

Proof. We note that Lemma 3 simply follows, if we consider the region{
w ∈ C : |Re(w)| ≤ a

}
as the union of vertical lines contained in it and

then look at the images of these lines under the square function. However,
we give here an analytic proof as well for the readers’ convenience. For
this suppose that |Re(w)| ≤ a. If w = u + iv, then |Re(w)| = |u| ≤ a.
Since w2 = x+ iy, x = u2 − v2 and y = 2uv. This gives x ≤ a2 − v2 and
y2 ≤ 4a2v2 and simplifying we obtain

x ≤ a2 − y2

4a2
.

This shows that w2 ∈ 4. Conversely if w2 ∈ 4, then

x ≤ a2 − y2

4a2
,

so that on substituting for x and y, we get

|u| ≤ a.
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This shows that |Re(w)| ≤ a and Lemma 3 is proved. �

Lemma 4. Let n > 1 be a positive integer and λ ∈ C. Assume that

T (z) = z2 +
n

2(n− 1)
z − λn3

4(n− 1)
= 0.

Then

λ ∈ 4 :=

{
ρ+ iσ ∈ C : ρ, σ ∈ R, ρ ≤ n+ 1

4n
− n− 1

n
σ2

}
,

if and only if

− n2 + n

4(n− 1)
≤ Re(z) ≤ n

4
.

Proof. We have

T (z) = z2 +
n

2(n− 1)
z − λn3

4(n− 1)
= 0.

By completing the square, we get(
z +

n

4(n− 1)

)2

=
n2

4(n− 1)

(
1

4(n− 1)
+ λn

)
. (20)

We take w = z + n
4(n−1) and a = n2

4(n−1) , so that |Re(w)| ≤ a and

by Lemma 3

w2 ∈
{
x+ iy ∈ C, x, y ∈ R, x ≤ a2 − y2

4a2

}
.

Therefore by (20) we have

n2

4(n− 1)

(
1

4(n− 1)
+ λn

)
∈
{
x+ iy ∈ C, x, y ∈ R, x ≤ a2 − y2

4a2

}
.

But

n2

4(n− 1)

(
1

4(n− 1)
+ λn

)
= a

(
a

n2
+ λn

)
=

= a

(
a

n2
+ (ρ+ iσ)n

)
=

= a

(
a

n2
+ ρn

)
+ iaσn.



Inequalities concerning B-operators 67

Setting

x = a(
a

n2
+ ρn) and y = aσn,

so that

w2 =
n2

4(n− 1)

(
1

4(n− 1)
+ λn

)
= x+ iy.

By this substitution we have

x ≤ a2 − y2

4a2

implies

ρ ≤ n+ 1

4n
− n− 1

n
σ2.

Also, it can be easily verified that |Re(w)| ≤ a and hence

− n2 + n

4(n− 1)
≤ Re(z) ≤ n

4
.

This proves Lemma 4 also. �

6. Proofs of the Theorems.

Proof of Theorem 1. We first suppose that R = r. By hypothesis

|f(z)| ≤ |F (z)| for |z| = 1, therefore, for every complex number δ with
|δ| > 1,we have |f(z)| < |δF (z)| for |z| = 1. Further, all zeros of F (z) lie
in |z| ≤ 1; it follows from Rouché’s theorem [16, p.304] that all zeros of a
polynomial g(z) := f(z)− δF (z), of degree n also lie in |z| ≤ 1. Therefore
by Lemma 2, all zeros of

B[g](z) = B[f − δF ](z) = (21)

= λ0(f − δF )(z) + λ1
nz

2
{f ′ − δF ′}(z) + λ2

(nz
2

)2{f ′′(z)− δF ′′(z)
2!

}
=

=
{
λ0f(z) + λ1

mz

2
f ′(z) + λ2

(mz
2

)2 f ′′(z)
2!

}
− δ
{
λ0F (z) + λ1

nz

2
F ′(z)+

+ λ2

(nz
2

)2F ′′(z)
2!

}
+ λ1

(n−m
2

)
zf ′(z) + λ2

(n2 −m2

8

)
z2f ′′(z) =

= B[f ](z)− δB[F ](z) + λ1

(n−m
2

)
zf ′(z) + λ2

(n2 −m2

8

)
z2f ′′(z)



68 S. L. Wali1, W. M. Shah2, A. Liman3

are in |z| ≤ 1.
This gives

|B[f ](z) +λ1

(
n−m

2

)
zf ′(z) +λ2

(
n2 −m2

8

)
z2f ′′(z)| ≤ |B[F ](z)| (22)

for |z| > 1, where λ0, λ1 and λ2 are such that u(z) := λ0 + C(n, 1)λ1z +
+C(n, 2)λ2z

2 has all zeros in Re(z) ≤ n
4 , and v(z) := λ0 +C(m, 1)λ1z +

+C(m, 2)λ2z
2 has all zeros in Re(z) ≤ m

4 . If inequality (22) is not true,
then there is a point z = z0 with |z0| > 1, such that

|B[f ](z0) + λ1

(
n−m

2

)
z0f
′(z0) + λ2

(
n2 −m2

8

)
z20f
′′(z0)| > |B[F ](z0)|.

Since all zeros of F (z) lie in |z| ≤ 1, Lemma 2 shows that B[F ](z0) 6= 0
for any z0 with |z0| > 1. Hence we can choose

δ =

|B[f ](z0) + λ1

(
n−m

2

)
z0f
′(z0) + λ2

(
n2−m2

8

)
z20f
′′(z0)|

|B[F ](z0)|

so that δ is a well defined complex number such that |δ| > 1 and with such
choice of δ we get from (21) B[g](z0) = 0, for |z0| > 1. This shows that
all zeros of B[g](z) lie in |z| > 1, which is a contradiction and hence from
(22) after substituting for z = Reiθ, R > 1 and noting that (f(Rz))′ =
= Rf ′(Rz), we have for R > 1,

|B[f ](Rz) + λ1(
n−m

2
)z(f(Rz))′ + λ2

(
n2 −m2

8

)
z2(f(Rz))′′| ≤ |B[F ](Rz)|.

By using the argument of continuity, we show that the theorem is true
for R = r ≥ 1. We now assume that R > r. Since g(z) has all zeros in
|z| ≤ 1, g(Reiθ) 6= 0 for every R > r ≥ 1, 0 ≤ θ < 2π. Hence we have

|g(Reiθ)| >
(
r + 1

R+ 1

)n
|g(Reiθ)|. (23)

Also, if we apply Lemma 1 with k = 1 to the polynomial g(z) := f(z) −
−δF (z), we get for R ≥ r ≥ 1,

|g(Reiθ)| ≥
(
R+ 1

r + 1

)n
|g(reiθ)|, 0 ≤ θ < 2π. (24)
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Combining (24) with (23) gives for R > r ≥ 1,

|g(rz)| < |g(Rz)|, |z| = 1. (25)

If β is any complex number with |β| ≤ 1, then it follows from (25) that
|βg(rz)| < |g(Rz)| for |z| = 1 and R > r ≥ 1. As all zeros of g(Rz) lie in
|z| ≤ 1

R < 1, therefore again by using Rouché’s theorem, we how that the
polynomial

h(z) := g(Rz)− βg(rz) = f(Rz)− βf(rz)− δ(F (Rz)− βF (rz))

has all its zeros in |z| < 1, for every complex number δ with |δ| > 1 and
R > r ≥ 1, therefore by Lemma 2, all zeros of B[h](z) lie in |z| < 1. Since
f(z) and F (z) are polynomials of degree m and n (m ≤ n) respectively,
h(z) is a polynomial of degree n and hence

B[h](z) = B[f(Rz)− βf(rz)− δ(F (Rz)− βF (rz))] =

= λ0[f(Rz)− βf(rz)− δ(F (Rz)− βF (rz))]+

+ λ1
nz

2
[(f(Rz))′ − β(f(rz))′ − δ{(F (Rz))′ − β(F (rz))′}]+

+
λ2
2!

(
nz

2

)2

[(f(Rz))′′ − β(f(rz))′′ − δ{(F (Rz))′′ − β(F (rz))′′}] =

= B[f ](Rz)− βB[f ](rz) + λ1

(
n−m

2

)
z
[
(f(Rz))′ − β (f(rz))

′]
+

+ λ2
n2 −m2

8
z2[(f(Rz))′′ − β(f(rz))′′]− δ{B[F ](Rz)− βB[F ](rz)}

has all zeros in |z| < 1.
From this we conclude as above that

|B[f ](Rz)− βB[f ](rz) + λ1

(
n−m

2

)
z {(f(Rz))′ − β(f(rz))′}+

+ λ2

(
n2 −m2

8

)2

[(f(Rz))′′ − β(f(rz))′′] | ≤ |B[F ](Rz)− βB[F ](rz)|

for every R > r ≥ 1.
Now in order to complete the proof, we need only to show that for |z| > 1,
the inequality (10) becomes a strict inequality and this is done as follows.
Note that, B[f ](Rz)− βB[f ](rz) + λ1

(
n−m

2

)
z {(f(Rz))′ − β(f(rz)′)}+
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+λ2

(
n2−m2

8

)2

[(f(Rz))′′ − β(f(rz))′′] and B[F ](Rz)−βB[F ](rz) are two

polynomials, where degree of B[f ](Rz)− βB[f ](rz) + λ1
(
n−m

2

)
×

× z {(f(Rz))′ − β(f(rz)′)}+ λ2

(
n2−m2

8

)2

[(f(Rz))′′ − β(f(rz))′′]

does not exceed that of B[F ](Rz)− βB[F ](rz), and the polynomial
B[F ](Rz)−βB[F ](rz) has all its zeros in |z| ≤ 1. Further, by (10) we have
for |z| = 1, |B[f ](Rz)−βB[f ](rz)+λ1

(
n−m

2

)
z {(f(Rz))′ − β(f(rz)′)}+

+ λ2

(
n2−m2

8

)2

[(f(Rz))′′ − β(f(rz))′′] | ≤ |B[F ](Rz)− βB[F ](rz)|.

Therefore, by applying Theorem B we get

|B[f ](Rz)− βB[f ](rz) + λ1

(
n−m

2

)
z {(f(Rz))′ − β(f(rz)′)}+

+ λ2

(
n2 −m2

8

)2{
(f(Rz))′′ − β(f(rz))′′

}
| < |B[F ](Rz)− βB[F ](rz)|

for |z| > 1. That is (10) becomes a strict inequality for |z| > 1 and
Theorem 1 is thus completely proved.
Proof of Theorem 2. We choose λ0 = n2λ, λ1 = −2

n , λ2 = −8
n2 , where

λ is such that

λ ∈ 4 :=

{
w = ρ+ iσ : 0 ≤ σ2 ≤ n

n− 1

(
n+ 1

4n
− ρ
)
, ρ ≤ n+ 1

4n

}
.

By this choice of λ, we get by using Lemma 4,

λ0 + C(n, 1)λ1z + C(n, 2)λ2z
2 =

= −4(n− 1)

n

{
z2 +

n

2(n− 1)
z − λn3

4(n− 1)

}
= 0

for Re(z) ≤ n
4 .

Thus for this value of λ ∈ 4, B defined by (8) is a Bn-operator. Hence by
Theorem 1, with m = n, β = 0 and R = 1, we have,

|B[f ](z)| ≤ |B[F ](z)| for |z| ≥ 1.
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This in particular gives for |z| ≥ 1,∣∣∣∣λ0f(z) + λ1(
nz

2
)
f ′(z)

1!
+λ2(

nz

2
)2
f ′′(z)

2!

∣∣∣∣ ≤ (26)

≤
∣∣∣∣λ0F (z) + λ1(

nz

2
)
F ′(z)

1!
+ λ2(

nz

2
)2
F ′′(z)

2!

∣∣∣∣.
Substituting value of λ0, λ1 and λ2 in (26) we get for λ ∈ 4 and |z| ≥ 1

|λn2f(z)− zf ′(z)− z2f
′′
(z)| ≤ |λn2F (z)− zF ′(z)− z2F

′′
(z)|.

This completes the proof of Theorem 2.

Acknowledgment. Authors are grateful to the referees for the careful
reading and useful suggestions.

References

[1] Bernstein S. Sur la limitation des dérivées des polynomes. C. R. Acad. Sci.
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