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JACOBIAN CONJECTURE, TWO-DIMENSIONAL CASE

Abstract. The Jacobian Conjecture was first formulated by
O. Keller in 1939. In the modern form it supposes injectivity
of the polynomial mapping f : Rn → Rn (Cn → Cn) provided
that jacobian Jf ≡ const 6= 0. In this note we consider structure
of polynomial mappings f that provide Jf ≡ const 6= 0.
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Introduction. Denote the set of all polynomials in Rn (or Cn) of
degree not higher than m by Pm. Let Pm be the set of all polynomial
mappings F = (F1, . . . , Fn): Rn → Rn (or Cn → Cn), Fk ∈ Pm(k =
= 1, . . . , n) of degree degF ≤ m. The Jacobi matrix and the jacobian of
mapping F are denoted by DF and JF , respectivly. In the complex case
both DF and JF are complex. The Jacobian Conjecture (JC) formulated
by Keller [1] in 1939 in its modern form is:

if F ∈ Pm and JF ≡ const 6= 0 then F is injective in Rn (Cn).
Proof of the conjecture would allow to use it widely in a number of

branches of mathematics. Beside the one given above, also other equiva-
lent formulations exist. Many publications are devoted to this conjecture:
see e.g. [2–6]. In particular, in [7] the conjecture is proved for F ∈ P2 for
any n; in [8] it is checked for n = 2 and F ∈ P100. However, it has not
been proved neither to be true nor to be false for any n. It is included in
the list of ”Mathematical Problems for the Next Century” [9].

In the note we consider the question of structure of mappings F ∈ Pm
with JF ≡ const 6= 0. It seems to be the most important for proof or
rejection of (JC). Solving this problem and applying criteria or sufficient
conditions of injectivity of mappings would help to proceed in (JC). We
here obtain results only for n = 2 and m = 2, 3. However, they serve as
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a starting point for results in the general case (n,m ≥ 3) in our future
article with S. Ponnusamy. Let us pass to results.

Theorem 1. Let F (x, y) = (Ũ(x, y), Ṽ (x, y)) be a polynomial mapping,
F (0, 0) = 0, Ũ(x, y), Ṽ (x, y) ∈ P2. Then JF ≡ const 6= 0 iff F = A◦
◦f ◦ B, where A and B are linear homogeneous nondegenerate mappings,
f(x, y) = (u(x, y), v(x, y)),

u(x, y) = x+ α2(x+ y)2, v(x, y) = y − α2(x+ y)2, (1)

α2 is an arbitrary fixed constant.

Case m = 3 is considered using Theorem 1.

Theorem 2. Let F (x, y) = (Ũ(x, y), Ṽ (x, y)) be a polynomial mapping,
F (0, 0) = 0, Ũ(x, y), Ṽ (x, y) ∈ P3. Then JF ≡ const 6= 0 iff F = A◦
◦f ◦ B, where A and B are linear homogeneous nondegenerate mappings,
f(x, y) = (u(x, y), v(x, y)),

u(x, y) = x+α2(x+y)2 +α3(x+y)3, v(x, y) = y−α2(x+y)2−α3(x+y)3,

α2 and α3 are arbitrary fixed constants.

It is natural to assume that statements similar to Theorems 1 and 2
hold in Pm for any m > 3, i.e., to the conjecture:

If F (x, y) = (Ũ(x, y), Ṽ (x, y)) ∈ Pm, F (0, 0) = 0, then JF ≡ const 6= 0
iff F = A ◦ f ◦ B, where A and B are linear homogeneous nondegenerate
mappings, f(x, y) = (u(x, y), v(x, y)),

u(x, y) = x+ α2(x+ y)2 + . . .+ αm(x+ y)m,

v(x, y) = y − α2(x+ y)2 − . . .− αm(x+ y)m,

where α2, . . . , αm are arbitrary fixed constants.
This conjecture is implicitly supported by our (with S. Ponnusamy)

Theorem A. The Jacobian Conjecture is true for mappings F (X) =
= (A ◦ f ◦ B)(X), where X = (x1, . . . , xn) ∈ Rn, A and B are linear such
that detA,detB 6= 0, f = (u1, . . . , un), for k = 1, . . . , n

uk(X) = xk + γk[α2(x1 + . . .+ xn)2 + α3(x1 + . . .+ xn)3 + . . .+

+αm(x1 + . . .+ xn)m],

αj , γk ∈ R with
∑n
k=1 γk = 0.
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Remark. All formulated theorems hold both in real and in complex case.

Proof of Theorem 1. Let Φ(x, y) = (DF )−1(0, 0)F (x, y) =
= (U(x, y), V (x, y)); then

U(x, y) = x+A2x
2 +A1xy +A0y

2 = x+ L(x, y),

V (x, y) = y + a2x
2 + a1xy + a0y

2 = y + l(x, y),

Therefore 1 ≡ JΦ(x, y) = 1 + I + II, where

I = Lx + ly ≡ 0, II = Lxly − lxLy ≡ 0,

as I and II are homogeneous polynomials of first and second degree,
respectively.

II ≡ 0⇐⇒ 2A2x+A1y

2a2x+ a1y
≡ A1x+ 2A0y

a1x+ 2a0y
⇐⇒ A2

a2
=
A1

a1
=
A0

a0
,

i.e. polynomials L and l are mutually proportional. Therefore such ξ, η ∈
∈ R exist that

ξL+ ηl ≡ 0, |ξ|+ |η| 6= 0. (2)

Then

I ≡ 0⇐⇒ ξly = ηlx ⇐⇒ ξ(a1x+ 2a0y) = η(2a2x+ a1y), (3)

i.e. ξa1 = 2ηa2, 2a0ξ = ηa1. Let us use the following designation: a0 :=
:= η2r, r ∈ R. Then a1 = 2ξηr, a2 = ξ2r and l = r(ξx+ ηy)2.

First we consider the case ξ 6= 0. Then from equality (2) we receive

L = −η
ξ
l = −η

ξ
r(ξx+ ηy)2

and we denote r := ρξ, ρ ∈ R. Then

l = ρξ(ξx+ ηy)2, L = −ρη(ξx+ ηy)2

and

Φ = (U, V ), U(x, y) = x−ρη(ξx+ηy)2, V (x, y) = y+ρξ(ξx+ηy)2. (4)

Note that for a fixed ξ, η 6= 0 and for a linear mappings with matrix

A =

(
1/ξ 0
0 1/η

)
, B =

(
ξ 0
0 η

)
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the polynomial mapping

A ◦ f ◦ B = (x+
α2

ξ
(ξx+ ηy)2, y − α2

η
(ξx+ ηy)2),

(f is from the formulation of Theorem 1). We put here α2 := −ρξη,
then the parameter α2 is any fixed number since ρ is arbitrary. We have
A ◦ f ◦ B = (U, V ) = Φ. Thus polynomial mapping (4) coinsides with (1)
up to linear transformations with nondegenerate matrices.

In case ξ = 0 we have, from (2), l ≡ 0 and equality I = 0 implies
Lx = 0. Thus L = A0y

2 and Φ(x, y) = (x + A0y
2, y). Let A and B are

linear homogeneous mappings with matrixes

A =

(
1 0
−1 1

)
, and B =

(
1 0
1 1

)
,

respectively. Then

f(x, y) = A ◦ Φ(x, y) ◦ B = (x+A0(x+ y)2, y −A0(x+ y)2).

Sufficiency in Theorem 1 is checked by direct calculations. The proof
is complete. �
Proof of Theorem 2. We will take the Jacobi matrix DF (0, 0) as matrix
A. Then for the polynomial mapping Φ(x, y) := DF−1(0, 0) ◦ F (x, y) =
= (U(x, y), V (x, y)) we have

U(x, y) = x+ L(x, y) +W (x, y), V (x, y) = y + l(x, y) + w(x, y),

where L and l are homogeneous polynomials of degree 2, W and w are
those of degree 3, JΦ(x, y) ≡ 1. Therefore

JΦ(x, y) ≡ 1 = 1 + (Lx + ly) + (Lxly − lxLy +Wx + wy)+

+[Lxwy − lxWy +Wxly − wxLy] +

∣∣∣∣Wx Wy

wx wy

∣∣∣∣ . (5)

The last term of (5) (and only it) is a homogeneous polynomial from P4,
so it equals 0. Thus lines of the determinant in (5) are proportional, i. e.
if we denote

W := Ax3 +Bx2y + Cxy2 +Dy3, w := ax3 + bx2y + cxy2 + dy3,



Jacobian conjecture, two-dimensional case 73

then

Wx

wx
=
Wy

wy
⇐⇒ 3Ax2 + 2Bxy + Cy2

3ax2 + 2bxy + cy2
=
Bx2 + 2Cxy + 3Dy2

bx2 + 2cxy + 3dy2

=⇒ A

a
=
B

b
,

C

c
=
D

d
. (6)

Here and in the sequel we can assume that the coefficients a, b, c, d are
nonzero, because otherwise consider the polynomial mapping Φ∗ := A−1

ε ◦
◦Φ◦Aε with an appropriate homogeneous linear mapping Aε with matrix

Aε =

(
1 + ε ε
−ε 1− ε

)
instead of Φ, here ε is the independent variable (we do not consider the
case w ≡ 0 ≡W that is reduced to Theorem 1). Indeed,

Φ∗ = (x+ L∗ +W ∗, y + l∗ + w∗), (W ∗, w∗) = A−1
ε ◦ (W,w) ◦ Aε,

where L∗ and l∗ are homogeneous polynomials of the second degree and
W ∗ and w∗ are that of the third,

w∗ := a(ε)x3 + b(ε)x2y + c(ε)xy2 + d(ε)y3.

Also

a(ε) = a(1 + ε)4 − b(1 + ε)3ε+ c(1 + ε)2ε2 − d(1 + ε)ε3+

+A(1 + ε)3ε−B(1 + ε)2ε2 + C(1 + ε)ε3 −Dε4,

and equality (6) easily implies a(ε) 6≡ 0; the same is true for other coeffi-
cients: b(ε), c(ε), d(ε) 6≡ 0.

So (6) implies

3Ax2 + 2Bxy + Cy2

3ax2 + 2bxy + cy2
− A

a
=
Bx2 + 2Cxy + 3Dy2

bx2 + 2cxy + 3dy2
− B

b
.

Divide this equality on y and pass to limit as y → 0 to obtain

a(C − cB
b

) = b(B − bA
a

) = 0 =⇒ C

c
=
B

b
.
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Therefore, W = λw for some constant λ. Note that this means that ori-
ginal forms W and w are proportional with transform A−1

ε ◦ (W,w) ◦ Aε
not taken into account.

Also in (5) the third degree is only in the last square bracket, so it
equals 0 and

Lxwy − λlxwy + λwxly − wxLy ≡ 0,

i.e. for all (x, y)
(L− λl)xwy = (L− λl)ywx. (7)

Note that the case wx ≡ 0 ≡ wy suits conditions of Theorem 1, so we
need not to consider it. We consider three cases.

1) (L− λl)x 6≡ 0 6≡ (L− λl)y.
Let us show that such numbers a, b (|a|+ |b| 6= 0) exist, that

wx = (L− λl)x(ax+ by), wy = (L− λl)y(ax+ by). (8)

First assume that
(L− λl)x
(L− λl)y

6≡ const.

Denote linear functions I := (L − λl)x, II := (L − λl)y. If t := y/x, wx
can be decomposed in the field of complex numbers to product of linear
factors wx = ξx2(t − t1)(t − t2), ξ = const; analogously for wy. Then in
(7)

(L− λl)xwy = (L− λl)ywx = I · II · III,

where III is also some linear factor. Thus

wx = I · III = (L− λl)x · III, wy = II · III = (L− λl)y · III,

i.e. we obtain (8).
Now let

(L− λl)x
(L− λl)y

≡ c = const( 6= 0).

Decompose wy to linear factors, as in the previous paragraph:

wy = (αx+ βy)(γx+ δy).

Assume that these factors are not mutually proportional, the case α = γ,
β = δ is considered in the similar way. From (7) we have wx = cwy. So

wxy = cwyy = c[β(γx+δy)+δ(αx+βy)] = wyx = α(γx+δy)+γ(αx+βy)
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=⇒ (γx+ δy)(cβ − α) = (αx+ βy)(γ − cδ).

Thus cβ − α = 0 = γ − cδ, i.e. cβ = α, γ = cδ. This implies

wy = βδ(cx+ y)2, wx = cβδ(cx+ y)2.

Denote (L−λl)y = qx+py; then (L−λl)x = c(qx+py) and (L−λl)xy =
= q = pc. Therefore

(L− λl)x = pc(cx+ y), (L− λl)y = p(cx+ y).

Assumption of case 1) implies p 6= 0. Now we have

wy = (L− λl)y(cx+ y)
βδ

p
, wx = cwy = (L− λl)x(cx+ y)

βδ

p
.

This completes the proof of (8).
Further we consider b 6= 0, the symmetric case a 6= 0 is similar. From

(8) we have

w =

∫
wxdx+C1(y) = (ax+ by)(L− λl)− a

∫
(L− λl)dx+C1(y). (9)

Denote (L−λl) = Ax2+Bxy+Cy2. From this, (9) and the second equality
in (8) we have

b(Ax2 +Bxy + Cy2) = a

(
B

2
x2 + 2Cyx

)
− C ′1(y)

=⇒ C ′1(y) = −bCy2, B =
2aC

b
, A =

a2C

b2

and

L−λl = C
(a
b
x+ y

)2

, (L−λl)y =
2C (ax+ by)

b
, (L−λl)x =

2aC (ax+ by)

b2
.

From here and (7)
(L− λl)x
(L− λl)y

=
a

b
=
wx
wy

follows. Besides, (8) implies

wx =
2aC

b2
(ax+ by)2, wy =

2C

b
(ax+ by)2, (10)
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and

Lx = λlx +
2aC

b2
(ax+ by), Ly = λly +

2C

b
(ax+ by). (11)

Both parentheses in (5) equal zero due to identity (5).

Lx + ly = 0, (12)

Lxly − lxLy + λwx + wy = 0. (13)

Write down (12) using (11) in the form

λlx +
2aC

b2
(ax+ by) + ly = 0. (14)

Using (13), (11) and (10) get

aly − blx + (λa+ b)(ax+ by) = 0. (15)

From this, taking (14) into account, obtain

(λa+ b)lx =

(
(λa+ b)− 2a2C

b2

)
(ax+ by). (16)

If (λa + b) = 0, then from (16) it follows that aC = 0. Therefore, using
the first equality from (11) we obtain (L− λl)x = 0. But this contradicts
the assumption of case 1).

If (λa+ b) 6= 0, then

lx =

[
1− 2a2C

b2(λa+ b)

]
(ax+ by).

If a = 0 then lx = by and from (11) implies

Lx = λby =⇒ (L− λl)x = 0;

this contradicts the assumption of case 1). Therefore a 6= 0. Then from
(15):

aly = −
[

2a2C

b(λa+ b)
+ λa

]
(ax+ by)

and since a 6= 0 then

lyx = −
[

2a2C

b(λa+ b)
+ λa

]
= lxy = b

[
1− 2a2C

b2(λa+ b)

]
.
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Consequently b = −λa, this contradicts the assumption (λa+ b) 6= 0.
Thus, case 1) is not realised.
2) Let (L − λl)x = (L − λl)y ≡ 0. Then L = λl and from (13) we see

that
λwx + wy = 0. (17)

Repeating the proof of Theorem 1 using equalities L = λl and (12) instead
of (2) and (3), we obtain, similarly to conclusion of the proof of Theorem
1, that

Φ(x, y) = (x+ α2(x+ y)2 +W (x, y), y − α2(x+ y)2 + w(x, y))

up to linear mappings A and B from formulation of Theorem 2. In parti-
cular, this implies that constant λ = −1 in equality L = λl. Then equality

(17) becomes wy = wx. Denote w(x, y) =

3∑
k=0

βkx
ky3−k and get

wx =

3∑
k=0

kβkx
k−1y3−k = wy =

3∑
k=0

(3− k)βkx
ky2−k.

Compare coefficients of the same powers in this equality to obtain the

recurrent equation βj+1 = βj
3− j
1 + j

, j = 0, 1, 2, i. e. β1 = 3β0 = β2,

β3 = β0. So,

w = β0(x+ y)3, W = λw = −w = −β0(x+ y)3.

This finishes the proof of case 2) of Theorem 2.
3) Let (L− λl)x = 0, (L− λl)y 6≡ 0 (the symmetric case is considered

similarly).
Then (7) implies wx ≡ 0 (but wy 6≡ 0, otherwise we will come to

situation from formulation of Theorem 1. These assumptions mean that
(L− λl) = ry2, w = sy3, r 6= 0 6= s are constants. So

Ly = λly + 2ry, Lx = λlx. (18)

Then from (12) we have
λlx + ly = 0, (19)

from (13) and (18) wy = 2rylx, therefore lx =
3s

2r
y. Now (19) implies

ly = −λlx = −3sλ

2r
y =⇒ l =

∫
lxdx+ C(y) =

3s

2r
yx+ C(y),
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ly =
3s

2r
x+ C ′(y) = −3sλ

2r
y,

i. e., C ′(y) = −3s

2r
(λy+x). The left-hand side of the last equality depends

only on y, therefore this equality can be true only for s = 0; thus w ≡ 0
and W = λw ≡ 0. And we have the case that is reduced to Theorem 1.

Sufficiency in Theorem 2 is checked by direct calculations. Theorem 2
is proved. �
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