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THE DAMASCUS INEQUALITY

Abstract. In 2016 Prof. Fozi M. Dannan from Damascus, Syria,
proposed an interesting inequality for three positive numbers
with unit product. It became widely known but was not proved
yet in spite of elementary formulation. In this paper we prove
this inequality together with similar ones, its proof occurred to
be rather complicated. We propose some proofs based on diffe-
rent ideas: Lagrange multipliers method, geometrical considera-
tions, Klamkin–type inequalities for symmetric functions, usage
of symmetric reduction functions of computer packages. Also
some corollaries and generalizations are considered, they include
cycle inequalities, triangle geometric inequalities, inequalities for
arbitrary number of values and special forms of restrictions on
numbers, applications to cubic equations and symmetric func-
tions.
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1. The problem formulation. In 2016 Prof. Fozi M. Dannan
from Damascus, Syria, proposed the following inequality

x− 1

x2 − x+ 1
+

y − 1

y2 − y + 1
+

z − 1

z2 − z + 1
≤ 0, (1)

provided that xyz = 1 for x, y, z > 0. It became widely known but was
not proved yet in spite of elementary formulation.

An obvious generalization is the next inequality

n∑
k=1

xk − 1

x2k − xk + 1
≤ 0, (2)
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providing that x1 · x2 · . . . · xn = 1 for xk > 0, 1 ≤ k ≤ n.
It is obvious that (2) is true for n = 1, it is easy to prove it also for

n = 2 directly. But it is not true for n = 4 as follows from an example
with x1 = x2 = x3 = 2, x4 = 1

8 , then (2) is reduced to 1 − 56
57 ≤ 0 which

is not true.
As a consequence (2) is also false for any n ≥ 4 due to an example with

x1 = x2 = x3 = 2, x4 = 1
8 , x5 = . . . = xn = 1. So the only non–trivial

case in (2) is n = 3.
In this paper we prove inequality (1) together with similiar ones

1

x2 − x+ 1
+

1

y2 − y + 1
+

1

z2 − z + 1
≤ 3, (3)

x

x2 − x+ 1
+

y

y2 − y + 1
+

z

z2 − z + 1
≤ 3, (4)

x− 1

x2 + x+ 1
+

y − 1

y2 + y + 1
+

z − 1

z2 + z + 1
≤ 0, (5)

1

x2 + x+ 1
+

1

y2 + y + 1
+

1

z2 + z + 1
≥ 1, (6)

x

x2 + x+ 1
+

y

y2 + y + 1
+

z

z2 + z + 1
≤ 1, (7)

x+ 1

x2 + x+ 1
+

y + 1

y2 + y + 1
+

z + 1

z2 + z + 1
≤ 2. (8)

Also some generalizations and applications will be considered.

2. Proof of the main inequality (1).

Theorem 1. Inequality (1) is true providing that xyz = 1 for x, y, z > 0.

For the proof we need an auxiliary inequality that seems to be very
interesting by itself.

Lemma 1. Let x, y, z be positive numbers such that xyz = 1. Then

x2 + y2 + z2 − 3 (x+ y + z) + 6 ≥ 0 (9)

is true.

Note that inequality (9) is not a consequence of well–known family of
Klamkin–type inequalities for symmetric functions [1]. So (9) is a new
quadratic Klamkin–type inequality in three variables under restriction
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xyz = 1. Due to its importance we give three proofs to it based on
different ideas.
First proof of Lemma 1. To prove (9) introduce the Lagrange function

L(x, y, z, λ) = x2 + y2 + z2 − 3(x+ y + z) + 6− λ(xyz − 1).

Differentiating it get

λ = 2x2 − 3x = 2y2 − 3y = 2z2 − 3z.

It follows that at the minimum (it obviously exists) x = y or x+ y = 1.5.
For the first case three variables at the minimum are x, y = x, z =

= 1/x2. From 2x2 − 3x = 2z2 − 3z we derive the equation for x:

2x2 − 3x = 2/x4 − 3/x2, f(x) = 2x6 − 3x5 + 3x2 − 2 = 0.

One root is obvious x = 1. Let us prove that there are no other roots for
x ≥ 0. Check that derivative is positive

f ′(x) = 12x5 − 15x4 + 6x = 3x(4x4 − 5x3 + 2) ≥ 0, x ≥ 0.

Define a function g(x) = 4x4 − 5x3 + 2, its derivative g′(x) has one zero
for x ≥ 0 at x = 15/16 and the function g(x) is positive in this zero
(its minimum) g(15/16) = 15893/16384 > 0. So g(x) is positive, f(x) is
strictly increasing on x ≥ 0, so f(1) = 0 is its only zero.

For the second case x + y = 1.5 the proof is the same as below (case
II of the second proof of Lemma 1). �
Second proof of Lemma 1. Consider the function

f (x, y) = x2 + y2 +
1

x2y2
− 3

(
x+ y +

1

xy

)
+ 6,

where x, y, z are positive numbers. We show that f(x, y) attains its mini-
mum 0 at x = 1, y = 1 using partial derivative test.

Calculate
∂f

∂x
= 2x− 2

x3y2
− 3 +

3

x2y
= 0, (10)

∂f

∂y
= 2y − 2

x2y3
− 3 +

3

xy2
= 0. (11)

Now multiplying (10) and (11) respectively by x and−y and adding obtain

(x− y) (2x+ 2y − 3) = 0.
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Here we have two cases.
Case I. x = y, which implies from equation (10) that

2x6 − 2− 3x5 + 3x2 = 0

or (
x3 − 1

) (
2x3 − 3x2 + 2

)
= 0. (12)

Equation (12) has only one positive root x = 1 and consequently y = 1.
Notice that the equation

2x3 − 3x2 + 2 = 0

does not have positive roots because for x ≥ 0 the function u (x) = 2x3 −
−3x2 + 2 satisfies the following properties: (i)u (0) = 2, (ii) minu (x) = 1
at x = 1, (iii)u (∞) = ∞. Therefore f (x, y) attains its maximum or
minimum at x = 1, y = 1.

Case II. 2x+ 2y = 3. Adding (10) and (11) we get

2 (x+ y)− 6− 2

(
1

x3y2
+

1

x2y3

)
+ 3

(
1

x2y
+

1

xy2

)
= 0

or

−3− 3

x3y3
+

3

2x2y2
= 0

and

−6x3y3 + 3xy − 6 = 0.

Putting t = xy we obtain

2t3 − t+ 2 = 0.

In fact this equation does not have positive roots (notice that t = xy
should be positive). This is because the function u = 2t3 − t+ 2 satisfies
the following properties:

(i) u (0) = 2,

(ii) for t > 0, minu (t) = u

(
1√
6

)
> 0, (iii) u (∞) > 0.

The last step is to show that

f (x, y) ≥ f (1, 1) = 0.
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It is enough to show that f (s, t) > f (1, 1) for at least one point (s, t) 6=
6= (1, 1). Take for example f (2, 3) = 7

2 + 1
36 . �

Third proof of Lemma 1 (Geometrical Method). Geometrically
it is enough to prove that the surface xyz = 1 lies outside the sphere
(x − 3/2)2 + (y − 3/2)2 + (z − 3/2)2 = 3/4 except the only intersection
point (1, 1, 1) as it is shown in the next graph:

Figure 1: the sphere on the surface.

Let M and S be surfaces defined by

M : xyz = 1 and S: (x− 3
2 )

2
+ (y − 3

2 )
2

+ (z − 3
2 )

2 − 3
4 = 0.

1. If (z − 3
2 )

2 − 3
4 ≥ 0 then(

x− 3

2

)2

+

(
y − 3

2

)2

+

(
z − 3

2

)2

− 3

4
≥ 0

and equivalently

x2 + y2 + z2 − 3 (x+ y + z) + 6 ≥ 0.

2. If (z − 3
2 )

2 − 3
4 ≤ 0 then 3−

√
3

2 ≤ z ≤ 3+
√
3

2 .
3. We take horizontal sections for both M and S so get for any plane

3−
√

3

2
≤ z = k ≤ 3 +

√
3

2
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two curves: equilateral hyperbola H(k) with vertex ( 1√
k
, 1√

k
) and a circle

C (k) with center at (3
2 ,

3
2 , k) and radius given by

r2 (k) =
3

4
− (k − 3

2
)
2

= −k2 + 3k − 3

2
.

4. For z = 1, we have the hyperbola xy = 1 and the circle(
x− 3

2

)2

+

(
y − 3

2

)2

=
1

2
.

5. We show that the distance d(v, c) between the vertex of the hyper-
bola and the center c of the circle is always greater than or equal to the
radius of the circle. The distance d(v, c) is given by

d2 (v, c) =

(
1√
k
− 3

2

)2

+

(
1√
k
− 3

2

)2

= 2

(
1√
k
− 3

2

)2

.

The radius is given by

r2 (k) =
3

4
−
(
k − 3

2

)2

= −k2 + 3k − 3

2
.

We need to show that the vertex is always outside the circle i.e. d2 (v, c) ≥
≥ r2 (k) for all

3−
√

3

2
≤ k ≤ 3 +

√
3

2
.

It is clear that d (v, c) = r for k = 1 and the hyperbola tangents the circle
at the point (1, 1, 1).

For 3−
√
3

2 ≤ k < 1, as k decreases from 1 to 3−
√
3

2 , the radius of
the circle becomes smaller. From the other side the vertex ( 1√

k
, 1√

k
, k)

moves away from (1, 1, 1) towards the point (0, 0, k). This follows from
the distance function of the vertex

Ov =

√
2√
k
,

(
0 < k1 ≤ k2 < 1→

√
2√
k2

<

√
2√
k1

)
.

6. For 1 < k ≤ 3+
√
3

2 , we show that

d2 (v, c) = g (k) = 2

(
1√
k
− 3

2

)2

> r2 =
3

4
− (k − 3

2
)
2

= h (k) .
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In fact, h (k) is a concave down parabola and has its maximum at k = 1,
i.e. max h (k) = 1

2 and h (k) is decreasing for k > 1. Also, g (1) = 1
2 and

g(k) is increasing for k > 1 because g′(k) = 4
(
− 1
k
√
k

)(
1√
k
− 3

2

)
> 0 for

k ≥ 1 (notice that 1√
k
< 1). Therefore g (k) > h (k) for k > 1. Eventually

we conclude that(
x− 3

2

)2

+

(
y − 3

2

)2

+

(
z − 3

2

)2

− 3

4
≥ 0

and consequently

x2 + y2 + z2 − 3 (x+ y + z) + 6 ≥ 0

for all values of (x, y, z) that satisfy xyz = 1. �
Proof of Theorem 1. Now consider the inequality to prove (1). After
simplifying inequality (1) with the use of Wolfram Mathematica, we get

−3 + 3x− 2x2 + 3y − 3xy + 2x2y − 2y2 + 2xy2 − x2y2 + 3z − 3xz +

+2x2z − 3yz + 3xyz − 2x2yz + +2y2z − 2xy2z + x2y2z − 2z2 + 2xz2 −
−x2z2 + 2yz2 − 2xyz2 + x2yz2 − y2z2 + xy2z2 ≤ 0.

Using Symmetric Reduction function of Wolfram Mathematica we de-
rive

3− xy − xz − yz + 3xyz − 3(x+ y + z) + 2(x+ y + z)2 −
−xyz(xy + xz + yz)− 2(x+ y + z)(xy + xz + yz) + (xy + xz + yz)2 ≥ 0.

Using xyz = 1, the required inequality becomes

6− 3(x+ y + z) + 2(x+ y + z)2 − 2(xy + xz + yz)−
−2(x+ y + z)(xy + xz + yz) + (xy + xz + yz)2 ≥ 0.

In terms of elementary symmetric functions

S1 = x+ y + z, S2 = xy + yz + xz

it is
S2
2 − 2S1S2 − 2S2 + 2S2

1 − 3S1 + 6 ≥ 0. (13)

As S2
2 − 2S1S2 + S2

1 ≥ 0, it is enough to prove

S2
1 − 2S2 − 3S1 + 6 ≥ 0. (14)



10 F. M. Dannan, S. M. Sitnik

Inequality (14) is equivalent to

x2 + y2 + z2 − 3(x+ y + z) + 6 ≥ 0, (15)

which is true from Lemma 1. So Theorem 1 is proved. �
3. Proof of inequalities (3)–(8). Let us start with two propositions.

Proposition 1. For any real numbers u, v, w such that

(1 + u) (1 + v) (1 + w) > 0,

the inequality
1

1 + u
+

1

1 + v
+

1

1 + w
≤ k(≥ k)

is equivalent to

kuvw + (k − 1) (uv + vw + wu) + (k − 2) (u+ v + w) + k − 3 ≥ 0 (≤ 0).

Proposition 2. For any real numbers u, v, w such that

(u− 1) (v − 1) (w − 1) > 0

the inequality
1

u− 1
+

1

v − 1
+

1

w − 1
≤ k(≥ k)

is equivalent to

kuvw − (k + 1) (uv + vw + wu) + (k + 2) (u+ v + w)− (k + 3) ≥ 0(≤ 0).

The validity of propositions 1 and 2 can be obtained by direct expan-
sions.
Proof that (1)⇔ (3). In fact

x− 1

x2 − x+ 1
+

y − 1

y2 − y + 1
+

z − 1

z2 − z + 1
=

=
x2 − (x2 − x+ 1)

x2 − x+ 1
+
y2 − (y2 − y + 1)

y2 − y + 1
+
z2 − (z2 − z + 1)

z2 − z + 1
=

= −3 +
∑
cyc

x2

x2 − x+ 1
.
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Now if the right-hand side is less than or equal to zero then

∑
cyc

x2

x2 − x+ 1
≤ 3

and consequently ∑
cyc

1

1− (1/x) + (1/x)
2 ≤ 3.

�
Proof of (5). We need to prove∑

cyc

1

x2 + x+ 1
≥ 1.

Let u = x2 + x, v = y2 + y, w = z2 + z. Using Proposition 1 the required
inequality can be written as follows:

uvw − (u+ v + w)− 2 ≤ 0.

Going back to x, y, z we get

(x+ 1) (y + 1) (z + 1)−
(
x2 + y2 + z2

)
− (x+ y + z)− 2 ≤ 0.

Or

xy + yz + zx ≤ x2 + y2 + z2

which is obvious. �
Proof of (6). It follows from elementary calculus that for any real number
x we have

x

x2 + x+ 1
≤ 1

3

and the inequality follows directly. �
Proof that (6) + (7) ⇒ (5). Adding together (7) and (6) multiplied by
−1 we derive (5). �
Proof that (6)⇒ (8). The required inequality is equivalent to

∑
cyc

x2 + x+ 1− x2

x2 + x+ 1
= 3−

∑
cyc

x2

x2 + x+ 1
≤ 2
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or ∑
cyc

x2

x2 + x+ 1
≥ 1

which is true from inequality (6). �
4. Modifications of the original inequality. In this section we

consider modifications of the original inequality (1) providing that xyz = 1
for x, y, z ≥ 0.

1. Inequality (1) is equivalent to

x2 − 1

x3 − 1
+
y2 − 1

y3 − 1
+
z2 − 1

z3 − 1
≤ 0. (16)

This form leads to generalization with more powers, cf. below.
2. Inequality (1) is equivalent to

x2

x2 − x+ 1
+

y2

y2 − y + 1
+

z2

z2 − z + 1
≤ 3. (17)

3. Let us take x → 1
x , y →

1
y , z →

1
z . Then we derive another

equivalent form of inequality (1)

x− x2

x2 − x+ 1
+

y − y2

y2 − y + 1
+

z − z2

z2 − z + 1
≤ 0, (18)

due to the functional equation

f

(
1

x

)
= −xf(x) (19)

for the function

f(x) =
x− 1

x2 − x+ 1
. (20)

So it seems possible to generalize the original inequality in terms of
functional equations too.

Leads to one more change of variables x→ xy, y → yz, z → xz:

xy − 1

x2y2 − xy + 1
+

yz − 1

y2z2 − yz + 1
+

xz − 1

x2z2 − xz + 1
≤ 0, (21)

or similarly to (18)

xy − x2y2

x2y2 − xy + 1
+

yz − y2z2

y2z2 − yz + 1
+

xz − x2z2

x2z2 − xz + 1
≤ 0. (22)
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It is also possible to consider generalizations of (1) under the most
general transformations

x→ g(x, y, z), y → h(x, y, z), z → 1

g(x, y, z)h(x, y, z)

with positive functions g(x, y, z), h(x, y, z) still preserving the condition
xyz = 1.

4. A number of cyclic inequalities follow from previous ones by sub-
stitution

x =
a

b
, y =

b

c
, z =

c

a
, xyz = 1.

On this way we derive from (1), (3)–(8) the following cyclic inequalities:

ab− b2

a2 − ab+ b2
+

bc− c2

b2 − bc+ c2
+

ca− a2

c2 − ca+ a2
≤ 0, (23)

b2

a2 − ab+ b2
+

c2

b2 − bc+ c2
+

a2

c2 − ca+ a2
≤ 3, (24)

ab

a2 − ab+ b2
+

bc

b2 − bc+ c2
+

ca

c2 − ca+ a2
≤ 3, (25)

ab− b2

a2 + ab+ b2
+

bc− c2

b2 + bc+ c2
+

ca− a2

c2 + ca+ a2
≤ 0, (26)

b2

a2 + ab+ b2
+

c2

b2 + bc+ c2
+

a2

c2 + ca+ a2
≥ 1, (27)

ab

a2 + ab+ b2
+

bc

b2 + bc+ c2
+

ca

c2 + ca+ a2
≤ 1, (28)

ab+ b2

a2 + ab+ b2
+

bc+ c2

b2 + bc+ c2
+

ca+ a2

c2 + ca+ a2
≤ 2. (29)

Among cyclic inequalities ones of Schur, Nessbit and Shapiro are the
most well–known cf. [1]–[3].

5. Some geometrical quantities connected with trigonometric functions
and triangle geometry satisfy a condition xyz = 1, cf. [4]–[6]. For example,
we may use in standard notations for triangular geometry values:

x =
a

4p
, y =

b

R
, z =

c

r
;

x =
a+ b

2
, y =

b+ c

p
, z =

a+ c

p2 + r2 + 2rR
;
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x = Rha, y =
hb
2p2

, z =
hc
r2

;

x = 2R2 sin(α), y =
sin(β)

r
, z =

sin(γ)

p
;

x = (p2 − 4R2 − 4rR− r2) tan(α), y =
tan(β)

2p
, z =

tan(γ)

r
;

x =
tan(α)

tan(α) + tan(β) + tan(γ)
, y =

tan(β)

tan(α) + tan(β) + tan(γ)
,

z =
tan(γ)

tan(α) + tan(β) + tan(γ)
;

x = tan(α/2), y = p tan(β/2), z =
tan(γ/2)

r
;

x =
a

4(p− a)
, y =

b

R(p− b)
, z = r

c

p− c
;

x = 4R sin(α/2), y = sin(β/2), z =
sin(γ/2)

r
;

x = 4R cos(α/2), y = cos(β/2), z =
cos(γ/2)

p
.

6. The above geometrical identities of the type xyz = 1 which we
use for applications of considered inequalities are mostly consequences of
Vieta’s formulas [5]. It is interesting to use these formulas for the cubic
equation directly.

Theorem 2. Let x, y, z be positive roots of the cubic equation with any
real a, b

t3 + at2 + bt− 1 = 0.

Then for these roots x, y, z all inequalities of this paper are valid.

7. We can generalize inequalities (3), (6)–(8) for more general powers.
For this aim we use Bernoulli’s inequalities [1]–[2]: for u > 0 the following
inequalities hold true

uα − αu+ α− 1 ≥ 0, (α > 1 or α < 0),

uα − αu+ α− 1 ≤ 0, (0 < α < 1 ) .
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Lemma 2. Assume that x, y, z are positive numbers such that xyz = 1.
Then the following inequality holds true:(

1

x2 − x+ 1

)α
+

(
1

y2 − y + 1

)α
+

(
1

z2 − z + 1

)α
≤ 3

for 0 < α < 1.

Proof. Let

X = x2 − x+ 1, Y = y2 − y + 1, Z = z2 − z + 1.

Then we have(
1

x2 − x+ 1

)α
+

(
1

y2 − y + 1

)α
+

(
1

z2 − z + 1

)α
≤

≤ α
(

1

X
+

1

Y
+

1

Z

)
+ 3 (1− α) ≤ 3.

Similarly we have from (7) that(
x

x2 + x+ 1

)α
+

(
y

y2 + y + 1

)α
+

(
z

z2 + z + 1

)α
≤ 3− 2α

and from (8) we have(
x+ 1

x2 + x+ 1

)α
+

(
y + 1

y2 + y + 1

)α
+

(
z + 1

z2 + z + 1

)α
≤ 3− α.

For α > 1 or α < 0 we have from (6)

(
1

x2 + x+ 1

)α
+

(
1

y2 + y + 1

)α
+

(
1

z2 + z + 1

)α
≥ 3− 2α.

�

5. Generalizations of original inequality to ones with a set
of restrictions on symmetric functions. It is easy to show that the
maximum of function (20) is attained for x ≥ 0 at x = 2 and equals 1/3.

So the next unconditional inequality holds

k=n∑
k=1

xk − 1

x2k − xk + 1
≤ n

3
; xk ≥ 0. (30)
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Figure 2: graph of function (20).

Consider symmetric functions

S1 =

k=n∑
k=1

xk, S2 =

n∑
k, m=1, k 6=m

xk · xm, . . . , Sn = x1x2 · · ·xn.

The generalized Damascus inequality (open problem).
Prove the inequality

k=n∑
k=1

xk − 1

x2k − xk + 1
≤ n

3
− C(a1, a2, . . . , an); xk ≥ 0, (31)

and find the best positive constant in it under conditions on symmetric
functions

S1 = a1, S2 = a2, . . . , Sn = an (32)

with may be some restrictions in (32) omitted.
The unconditional constant for positive numbers in (31) is C = 0 and

the original inequality gives C = 1 in case n = 3 and a single restriction
S3 = 1 in the list (32).

It seems that the problem to find the sharp constant in inequality (31)
under general conditions (32) is a difficult problem.

For three numbers so more inequalities of type (31) may be considered,
e.g.

1. Prove inequality (31) for positive numbers under condition S1 = 1
and find the best constant for this case.

2. Prove inequality (31) for positive numbers under condition S2 = 1
and find the best constant for this case.

Also combined conditions may be considered.
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3. Prove inequality (31) for positive numbers under conditions S1 = a,
S2 = b and find the best constant C(a, b) in (31) for this case.

6. Symmetricity of symmetric inequalities. There are many
inequalities that are written in terms of symmetric functions as F (p, q) ≤
≤ 0 (≥ 0), where

p = S1 = x+ y + z, q = S2 = xy + yz + zx, r = S3 = xyz = 1.

The following Lemma enlarges the amount of inequalities that one can
obtain as a series of very complicated inequalities.

Lemma 3. If the inequality

F (p, q) ≤ 0 (≥ 0)

holds true, then the following inequalities are satisfied:

(i)F (q, p) ≤ 0 (≥ 0),

and
(ii)F

(
q2 − 2p, p2 − 2q

)
≤ 0 (≥ 0) .

Proof. (i). Assume that

F (p, q) = F (x+ y + z, xy + yz + zx) ≥ 0.

Using transformations

x→ xy, y → yz, z → zx

we obtain

F (p, q) = F (xy + yz + zx, xyyz + yzzx+ zxxy) =

= F (xy + yz + zx, x+ y + z) = F (q, p) ≥ 0.

Notice that we can also use transformations

x→ 1

x
, y → 1

y
, z → 1

z
.

(ii). Now assume that

F (p, q) = F (x+ y + z, xy + yz + zx) ≥ 0.
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Using transformations

x→ xy

z
, y → yz

x
, z → zx

y

we derive
xy

z
+
yz

x
+
zx

y
= x2y2 + y2z2 + z2x2 =

= (xy + yz + zx)
2 − 2 (x+ y + z) = q2 − 2p.

Also it follows
xy

z

yz

x
+
yz

x

zx

y
+
zx

y

xy

z
=

=
y

zx
+

z

xy
+

x

yz
= x2 + y2 + z2

= (x+ y + z)
2 − 2 (xy + yz + zx) = p2 − 2q.

The proof is complete. �

At the end we propose an unsolved problem.

Open problem. Find all possible non–negative values of four variables
x1, x2, x3, x4 with restriction x1·x2·x3·x4 = 1 for which the next inequality
holds

4∑
k=1

xk − 1

x2k − xk + 1
≤ 0. (33)

As we know from the example at the beginning of the paper the inequality
(33) is not true for all such values, e.g. it fails for x1 = x2 = x3 = 2,
x4 = 1/8.
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