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Abstract. We consider a sequence of functions which are star-
like in the unit disk and their logarithmic derivatives are mero-
morphic with a finite number of simple poles in any boundary
domain. These poles are either boundary deterministic or ran-
dom with given characteristics. The aim of the article is the
limit process and properties of the limit functions. We distin-
guish conditions for residues and distribution of poles. Under
certain conditions, the sequence converges to the identity func-
tion. Another conditions allow us to obtain estimates for the
limit function and its logarithmic derivative.
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1. Introduction. During last decades stochastic ideas and methods
became quite popular in geometric function theory. Among the most
known events we mention that in 2000 Schramm introduced in [1] a family
of random curves, which he called stochastic Loewner evolution, or SLE,
see also [2] for further development.

In this article we present an approach to a (partly) stochastic problem
posed by Vasil’ev for functions which are holomorphic in the plane, except
for at most a countable set of singular points, and are starlike on the disk.

A function f is said to be starlike if it maps the unit disk D = {z ∈
∈ C : |z| < 1} onto domain f(D) which is starlike with respect to the
origin. A holomorphic function f on D normalized by f(0) = 0 and
f ′(0) = 1 is starlike if and only if the real part of zf ′(z)/f(z) is positive
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in D (see, e.g., [3, Theorem 2.10]). A dense subclass {fn}n≥1 of the set
S∗ of all starlike functions f is defined by

zf ′n(z)

fn(z)
=

n∑
k=1

µkn
ak + z

ak − z
, z ∈ D, (1)

where |ak| = 1, 0 < µkn < 1, k = 1, . . . , n,
∑n
k=1 µkn = 1, n ∈ N.

In recent papers Alexander Vasil’ev developed stochastic topics in com-
plex analysis, see, e.g., [4–6]. In early 2014 Vasil’ev proposed the problem
of studying a limit process fn → f as n→∞ when every starlike function
fn is given by (1) with |ak| ≥ 1, k = 1, . . . , n, and an →∞ as n→∞.

Surely, we have to decide which conditions are required for a sequence
of singular points {an}n≥1. It seems interesting to consider the Poisson
configuration of random points {an}, see, e.g., [7, § 3.1].

Definition 1. The spatial Poisson process with uniform intensity β >
> 0 is a point process in R2 that is a random distribution of points such
that

[PP1] for every bounded closed set B, the count N(B) which is the
number of points of the process contained in B has a Poisson distribution
with the mean βs(B), where s(B) denotes the area of B;

[PP2] if B1, . . . , Bm are disjoint regions, then N(B1), . . . , N(Bm) are
independent.

The Poisson process assumption relates only to the poles {ak}1≤k≤n in
(1). However, there are families of coefficients {µkn}1≤k≤n, n ≥ 1, which
are to be defined as well. We will prefer a deterministic way of choosing
these weights. Let us describe two scenarios of weights behavior.

Given a sequence of numbers ν1, . . . , νn, . . . , 0 < νn ≤ 1 for all n ≥ 1,
denote

Sn =

n∑
k=1

νk, µkn =
νk
Sn
, 1 ≤ k ≤ n, n ≥ 1. (2)

For every n ≥ 1, we obtain a set of n positive numbers µ1n, . . . , µnn,∑n
k=1 µkn = 1. There are only two possibilities:

(i) Sn →∞ as n→∞;

(ii) limn→∞ Sn = S <∞.

In scenario (i), all weights µkn, 1 ≤ k ≤ n, n ≥ 1, tend to 0 uniformly
as n → ∞. This makes it sensible to call ν1, . . . , νn, . . . in (i) a uniform
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type sequence. For example (ν1, . . . , νn, . . . ) = (1, . . . , 1, . . . ) is a uniform
type sequence. Indeed, in this case, Sn = n for all n ≥ 1, and

µkn =
1

n
, 1 ≤ k ≤ n, n ≥ 1.

On the other hand, in scenario (ii) no one of weights µkn, n ≥ 1, tends
to 0 for a fixed k, 1 ≤ k ≤ n, and n → ∞, but µkn tend to 0 as n → ∞
and k → ∞, 1 ≤ k ≤ n. In this case, we call ν1, . . . , νn, . . . in (ii) a
Poisson type sequence. For example,

(ν1, . . . , νn, . . . ) =

(
1, λ, . . . ,

λn−1

(n− 1)!
, . . .

)
, λ > 0,

is a Poisson type sequence. Indeed, we see that lim
n→∞

Sn = eλ and there-

fore, for any fixed k,

lim
n→∞

(µ1n, . . . , µkn) =

(
e−λ, e−λλ, . . . , e−λ

λk−1

(k − 1)!

)
.

This is a sequence of values of a probability mass function of a discrete
random variable having a Poisson distribution.

The article is organized as follows.
In Section 2 we deal with a deterministic point regulation, i.e., the

points {an} are determined and the weights {µkn} are generated by a se-
quence either of the uniform type or the Poisson type. We prove Theorem
1, which states that fn → id as n → ∞ in the first case, and Theorem 2
with estimates for the limit functions in the second case.

In Section 3 we replace axioms [PP1]–[PP2] by other ones which
make the problem partly stochastic. Under the conditions of Theorem 3,
functions fn converge almost surely to the identity.

2. Deterministic point regulation. Let fn, n ≥ 1, be given by (1)
and denote

pn(z) :=
zf ′n(z)

fn(z)
= 1 +

∞∑
j=1

pjnz
j , z ∈ D. (3)

We suppose that ν1, . . . , νn, . . . generating weights {µkn} is a uniform type
sequence and show that fn → id if an →∞ as n→∞.

Theorem 1. Given {an}n≥1 with |an| ≥ 1 and an → ∞ as n → ∞, let
fn, n ≥ 1, be represented by (3) where the weights {µkn}1≤k≤n<∞ are
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generated according to (2) by a uniform type sequence ν1, . . . , νn, . . . .
Then fn converge to the identity function as n→∞ uniformly on compact
subsets of D.

Proof. Formulas (1) and (3) imply that coefficients pjn in (3) are evalua-
ted as

pjn = 2

n∑
k=1

µkn

ajk
, j ≥ 1.

For any ε > 0, there exists n1 ∈ N such that

|an| > 1 +
1

ε
, n > n1,

and there exists n2 > n1 for which

0 < µkn <
ε

n1
, n > n2.

Hence, for n > n2 and any j ≥ 1, we have

|pjn| ≤ 2

n1∑
k=1

µkn

|ajk|
+ 2

n∑
k=n1+1

µkn

|ajk|
≤

≤ 2

n1∑
k=1

µkn + 2

n∑
k=n1+1

µkn
ε

1 + ε
< 2ε+ 2ε = 4ε.

This means that, for any j ≥ 1, pjn tend to 0 uniformly with respect to
j as n → ∞, and thus limn→∞ pn(z) = 1. So fn → id as n → ∞ which
completes the proof of Theorem 1. �

Remark 1. If |an| = 1 + βn, β > 0, n ≥ 1, then, for fn and pn in (3)
under conditions of Theorem 1, the following relations

|pn(z)− 1| = |z|O
(

1√
Sn

)
,

∣∣∣∣log
fn(z)

z

∣∣∣∣ = O

(
1√
Sn

)
, z ∈ D, n→∞,

hold.

Indeed,

|pn(z)− 1| =

∣∣∣∣∣
n∑
k=1

2µknz

ak − 1

∣∣∣∣∣ ≤
n∑
k=1

2µkn|z|
βk

=

n∑
k=1

2νk|z|
βk

[
n∑
k=1

νk

]−1
≤
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≤ 2|z|

√√√√ n∑
k=1

ν2k

√√√√ n∑
k=1

1

(βk)2

[
n∑
k=1

νk

]−1
≤

≤ 2|z|

√√√√ n∑
k=1

1

(βk)2

√√√√[ n∑
k=1

νk

]−1
≤ C|z|√∑n

k=1 νk
=
C|z|√
Sn

with a certain constant C > 0.
This implies that∣∣∣∣log

fn(z)

z

∣∣∣∣ =

∣∣∣∣∣∣
z∫

0

pn(ζ)− 1

ζ
dζ

∣∣∣∣∣∣ ≤
z∫

0

|pn(ζ)− 1|
|ζ|

|dζ| ≤

≤
|z|∫
0

C√
Sn
d|ζ| = C|z|√

Sn
.

The situation is essentially different if ν1, . . . , νn, . . . generating weights
{µkn} is a Poisson type sequence.

Theorem 2. Given {an}n≥1 with |an| ≥ 1 and an → ∞ as n → ∞, let
fn, n ≥ 1, be represented by (3) where the weights {µkn}1≤k≤n<∞ are
generated according to (2) by a Poisson type sequence ν1, . . . , νn, . . . .
Then p = lim

n→∞
pn and f = lim

n→∞
fn satisfy the following inequalities

2

S

∞∑
k=1

νk
|z|

|ak|+ |z|
≤ |p(z)− 1| ≤ 2

S

∞∑
k=1

νk
|z|

|ak| − |z|
, z ∈ D, (4)

|f(z)| ≤ |z|
∞∏
k=1

(
1− |z|
|ak|

)−2νk/S
, z ∈ D. (5)

Proof. Formulas (1)–(3) imply that

p(z) = lim
n→∞

pn(z) = 1 + lim
n→∞

∞∑
j=1

pjnz
j = 1 + lim

n→∞

∞∑
j=1

n∑
k=1

2µkn

ajk
zj =

= 1 + 2 lim
n→∞

n∑
k=1

µkn

∞∑
j=1

(
z

ak

)j
= 1 + 2 lim

n→∞

n∑
k=1

νk
Sn

z

ak − z
=



Extension of starlike functions to a finitely punctured plane 63

= 1 +
2

S

∞∑
k=1

νk
z

ak − z
.

From here we immediately deduce (4).
From the formula

log
f(z)

z
=

z∫
0

p(ζ)− 1

ζ
dζ

we find that

log

∣∣∣∣f(z)

z

∣∣∣∣ ≤ ∣∣∣∣log
f(z)

z

∣∣∣∣ ≤
z∫

0

2

S

∞∑
k=1

νk
|dζ|

|ak| − |ζ|
=

=
2

S

∞∑
k=1

νk

|z|∫
0

d|ζ|
|ak| − |ζ|

=
2

S

∞∑
k=1

νk log
|ak|

|ak| − |z|
=

= log

∞∏
k=1

(
1− |z|
|ak|

)−2νk/S
which implies estimate (5) and completes the proof of Theorem 2. �

One can write down exact representations and estimates for the se-
quence ν1, . . . , νn, . . . with the Poisson distribution.

3. Random point regulation. In this section, we deal with a
random model of point configurations based on the Poisson process of
Definition 1. However, we will transform this model in accordance with
the specific problem for starlike functions having random singular points
in the plane.

First, we have seen in the previous sections that estimates of Theorems
1 and 2 are independent of arg an. Therefore, it is natural to apply the
one-dimensional Poisson process on the line, i.e., we assume that an ≥ 1
for n ≥ 1.

Secondly, we focus on a homogeneous Poisson point process which is
also called a stationary Poisson process, see, e.g., [8, pp. 19–25], as well
as uniform Poisson point process, see, e.g., [9, p.13]. If the homogeneous
point process is defined on the real line in different mathematical mo-
dels, then it has the characteristic that the positions will be uniformly
distributed.
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Third, a compound Poisson point process is formed by adding random
values or weights to each point of the Poisson point process, so the process
is constructed from a marked Poisson point process, where the marks
form a collection of independent and identically distributed non-negative
random values, see, e.g., [10, pp. 19–21; 11, pp. 291–293]. In our case,
the weights {µkn} serve as deterministic marks either of the uniform type
or the Poisson type.

Finally, we replace the axiom [PP1] in Definition 1 by a deterministic
number of points in a given interval.

So we make the following assumptions.
[UP1] For every R > 1, there is a number n(R) of points {ak}1≤k≤n(R)

which arrive in the segment [1, R].
[UP2] Random points {ak}1≤k≤n(R) are uniformly distributed in [1, R],

knowing the number n(R).
[UP3] Random points {ak} are independent.

Theorem 3. Suppose that a random point process satisfies axioms [UP1]
– [UP3], and let functions fn(R) be represented by (1) and (3) with ar-

bitrary positive numbers {µkn(R)}1≤k≤n(R),
n(R)∑
k=1

µkn(R) = 1. Then fn(R)

converge almost surely to the identity function f(z) = z as R→∞.

Proof. Formulas (1) and (3) imply that

pn(R)(z) = 1 +

∞∑
j=1

pjn(R)z
j , z ∈ D,

where

pjn(R) =

n(R)∑
k=1

2µkn(R)

ajk
.

As far as random points {ak}1≤k≤n(R) are independent, a joint proba-
bility density function ϕ(a1, . . . , an(R)) is evaluated as follows

ϕ(a1, . . . , an(R)) =

n(R)∏
k=1

ϕ(ak),

where ϕ(ak) is a probability density function for the random point ak.
Since ak is uniformly distributed in [1, R], its probability density function
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has the form

ϕ(ak) =
1

R− 1
for ak ∈ [1, R], and ϕ(ak) = 0 for ak /∈ [1, R],

k = 1, . . . , n(R).
Evaluate the mathematical expectation E(pjn(R)) of pjn(R), j ≥ 1,

E(pjn(R)) =

R∫
1

. . .

R∫
1

n(R)∑
k=1

2µkn(R)

ajk
ϕ(a1, . . . , an(R))da1 . . . dan(R) =

=

n(R)∑
k=1

2µkn(R)

R∫
1

ϕ(ak)

ajk
dak =

n(R)∑
k=1

2µkn(R)

R− 1

R∫
1

dak

ajk
=

2

R− 1

R∫
1

dx

xj
.

Hence,

E(p1n(R)) =
2 logR

R− 1

and

E(pjn(R)) =
2

R− 1

Rj−1 − 1

(j − 1)Rj−1
, j > 1.

So, for all j ≥ 1,
lim
R→∞

E(pjn(R)) = 0,

and the convergence is uniform with respect to j ≥ 1. This implies that
pn(R) converge almost surely to p(z) ≡ 1 as R → ∞, and hence fn(R)

converge almost surely to f(z) = z, z ∈ D, as R → ∞, which completes
the proof of Theorem 3. �

Note that axiom [UP1], as well as Theorem 3 and its proof, do not
require that n(R)→∞ when R→∞.

Evidently, requirement [UP2] about the uniform distribution of points
{ak} in [1, R] can be replaced by other suitable continuous distributions,
e.g., normal, exponential, geometric stable and so on. Discrete distribu-
tions are possible as well. Certainly, the conclusion of Theorem 3 can be
changed under different assumptions.

For example, let ϕ(ak) be a probability density function with parame-
ter λ > 0 for the exponential distribution located on [1, R], R > 1,

ϕ(x) =
λe−λ(x−1)

1− e−λ(R−1)
, x ∈ [1, R],
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and ϕ(x) = 0 outside [1, R].

Following the proof of Theorem 3 in this case, we come to the formula

E(pjn(R)) = 2

R∫
1

ϕ(x)

xj
dx =

2λ

1− e−λ(R−1)

R∫
1

e−λ(x−1)

xj
dx, j ≥ 1.

Send R to infinity and obtain

lim
R→∞

E(pjn(R)) =
2

λ

∞∫
1

e−λ(x−1)

xj
dx > 0, j ≥ 1.

In such a case, if {ak}1≤k≤n(R) has a limit configuration {an}∞n=1 as
R → ∞, then the almost surely limit f is a starlike function in D, and
p(z) = zf ′(z)/f(z) is meromorphic with simple poles at {an}∞n=1.
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