
46 Probl. Anal. Issues Anal. Vol. 6 (24), No. 1, 2017, pp. 46–57

DOI: 10.15393/j3.art.2017.3770

UDC 517.51

E. Neuman

WILKER AND HUYGENS-TYPE INEQUALITIES
INVOLVING GUDERMANNIAN AND THE INVERSE

GUDERMANNIAN FUNCTIONS

Abstract. Five Wilker Huygens-type inequalities involving Gu-
dermannian and the inverse Gudermannian functions are ob-
tained. The Schwab-Borchardt mean plays a crucial role in the
proofs. Also, an analytical inequality for the sums of powers,
established earlier by this author, is an indispensable tool in the
the proofs of the main results of this paper.
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1. Introduction. In recent years a significant progress has been
made in the area of inequalities involving circular and hyperbolic func-
tions. In particular, the following results

2 <

(
sinx

x

)2

+
tanx

x
(1)

and

3 < 2
sinx

x
+

tanx

x
(2)

(0 < |x| < π
2 ) have attracted attention of several researchers. Inequalities

(1) and (2) have been obtained by J. B. Wilker [23] and C. Huygens [5],
respectively. Several proofs of these results can be found in mathematical
literature (see, e.g., [4, 8, 9, 17, 20, 22, 24, 25, 31, 32, 33, 30, 34, 35, 36]
and the references therein).
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Counterparts of (1) and (2) for the hyperbolic functions have also been
obtained. They read as follows
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sinh x
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and

3 < 2
sinh x

x
+

tanh x

x
(4)

(x 6= 0). For the proofs of these results the interested reader is referred to
[35] and [17], respectively.

Generalizations of inequalities (1) – (4) are known. See [8, 9, 26, 27, 28,
29] and the references therein. Wilker and Huygens- type inequalities have
also been established for the lemniscate functions, generalized Jacobian
elliptic, generalized trigonometric and generalized hyperbolic functions
and also for the theta functions. The interested reader is referred to
[10, 11, 12, 13, 14, 18].

The goal of this paper is to obtain some inequalities which bear re-
semblance of inequalities (1) – (4) for the Gudermannian and the inverse
Gudermannian functions. Definitions of these functions are given in Sec-
tion 2. Also, some preliminary results are included in this section. The
Wilker-Huygens inequalities involving functions under discussion are ob-
tained in Section 4.

2. Definitions and preliminaries. We begin this section with de-
finitions of the Gudermann function and its inverse function. Throughout
the sequel they will be denoted by gd and gd−1, respectively. Following
[19, 4.23 (viii)]

gd(x) =

x∫
0

1

cosh t
dt, x ∈ R (5)

and

gd−1(x) =

x∫
0

1

cos t
dt, |x| < π/2. (6)

It is known (see, e.g., [19, 4.23 (viii)]) that

gd(x) = sin−1(tanh x) = tan−1(sinh x) = 2 tan−1(tanh
1

2
x) (7)
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and
gd−1(x) = sinh −1(tanx) = tanh −1(sinx). (8)

In the proofs presented in this section we will utilize the following four
theorems. The first result reads as follows [18, 21]:

Theorem 1. Let f be a positive and strictly monotonic function defined
on the subset I of the positive semiaxis. Assume that f−1 is strictly
increasing and also that f(x) ≥ x (f(x) ≤ x) for all x ∈ I. If the function
g(x) = f(x)/x is increasing (decreasing) on I, then

f(x)

x
≥ x

f−1(x)
. (9)

Inequality(9) is reversed if the function g(x) is decreasing (increasing) on
I.

We shall employ the following theorem (see [1]):

Theorem 2. Let the functions f and g be continuous on [c, d], diffe-

rentiable on (c, d) and such that g′(t) 6= 0 on (c, d). If f ′(t)
g′(t) is (strictly)

increasing (decreasing) on (c, d), then the functions f(t)−f(d)
g(t)−g(d) and f(t)−f(c)

g(t)−g(c)
are also (strictly) increasing (decreasing) on (c, d).

Theorem 3. Let u, v, α, β, γ and δ be positive numbers which satisfy
the following conditions
(i) min(u, v) < 1 < max(u, v),
(ii) 1 < uγvδ.
Then the inequality

α+ β < αup + βvq (10)

is satisfied provided u < 1 < v and

q > 0 and pαδ ≤ qβγ. (11)

If in addition the positive numbers u, v, γ and δ are such that

(iii) γ + δ < γ
1

u
+ δ

1

v
,

then the inequality (10) is satisfied if

p ≤ q ≤ −1 and βγ ≤ αδ (12)

(see [9], Theorem 3.1).
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Conditions of validity of (10) when v < 1 < u are also obtained in [9].
The counterpart of (11) is

p > 0 and qβγ ≤ pαδ (13)

while the conditions (12) are replaced now by

q ≤ p ≤ −1 and αδ ≤ βγ. (14)

Also, we shall employ the following result [9]:

Theorem 4. Let u, v, γ and δ be positive numbers which satisfy condi-
tions (i) – (iii) of Theorem 3. Then the inequality

2 <

(
1

u

)γp
+

(
1

v

)δp
< uγp + vδp (15)

holds true provided γ ≥ 1, δ ≥ 1, and p ≥ 1. Second inequality in (15) is
valid if p > 0.

3. Schwab-Borchardt mean. In what follows the letters a and b
will always stand for positive and unequal numbers.

The important mean utilized in this paper is called the Schwab-Bor-
chardt mean and is defined as follows:

SB(a, b) ≡ SB =



√
b2 − a2

cos−1(a/b)
if a < b,

√
a2 − b2

cosh −1(a/b)
if b < a

(16)

(see, e.g., [2], [3]). It is well known that the mean SB is strict, nonsym-
metric and homogeneous of degree one in its variables.

For the reader’s convenience we will record now some inequalities sa-
tisfied by the Schwab-Borchardt mean. They are obtained in [15, 16]. See
also [13]. They read as follows

(ab2)1/3 < (bSB(b, a))1/2 < SB(a, b), (17)

3(b+ SB(b, a)) < 2(a+ 2b), (18)

and
SB(a, b) < SB(b, a) (19)
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provided a > b. If the last inequality is satisfied then more inequalities
involving mean SB is known. We record below one of them

2SB(a, b) < b+ SB(b, a) (20)

(see, e.g., [7]).
4. Main Results. Our first result reads as follows:

Theorem 5. Let α, β > 0. Then the inequality

α+ β < α

(
gd(x)

x

)p
+ β

(
gd−1(x)

x

)q
(0 < |x| < π/2) (21)

holds true provided

q > 0 and pα ≤ qβ. (22)

Proof. We shall establish the assertion using Theorem 3 with

u =
gd(x)

x
and v =

gd−1(x)

x
. (23)

Firstly we shall prove that u and v satisfy the separation condition

u < 1 < v. (24)

For the proof of the left inequality in (24) we introduce function h(x) =
= x− gd(x). Differentiation, with use of (5), yields

h′(x) = 1− 1

coshx
.

Clearly h′(x) > 0 for all 0 < |x| < π/2. This in conjunction with h(0) = 0
implies that h(x)/x > 0 or what is the same that u < 1. The second
inequality in (24) can be established in a similar way using the function
h(x) = gd−1(x)− x. We omit further details. We shall prove now that u
and v satisfy condition (ii) of Theorem 3 with γ = δ = 1. To this aim we
will utilize Theorem A with f(x) = gd(x). Clearly function f−1 is strictly
increasing on its domain. Also, the inequality u < 1 implies f(x) < x. In
order to apply inequality (9) we have to prove that the function

f(x)

x
=
gd(x)

x
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is decreasing. Using Theorem 2 we get easily

gd′(x)

x′
=

1

cosh (x)
.

This implies that f(x)/x is a decreasing function. With the notation
introduced above we see that the inequality (9) can be written as

1 < uv.

This shows that the condition (ii) of Theorem 3 is satisfied provided γ =
= δ = 1. Conditions (22) of validity Theorem 5 follow immediately from
(11). The proof is complete. �

We shall now prove the next result.

Theorem 6. The inequality

α+ β < α

(
sinx

gd−1(x)

)p
+ β

(
tanx

gd−1(x)

)q
(|x| < π/2) (25)

is valid if either the numbers p, q and the positive numbers α and β satisfy
the conditions

q > 0 and 2pα ≤ qβ (26)

or if
p ≤ q ≤ −1 and β ≤ 2α. (27)

Proof. Let the numbers a and b be such that a < b. This yields

a < SB(b, a) < b.

Letting

u =
SB(b, a)

b
and v =

SB(b, a)

a
. (28)

This yields
u < 1 < v.

With u and v as defined in (28) we see that the inequality (17) implies

1 < uv2.

Thus u and v satisfy condition (ii) of Theorem 3 with

γ = 1 and δ = 2.
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Finally with u and v as defined above we see that the condition (18) can
be written as follows

3 <
1

u
+ 2

1

v
.

To complete the proof we let a = cosx and b = 1. Utilizing the formula

SB(1, cosx) =
sinx

gd−1(x)

(see [6]) and applying Theorem 3 we obtain the asserted result. This
completes the proof. �

Our next result reads as follows:

Theorem 7. The inequality

α+ β < α

(
sinh x

gd(x)

)p
+ β

(
tanh x

gd(x)

)q
(x ∈ R) (29)

is valid if either the numbers p, q and the positive numbers α and β satisfy
the conditions

p > 0 and qβ ≤ 2pα (30)

or if
q ≤ p ≤ −1 and 2α ≤ β. (31)

Proof. Assume that the positive numbers a and b are such that b < a.
This implies

b < SB(b, a) < a.

With u and v as defined in (28) we see that now

v < 1 < u.

To verify that u and v satisfy conditions (ii) and (iii), with

γ = 1 and δ = 2,

of Theorem 3 we proceed exactly in the same way as in the proof of
Theorem 6. To complete the proof we let a = cosh x (x ∈ R) and b = 1.
Making use of the formula

SB(1, cosh x) =
sinh x

gd(x)
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(see [6]) we obtain easily the assertion using inequalities (13) and (14) of
Theorem 6. �

We shall now prove the following result.

Theorem 8. The inequality

α+ β < α

(
x

gd−1(x)

)p
+ β

(
tanx

gd−1(x)

)q
(|x| < π/2) (32)

is valid if either the numbers p, q and the positive numbers α and β satisfy
the conditions

q > 0 and pα ≤ qβ (33)

or if
p ≤ q ≤ −1 and β ≤ α. (34)

Proof. Let a > b > 0. Then (19) yields

b < SB(a, b) < SB(b, a).

We define now

u =
SB(a, b)

SB(b, a)
and v =

SB(a, b)

b
.

Clearly
u < 1 < v.

Using the second inequality in (17) we get easily

1 < uv.

Thus the condition (ii) of Theorem 3 is satisfied with

γ = δ = 1.

Inequality (20) together with the definitions of u and v yield

2 <
1

u
+

1

v
.

We now let a = 1/ cosx (|x| < π/2) and b = 1. Taking into account that

SB

(
1

cosx
, 1

)
=

tanx

gd−1(x)
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(see [6]) we obtain the asserted result employing Theorem C again. �

We close this section with the following:

Theorem 9. The two-sided inequality (15) holds true if γ = δ = 1 and
if either (

u, v
)

=

(
gd(x)

x
,
gd−1(x)

x

)
or if (

u, v
)

=

(
x

gd−1(x)
,

tanx

gd−1(x)

)
.

Also, the two-sided inequality (15) holds true if γ = 1, δ = 2 and if either

(
u, v
)

=

(
sinx

gd−1(x)
,

tanx

gd−1(x)

)
or if (

u, v
)

=

(
sinh x

gd(x)
,

tanh x

gd(x)

)
.

Proof. Apply Theorem 4 to Theorems 5, 8, 6, and 7, respectively. We
omit further details. �

The Wilker Huygens-type inequalities for the following pairs of func-
tions (

u, v
)

=

(
gd(x)

x
,

sinh x

x

)
and (

u, v
)

=

(
gd−1(x)

x
,

sinx

x

)
.

are established in [6] by means different than those used in this paper.
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ce, Haga.

[6] Neuman E. Inequalities for the Schwab-Borchardt mean and their applica-
tions. J. Math. Inequal., 2011, vol. 5, no. 4, pp. 601–609.

[7] Neuman E. Refinements and generalizations of certain inequalities invol-
ving trigonometric and hyperbolic functions. Adv. Inequal. Appl., 2012, vol.
1, no. 1, pp. 1–11.

[8] Neuman E. On Wilker and Huygens type inequalities. Math. Inequal. Appl.,
2012, vol. 15, no. 2, pp. 271–279.

[9] Neuman E. Inequalities for weighted sums of powers and their applications.
Math. Inequal. Appl., 2012, vol. 24, no. 4, pp. 995–1005.

[10] Neuman E. On lemniscate functions. Integral Transforms Spec. Funct.,
2013, vol. 15, no. 3, pp. 164–171.

[11] Neuman E. Wilker and Huygens type inequalities for Jacobian elliptic and
theta functions. Integral Transforms Spec. Funct., 2014, vol. 25, no. 3, pp.
240–248.

[12] Neuman E. Inequalities involving generalized Jacobian elliptic functions.
Integral Transforms Spec. Funct., 2014, vol. 25, no. 11, pp. 864–873.

[13] Neuman E. Wilker and Huygens type inequalities for the generalized
trigonometric and for the generalized hyperbolic functions. Appl. Math.
Comput., 2014, vol. 230, pp. 211–217.

[14] Neuman E. Wilker and Huygens type inequalities for some elementary func-
tions and Eulerian numbers. Adv. Studies Contemp. Math., 2015, vol. 25,
no. 2, pp. 189–194.

[15] Neuman E., Sándor J. On the Schwab-Borchardt mean. Math. Pannon.,
2003, vol. 14, no. 2, pp. 253–266.

[16] Neuman E., Sándor J. On the Schwab-Borchardt mean II. Math. Pannon.,
2006, vol. 17, no. 1, pp. 49–59.

[17] Neuman E., Sándor J. On some inequalities involving trigonometric and
hyperbolic functions with emphasis on the Cusa-Huygens, Wilker and Huy-
gens inequalities. Math. Inequal. Appl., 2010, vol. 13, no. 4, pp. 715–723.

[18] Neuman E., Sándor J. Inequalities involving Jacobian elliptic functions and
their inverses. Integral Transforms Spec. Functs., 2012, vol. 23, no. 10, pp.
719–722.



56 E. Neuman

[19] Olver F. W. J., Lozier D. W., Boisvert R. F., Clark C. W., editors. NIST
handbook of mathematical functions. Cambridge University Press, 2010.
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