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BOUNDARY VALUE PROBLEMS FOR INTEGRAL
EQUATIONS WITH OPERATOR MEASURES

Abstract. We consider integral equations with operator mea-
sures on a segment in the infinite-dimensional case. These mea-
sures are defined on Borel sets of the segment and take values in
the set of linear bounded operators acting in a separable Hilbert
space. We prove that these equations have unique solutions and
we construct a family of evolution operators. We apply the ob-
tained results to the study of linear relations generated by an in-
tegral equation and boundary conditions. In terms of boundary
values, we obtain necessary and sufficient conditions under which
these relations T possess the properties: T is a closed relation;
T is an invertible relation; the kernel of T is finite-dimensional;
the range of T is closed; T is a continuously invertible relation
and others. We give examples to illustrate the obtained results.
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1. Introduction. In this work we consider the following integral
equation on a segment [a, b]:

y(t) =

t∫
t0

(dp)y(ξ) + g(t), (1)

where
t∫
t0

stands for
∫

[t0t)

if t0 < t; for −
∫

[t0t)

if t0 > t; and for 0 if t0 = t. Here

p is an operator-valued measure defined on Borel sets ∆ ⊂ [a, b] and taking
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values in the set of linear bounded operators acting in a separable Hilbert
space H. We assume that p is a measure with bounded variation and we
extend the measure p to a segment [a, b0]⊃ [a, b0)⊃ [a, b], letting p(∆)=0
for each Borel sets ∆⊂ [a, b0]\[a, b] (we shall extend other measures in the

same way). In (1), y is an unknown function; g∈ C̃[a, b0]; C̃[a, b0] is a set
of functions ranging over H, bounded on [a, b0], continuous from the left
(in the strong sense) on (a, b0], and constant on (b, b0]; a 6 t0 6 b0. We
prove the following statement to obtain subsequent results of this paper.

Theorem 1. For any function g∈ C̃[a, b0] there exists a unique solution

of equation (1) belonging to the space C̃[t0 − δ, b0], where δ=δ(t0)>0 is
small enough if t0 > a and δ=0 if t0 =a.

We consider the following equation

ys(t) = c+

t∫
s

dp(τ)ys(τ), c ∈ H, s ∈ [a, b0], (2)

to construct a family of evolution operators, where c ∈ H, s ∈ [a, b0],
s − δ(s) 6 t 6 b0, δ(s) > 0 if s > a and δ(s) = 0 if s = a. Let U(t, s) be
the operator taking each element c ∈ H to the value of the solution ys(t)
of equation (2). We study the properties of the family of operators U(t, s)
and, in particular, prove that 1) U(s, s) = E (E is the identical operator);
2) U(t, τ)U(τ, s) = U(t, s) for s 6 τ 6 t; 3) the function t→ U(t, s) is
continuous from the left with respect to the uniform operator topology.

Using the properties of the family of operators U(t, s), we obtain the
following statement.

Theorem 2. Suppose p, q are operator measures with bounded varia-
tions and p, q have no common atoms consisting of one point, i.e., on the
segment [a, b0] there are no singleton sets {τ} such that the inequalities
q({τ}) 6= 0, p({τ}) 6= 0 hold together. Let a function f be integrable
with respect to the measure q. Then the solution of the equation

y(t) = c+

t∫
a

(dp)y(s) +

t∫
a

(dq)f(s), c ∈ H,

has the form y(t) = U(t, a)c+

t∫
a

U(t, s)dq(s)f(s).
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We use the obtained results to study the linear relations generated by
the equation

y(t) = c+

t∫
a

(dp)y(s) +

t∫
a

(dm)f(s), (3)

where c ∈ H; m is a non-negative operator-valued measure with the
bounded variation; f ∈ H = L2(H, dm; a, b) (H is defined below). We
assume that m, p have no common atoms consisting of one point.

In general, equation (3) together with boundary conditions generates
not linear operators but linear relations (multi-valued operators). We
define a maximal relation L as a closure of a set of ordered pairs {y, f}
such that equality (3) holds. When studying restrictions of the maximal
relation, one often needs to establish boundary conditions which generate
restrictions with some given properties. In this paper we consider pro-
perties (called states) from works [1], [2]. Among these properties there
are the invertibility, the continuous invertibility, the Fredholm property,
and others. We obtain necessary and sufficient conditions under which
the boundary conditions determine restrictions with specified properties.

We note that if the measures p, m are absolutely continuous (i.e.,
p(∆) =

∫
∆

p(t)dt, m(∆) =
∫
∆

m(t)dt for all Borel sets ∆ ⊂ [a, b], where

the functions ‖p(t)‖, ‖m(t)‖ belong to L1(a, b) ), then integral equation
(3) is transformed into a differential equation with a weight function.
Linear relations and operators generated by such differential equations
were considered in many works (see [5], [9], further detailed bibliography
can be found, for example, in [3]). We also note that linear relations were
first employed in work [10] for the description of extensions of differential
operators in terms of boundary conditions.

2. Solutions of integral equations. Let H be a separable Hilbert
space with the scalar product (·, ·) and the norm ‖·‖. We consider a
function ∆→P(∆) defined on Borel sets ∆ ⊂ [a, b] and taking values in
the set of bounded linear operators acting in H. The function P is called
an operator measure on [a, b] (see, for example, [4, ch. 5]) if it is zero on the

empty set and the equality P

( ∞⋃
n=1

∆n

)
=
∞∑
n=1

P(∆n) holds for disjoint

Borel sets ∆n, where the series converges weakly. Further, we extend to a
segment [a, b0] ⊃ [a, b0) ⊃ [a, b] any measure P on [a, b], letting P(∆) = 0
for each Borel sets ∆ ⊂ [a, b0]\[a, b].
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By V∆(P) we denote V∆(P) = ρ(∆) = sup
∑
i

‖P(∆i)‖, where sup is

taken over finite sums of disjoint Borel sets ∆i⊂∆. The number V∆(P)
is called the variation of measure P on the Borel set ∆. Suppose that
the measure P has the bounded variation on [a, b]. Then for ρ-almost
all ξ ∈ [a, b] there exists an operator function ξ→ ΨP(ξ) such that ΨP

possesses the values in the set of bounded linear operators acting in H,
‖ΨP(ξ)‖ = 1, and the equality

P(∆) =

∫
∆

ΨP(ξ)dρ. (4)

holds for each Borel set ∆ ⊂ [a, b]. The function ΨP is uniquely deter-
mined up to values on a set of zero ρ-measure. The integral sums for (4)
converge with respect to the usual operator norm ([4, Ch. 5]). Obviously,
V[a,b](P) = V[a,b0](P) = ρ([a, b]).

The function h is integrable with respect to the measure P on a set ∆
if there exists the Bochner integral in the left-hand side of equality∫

∆

ΨP(t)h(t)dρ =

∫
∆

(dP)h(t). (5)

It follows from (5) that if a Borel measurable function h is bounded, then∥∥∥∥∥∥
∫
∆

(dP)h(t)

∥∥∥∥∥∥ 6 sup
t∈∆
‖h(t)‖ ρ(∆). (6)

Let a function h be integrable with respect to the measure P on [a, b0].

Then the function y(t) =
t∫
t0

(dP)h(s) is continuous from the left.

Suppose a segment [l1, l2] ⊂ [a, b0]. We consider a set of functions
ranging in H, bounded on [l1, l2], continuous from the left (in the strong
sense) on (l1, l2], and constant on [l1, l2] ∩ (b, b0]. We introduce the norm
‖u‖[l1,l2] = sup

t∈[l1,l2]

‖u(t)‖ on this set and obtain a Banach space denoted

by C̃[l1, l2] (or by C̃(I), where I is a segment).
We consider the equation (1), where the measure p has the bounded

variation on [a, b] , a 6 t0 6 b0, g∈ C̃[a, b0]. We prove Theorem 1 (see the
Introduction).
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Proof of Theorem 1. First we shall show that there exists a segment
Iδ,t0 = [t0 − δ, t0 + δ] such that equation (1) has a unique solution in the

space C̃(Iδ,t0) (δ > 0). (We set Iδ,t0 = [a, a + δ] if t0 = a and we set
Iδ,t0 = [b0 − δ, b0] if t0 = b0.)

Equality (4) holds for the measure p, where P, ΨP are replaced by
p, Ψp. Let t→ ρ̂(t) be a continuous from the left function generating the
measure ρ. By ρ̂t0 denote the jump of the function ρ̂ at the point t0 (it
is possible that ρ̂t0 = 0). We set r̂t0(t) = 0 for t 6 t0 and r̂t0(t) = ρ̂t0
for t > t0. We denote r̂(t, t0) = ρ̂(t) − r̂t0(t). The function t→ r̂(t, t0) is
continuous at t0. We introduce the operator measures

r(∆, t0) =

∫
∆

Ψp(ξ)dr̂(ξ, t0), rt0(∆) =

∫
∆

Ψp(ξ)dr̂t0(ξ).

Then we obtain p(∆) = r(∆, t0) + rt0(∆).
Under this notation, equation (1) has the form y = Ay + z, where

(Ay)(t) =

t∫
t0

dr(ξ, t0)y(ξ) =

t∫
t0

Ψp(ξ)y(ξ)dr̂(ξ, t0), (7)

z(t) =

t∫
t0

drt0(ξ)y(ξ) + g(t) = r̃t0(t)x0 + g(t), x0 = g(t0), (8)

and r̃t0(t) = 0 for t 6 t0 and r̃t0(t) = rt0({t0}) = p({t0}) for t > t0. Using
(6), (7), and the continuity of the function r̂(·, t0) at t0, we obtain

‖(Ay)(t)‖ 6 sup
t∈Iδ,t0

‖y(t)‖ |r̂(t, t0)− r̂(t0, t0)| < ε sup
t∈Iδ,t0

‖y(t)‖ . (9)

Consequently, sup
t∈Iδ,t0

‖(Ay)(t)‖ 6 ε sup
t∈Iδ,t0

‖y(t)‖. Using the continuity of

r̂(·, t0), we take δ>0 such that

|r̂(t, t0)− r̂(t0, t0)| < ε < 1 (10)

for all t ∈ Iδ,t0 . Then ‖A‖C̃(Iδ,t0 ) < 1. Hence the operator E − A has

the bounded everywhere defined inverse operator in the space C̃(Iδ,t0).
The function z is equal to zero for all t if and only if g = 0 on Iδ,t0
(consequently, x0 = 0). Hence there exists a unique solution of equation
(1) on the interval Iδ,t0 . This solution is found by the formula
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y = (E −A)−1z. (11)

Now we shall show that there exists a unique solution of equation (1)
on the segment [t0 − δ(t0), b0]. It can be assumed that t0 < b0. It suffices
to prove that if a solution u is defined on an interval [t0− δ(t0), d), where
d < b0, then u can be extended to an interval [t0−δ(t0), d1), where d1 > d.

We retain the notation of the above proof, however, we replace t0 by
t′0. We set t′0 = d. For ε < 1/4, we take δ > 0 such that t′0 + δ 6 b0 and
|r̂(t, t′0)− r̂(t′0, t′0)| < ε for all t ∈ Iδ,t′0 . We fix the point t1 = t′0 − δ/8.
Then the inequality

|r̂(t, t′0)− r̂(t1, t′0)|6 |r̂(t, t′0)− r̂(t′0, t′0)|+|r̂(t′0, t′0)− r̂(t1, t′0)|<2ε<1/2
(12)

holds for all t such that |t− t1| 6 δ/2.

We introduce the operator B in the space C̃(Iδ/2,t1) by the equality

(By)(t) =

t∫
t1

dr(ξ, t′0)y(ξ) =

t∫
t1

Ψp(ξ)y(ξ)dr̂(ξ, t′0).

It follows from (12) that sup
t∈Iδ/2,t1

‖(By)(t)‖6 (1/2) sup
t∈Iδ/2,t1

‖y(t)‖. Hence

the operator E −B has the bounded everywhere defined inverse operator
in C̃(Iδ/2,t1). We set v= (E − B)−1z1, w= (E − B)−1z2, where z1(t) =
=u(t1)−g(t1) + g(t), z2(t)=z1(t) +ϕ(t), ϕ(t)= r̃t′0(t)v(t′0), and as above,
r̃t′0(t) = 0 for t 6 t′0 and r̃t′0(t)=p({t′0}) for t > t′0. Then the equalities

v(t) =

t∫
t1

Ψp(ξ)v(ξ)dr̂(ξ, t′0) + u(t1)− g(t1) + g(t), (13)

w(t) =

t∫
t1

Ψp(ξ)w(ξ)dr̂(ξ, t′0) + u(t1)− g(t1) + ϕ(t) + g(t) (14)

hold for all t ∈ [t1 − δ/2, t1 + δ/2]. Using (14), we have

w(t) =

t∫
t1

Ψp(ξ)w(ξ)dr̂(ξ, t′0) + u(t1)− g(t1) + g(t) (15)
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for all t ∈ [t1 − δ/2, t′0]. It follows from (12) that the equation

y(t) =

t∫
t1

Ψp(ξ)y(ξ)dr̂(ξ, t′0) + g̃(t), g̃ ∈ C̃[a, b0], (16)

has a unique solution on the interval (t1 − δ/8, t′0). Using (13), (15), we
obtain that v(t) = w(t) for all t ∈ (t1− δ/8, t′0). Therefore, w(t′0) = v(t′0).
Moreover, using (14) and the equality ρ̂(t) = r̂(t, t′0) + r̂t′0(t), we get

w(t) =

t∫
t1

(dp)w(s) + u(t1)− g(t1) + g(t) (17)

for all t∈Iδ/2,t1 ( i.e., for all t such that t1 − δ/2 6 t 6 t′0 + (3/8)δ ).
The function u is the solution of equation (1) on [t0−δ, t′0). Therefore,

u(t)=

t∫
t0

(dp)u(ξ) + g(t) = u(t1)− g(t1) +

t∫
t1

(dp)u(ξ) + g(t), (18)

where t0 − δ6 t< t′0. Taking into account the equality r̂(t, t′0) = ρ̂(t) for
t 6 t′0 and using (18), we obtain

u(t) =

t∫
t1

Ψp(ξ)u(ξ)dr̂(ξ, t′0) + u(t1)− g(t1) + g(t). (19)

It follows from (13), (15), (19), and the uniqueness of the solution
of (16) that the functions u, v, w coincide on the interval (t1 − δ/8, t′0).
This implies that there exists lim

t→t′0−0
u(t) = w(t′0) = v(t′0). By ũ denote a

function such that ũ is equal to u on [t0 − δ(t0), t′0) and ũ is equal to w
on [t′0, t

′
0 + (3/8)δ]. We claim that ũ is the solution of (1). Indeed, since

u is the solution of (1) for t < t′0, we see that ũ is the solution of (1) for
t<t′0. Suppose t16 t 6 t′0 + (3/8)δ. Using (17), (18), we get

t∫
t0

(dp)ũ(ξ) + g(t) =

t1∫
t0

(dp)u(ξ) +

t∫
t1

(dp)w(ξ) + g(t) =

= (u(t1)− g(t1)) + w(t)− u(t1) + g(t1) = ũ(t).

So ũ is a solution of (1) and ũ is an extension of u to [t′0, t
′
0 + (3/8)δ].
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Let us show the uniqueness of the solution of equation (1). Suppose
that u1, u2 are two solutions of (1). As shown above, u1(t) = u2(t) for all
t ∈ Iδ,t0 . By T denote the supremum of the set t such that u1(t) = u2(t)
for all t < T . Since u1, u2 are continuous from the left, we have u1(T ) =
= u2(T ). For t > T , we obtain

ui(t) = x1−g(T )+

t∫
T

(dp)ui(ξ)+g(t), x1 =u1(T )=u2(T ), i = 1, 2. (20)

As we have shown above, there exists a unique solution of equation (20)
on an interval Iδ,T . Consequently, T = b0. The Theorem is proved. �

Corollary 1. If t0 = a, then for any function g∈ C̃[a, b0] there exists a

unique solution of equation (1) belonging to the space C̃[a, b0].

Note that Theorem 1 corrects the error made by the author in the
article [7] in the proof of the similar theorem.

Remark 1. In the proof of Theorem 1, we take δ such that ε< 1/2 in
inequality (9). Then

∥∥(E −A)−1
∥∥
C̃(Iδ,t0 )

6 2. Using (8), (11), we get

‖y‖C̃(Iδ,t0 )62(1+V[a,b0](p)) ‖g‖C̃([a,b0]) . (21)

Remark 2. For t < t0, the solution of equation (1) can be non-unique.
In addition, generally, the solution can be non-extendable to the left.

We give examples to corroborate Remark 2. Suppose H = C. Let
p be the measure generated by a function p̂ on the segment [0, 2] (i.e.,
p([α, β)) = p̂(β) − p̂(α), 06 α6 β 6 2), where p̂(t) = 0 for 06 t6 1 and

p̂(t)=−1 for 1<t62. We consider the equation y=
t∫

2

ydp. This equation

has solutions y = y1, y = y2, where y1(t) = 0 for all t, y2(t) = 1 for
0 6 t 6 1 and y2(t) = 0 for 1 < t 6 2. Further, consider the equation

y=1+
t∫

2

ydp. The function y=1 is a solution of this equation for 1<t6 2.

We claim that this solution can not be extended to the left. Indeed,
assume the converse, i.e., suppose that the solution is extended to the
left. Then y(1) = 1−

∫
[1,2)

y(s)dp. Hence y(1) = 1+y(1). This equality is

impossible.
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Lemma 1. For any point t0 ∈ (a, b0] there exists δ = δ(t0) such that
for all s ∈ [t0 − δ, t0] the equation

ys(t) =

t∫
s

dp(ξ)ys(ξ) + h(t), h∈ C̃[a, b0], (22)

has a unique solution in C̃[t0− δ, b0]. This solution satisfies the inequality

‖ys‖C̃[t0−δ,t0]6 8(1 + V[a,b0](p)) ‖h‖C̃([a,b0]) (23)

for all s ∈ [t0 − δ, t0].

Proof. According to Theorem 1, there exists δs > 0 such that equation
(22) has a unique solution in the space C̃[s − δs, b0]. In the proof of
Theorem 1, for the point t0 we take δ such that ε < 1/4 in (9), (10).
Then

t∫
s

dp(ξ)ys(ξ)+h(t)=

t0∫
s

dp(ξ)ys(ξ)+h(t0)+

t∫
t0

dp(ξ)ys(ξ)+h(t)−h(t0) =

= ys(t0) +

t∫
t0

dp(ξ)ys(ξ) + h(t)− h(t0). (24)

This implies that every solution of equation (22) is a solution of equation
(1) in which g(t) = ys(t0)+ h(t)− h(t0). Equations (1), (22) have unique

solutions. Hence equation (22) has a unique solution in C̃[t0 − δ, b0].
We shall prove that inequality (23) is satisfied. Inequality (23) follows

from (21) for s= t0. Suppose s∈ [t0− δ, t0). We use the notation from the
proof of Theorem 1. It follows from (10) and the inequality ε<1/4 that

|r̂(t, t0)− r̂(s, t0)|6 |r̂(t, t0)− r̂(t0, t0)|+|r̂(t0, t0)− r̂(s, t0)|<2ε<1/2, (25)

where s, t ∈ [t0 − δ, t0].

We define operators Bs (t0 − δ 6 s < t0) in the space C̃[t0 − δ, t0] by
the equality

(Bsu)(t) =

t∫
s

Ψp(ξ)u(ξ)dr̂(ξ, t0). (26)

It follows from (25), (26) that ‖Bs‖ 6 1/2. Consequently, for all s ∈
∈ [t0−δ, t0) there exists a bounded everywhere defined operator (E−Bs)−1
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with the norm
∥∥(E −Bs)−1

∥∥ 6 2 . We denote ys = (E −Bs)−1h1, where
h1 is the restriction of function h to [t0 − δ, t0]. Then

ys(t) =

t∫
s

Ψp(ξ)ys(ξ)dr̂(ξ, t0) + h(t). (27)

In the proof of Theorem 1, we have established that the equality
r̂(t, t0) = ρ̂(t) − r̂t0(t) holds, where r̂t0(t) = 0 for t 6 t0 and r̂t0(t) = ρ̂t0
for t > t0 (ρ̂t0 is the jump of the function ρ̂ at the point t0). Using (27),
we get

ys(t) =

t∫
s

Ψp(ξ)y(ξ)dρ̂(ξ) + h(t) =

t∫
s

dp(ξ)ys(ξ) + h(t).

It follows from Theorem 1 that the function ys is the solution of equation
(22) on [t0 − δ, b0]. Using (27), we obtain

‖ys‖C̃([t0−δ,t0])6
∥∥(E −Bs)−1h1

∥∥ 6 2 ‖h‖C̃([a,b0]) (28)

for all s ∈ [t0−δ, t0). Hence ‖ys(t0)‖ 6 2 ‖h‖C̃([a,b0]). It follows from (21),

(24), (28) that inequality (23) holds. The Lemma is proved. �

3. Family of evolution operators. We consider the equation (2).

Theorem 1 implies that equation (2) has a unique solution ys ∈ C̃[s−δ, b0]
for all c∈H, where δ = δ(s) > 0 is sufficiently small (δ(s)=0 for s=a). It
follows from the proof of Theorem 1 that δ(s) independent of g(t)=c. Let
U(t, s) be the operator taking each element c∈H to the value of solution
ys(t) of (2). The function t→U(t, s)c is the solution of the equation

U(t, s)c = c+

t∫
s

dp(τ)U(τ, s)c. (29)

Remark 3. Since p(∆) = 0 for all Borel sets ∆ ⊂ (b, b0], we see that
solution ys of equation (2) is a constant function on (b, b0] and ys(t) =
= lim
ξ→b+0

ys(ξ) for t > b.

Lemma 2. The operator U(t, s) is bounded for fixed t, s.

Proof. Equation (2) is a special case of equation (1) for g(t) = c and
t0 = s. Using (21), we get ‖U(t, s)c‖C̃(Iδ,s) 6 k ‖c‖. This implies that
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the operator U(t, s) is bounded for t ∈ Iδ,s. By T = T (s) denote the
supremum of the set t > s such that the operator U(τ, s) is bounded for
all s 6 τ 6 t. Since a solution of equation (2) is continuous from the left,
we see that the operator U(T, s) is bounded. Using (29), we obtain

U(t, s)c =

t∫
T

dp(τ)U(τ, s)c+

T∫
s

dp(τ)U(τ, s)c+ c, t > T.

Hence the function y(t) = U(t, s)c is a solution of equation (1) for

t0 = T , g(t) =
T∫
s

dp(τ)U(τ, s)c + c. It follows from (21) that the operator

U(t, s) is bounded for t∈Iδ,T . Therefore T =b0. The Lemma is proved. �

Lemma 3. The function t→ U(t, s) is continuous from the left with
respect to the uniform operator topology.

Proof. Using (29), we get

U(t1, s)c− U(t, s)c =

∫
[t,t1)

dp(ξ)U(ξ, s)c =

∫
[t,t1)

Ψp(ξ)U(ξ, s)cdρ(ξ) (30)

for t < t1 and t, t1 ∈ [s − δ, b0], δ= δ(s)> 0 (if s = a, then t, t1 ∈ [a, b0]).
It follows from the Banach-Steinhaus Theorem and Theorem 1 that the
function t→‖U(t, s)‖ is bounded. Using (30), we obtain

‖U(t1, s)c−U(t, s)c‖6
∫

[t,t1)

‖Ψp(ξ)‖ ‖U(ξ, s)‖ ‖c‖ dρ(ξ)6k ‖c‖
∫

[t,t1)

dρ(ξ).

Hence ‖U(t1, s)− U(t, s)‖ → 0 as t→ t1 − 0. The Lemma is proved. �

Lemma 4. The equality

U(t, τ)U(τ, s) = U(t, s). (31)

holds for all points s, τ, t ∈ [a, b0] such that s 6 τ 6 t. Moreover, for any
point t0 ∈ (a, b0] there exists δ= δ(t0)> 0 such that equality (31) is valid
in the following cases: 1) τ, s ∈ [t0 − δ, t0], t > τ ; 2) τ, s, t ∈ [t0 − δ, t0].

Proof. We denote y(t) = U(t, s)c, z(t) = U(t, τ)y(τ) (c∈H). It follows
from (29) and Lemma 1 that the functions y, z exist in all cases mentioned
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in Lemma 4. Therefore,

y(t)= c+

t∫
s

(dp)y(ξ) =c+

τ∫
s

(dp)y(ξ) +

t∫
τ

(dp)y(ξ) = y(τ) +

t∫
τ

(dp)y(ξ).

On the other hand, we have z(t) = y(τ) +
t∫
τ

(dp)z(ξ). Using Theorem 1,

we get y(t) = z(t). Now the desired statement follows from the equality
y(τ) = U(τ, s)c. The Lemma is proved. �

Lemma 5. The function (t, s) → ‖U(t, s)‖ is bounded in the triangle
{(t, s) : t, s ∈ [a, b0], t > s}.

Proof. Equation (2) is a special case of equation (22). It follows from
Lemmas 1, 4 that for any point t0 ∈ [a, b0] there exists δ0 = δ(t0) > 0
such that the inequality

‖U(t, s)‖ 6 ‖U(t, t0)‖ ‖U(t0, s)‖ 6 64(1 + V[a,b0](p))2 (32)

holds for all t, s ∈ Iδ0,t0 , t > s. We consider a covering of the segment
[a, b0] by open intervals such that inequality (32) holds in each interval.
From this covering, we choose a finite covering by intervals denoted by
Ik, k = 1, ..., n. We consider all possible finite non-empty intersections of
these intervals Ik. We add the intervals Ik to these intersections. So we
obtain intervals Ji, i = 1, ..., r. Let si be the centre of Ji. We enumerate
the number si in ascending order, i.e., si 6 si+1. We claim that for any
two neighboring points si, si+1 (si 6= si+1) there exists an interval Jm such
that Jm ⊃ [si, si+1]. Indeed, let Jm be the interval containing the point
si and having the greatest right boundary βm. In the case βm 6 si+1,
we choose an interval Jq such that si+1 ∈ Jq, si /∈ Jq, and Jq has the
smallest left boundary. Then Il ∩ Iq 6= ∅, and the middle of interval
Il ∩ Iq lies between points si, si+1. This contradicts the assumption that
si, si+1 are neighboring points.

Suppose s, t ∈ [a, b0], s 6 t. By sm, sm+1, sj , sj+1 we denote the
points defined above such that sm 6 s < sm+1, sj 6 t < sj+1. Using
Lemma 4, we get U(t, s) = U(t, sj) · · ·U(sm+2, sm+1)U(sm+1, s). Inequa-
lity (32) holds on all segments [si, si+1]. Consequently,

‖U(t, s)‖ 6 ‖U(t, sj)‖ · · · ‖U(sm+1, s)‖ 6 64r(1 + V[a,b0](p))2r.
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The Lemma is proved. �

Consider the equation

y(t) =

t∫
a

(dp)y(s) + g(t), a 6 t 6 b0, g ∈ C̃[a, b0]. (33)

We define an operator P in the space C̃[a, b0] by the equality

(Pu)(t) =

t∫
a

(dp)u(s), u ∈ C̃[a, b0], a 6 t 6 b0.

Using (6), we get ‖Pu‖6V[a,b](p) sup
t∈[a,b0]

‖u(t)‖. Hence the operator P

is bounded. By Corollary 1, it follows that there exists an everywhere
defined operator (E − P)−1. The operator (E − P)−1 is bounded. The
solution of equation (33) has the form y = (E − P)−1g.

Below we assume that the function g has the form

g(t) =

t∫
a

(dq)f(s), (34)

where q is an operator measure with the bounded variation on [a, b]; the
function f is integrable with respect to q. We extend the measure q to
the segment [a, b0], letting q(∆)=0 for each Borel sets ∆⊂ [a, b0]\[a, b].

Lemma 6. Suppose that the function g has form (34), and y =
= (E−P)−1g, and p, q are measures with bounded variations, and p, q
have no common atoms consisting of one point, i.e., on the segment [a, b0]
there are no singleton sets {τ} such that the inequalities p({τ}) 6= 0,
q({τ}) 6= 0 hold together. Then

y(t) =

t∫
a

U(t, s)dq(s)f(s). (35)

Proof. We substitute function (35) for y in the following integral. Then

t∫
a

dp(ξ)y(ξ) =

∫
[a,t)

dp(ξ)

∫
[a,ξ)

U(ξ, τ)dq(τ)f(τ).
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We change the limits of integration. Then∫
[a,t)

dp(ξ)

∫
[a,ξ)

U(ξ, τ)dq(τ)f(τ) =

=

∫
[a,t)

 ∫
(τ,t)

dp(ξ)U(ξ, τ)

 dq(τ)f(τ) =

=

∫
[a,t)

 ∫
[τ,t)

dp(ξ)U(ξ, τ)

dq(τ)f(τ)−
∫

[a,t)

∫
{τ}

dp(ξ)U(ξ, τ)

dq(τ)f(τ).

We consider the function h(τ) =
∫
{τ}

dp(ξ)U(ξ, τ). If p({τ}) = 0, then

h(τ) = 0. By T1 denote the set of points τ such that p({τ}) 6= 0. The set
T1 is countable or finite. It follows from the conditions of the Lemma that
q({τ}) = 0 if τ ∈ T1. Therefore,

∫
[a,t)

h(τ)dq(τ)f(τ) = 0. Consequently,

t∫
a

dp(ξ)y(ξ) =

∫
[a,t)

 ∫
[τ,t)

dp(ξ)U(ξ, τ)

 dq(τ)f(τ) =

=

∫
[a,t)

(U(t, τ)− E)dq(τ)f(τ). (36)

We substitute function (35) for y in the right-hand side of equation
(33). Using (36), we get

t∫
a

dp(ξ)y(ξ) +

t∫
a

dq(τ)f(τ)=

=

t∫
a

(U(t, τ)− E)dq(τ)f(τ) +

t∫
a

dq(τ)f(τ) = y(t).

So function (35) is the solution of (33). Now the desired statement follows
from the uniqueness of the solution of (33). The Lemma is proved. �

Using Lemma 6 and Corollary 1, we obtain Theorem 2 (see the Intro-
duction).
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4. Maximal relation. Let B1, B2 be Banach spaces. A linear
relation T is understood as any linear manifold T ⊂ B1×B2. The termi-
nology on the linear relations can be found, for example, in [1], [2], [8]. In
what follows we make use of the following notations: {·, ·} is an ordered
pair; ker T is a set of elements x ∈ B1 such that {x, 0} ∈ T; Ker T is a set
of ordered pairs of the form {x, 0} ∈ T; D(T) is the domain of T; R(T) is
the range of T; T−1 is the inverse relation for T, i.e., the relation formed
by the pairs {x′, x}, where {x, x′} ∈ T. A relation T is called surjective
if R(T) = B2. A relation T is called invertible or injective if ker T = {0}
(i.e., the relation T−1 is an operator); it is called continuously invertible
if it is closed, invertible, and surjective (i.e., T−1 is a bounded everywhere
defined operator). Linear operators are treated as linear relations, this is
why the notation {x1, x2} ∈ T is used also for an operator T. Since all
considered relations are linear, we shall often omit the word ”linear”.

Let m be a non-negative operator-valued measure defined on Borel
sets ∆ ⊂ [a, b] and taking values in the set of linear bounded non-negative
operators acting in the space H. The measure m is assumed to have a
bounded variation on [a, b]. We extend the measure m to the segment
[a, b0], letting m(∆)=0 for each Borel sets ∆⊂ [a, b0]\[a, b].

We introduce the quasi-scalar product (x, y)m =

b0∫
a

((dm)x(t), y(t)) on

a set of step-like functions with values in H defined on the segment [a, b0].
Identifying with zero functions y obeying (y, y)m = 0 and making the
completion, we arrive at the Hilbert space denoted byL2(H, dm; a, b)=H.
The elements of H are the classes of functions identified with respect to

the norm ‖y‖m =(y, y)
1/2
m . In order not to complicate the terminology, the

class of functions with a representative y is indicated by the same symbol
and we write y ∈ H. The equalities of the functions in H are understood
as the equality for associated equivalence classes.

We consider equation (3). Let L′ be a relation consisting of the pairs
{ỹ, f̃}∈H×H satisfying the condition: for each pair {ỹ, f̃} there exists a
pair {y, f} such that the pairs {ỹ, f̃}, {y, f} are identical in H × H, and
equality (3) holds on [a, b0]. By L we denote the closure of L′ and we call
L the maximal relation generated by equation (3). Generally speaking,
relation L is not an operator since function y can happen to be identified
with zero in H, while f is non-zero.

Remark 4. Since the equalities p(∆)=m(∆)=0 hold for each Borel set
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∆⊂ [a, b0]\[a, b], we have y(b0)= lim
t→b+0

y(t), where y is a solution of (3).

Let Q0 be a set of elements x∈H such that the function t→U(t, a)x
is identified with zero in H. We put Q=H 	Q0. On a linear manifold Q,
we introduce the norm

‖c‖− = ‖U(·, a)‖m =

 b0∫
a

(dm(ξ)U(ξ, a)c, U(ξ, a)c)

1/2

, c ∈ Q. (37)

Using formula (4), we get

‖c‖− =

 b0∫
a

(Ψm(s)U(s, a)c, U(s, a)c) dρ

1/2

6 γ ‖c‖ , c ∈ Q. (38)

ByQ− denote the completion ofQ with respect to norm (37). It follows
from (38) that the space Q− can be treated as a space with a negative
norm with respect to Q [4, Ch. 1]. Suppose that a sequence {cn} (cn ∈ Q)
converges in Q− to c0∈Q−. Then a sequence {U(·, a)cn} is fundamental
in H and hence, it converges to some element in H. By U(·, a)c0 we denote
this element and U stands for the operator c→U(·, a)c, where c∈Q−.

Theorem 3. Suppose that m, p are measures with bounded variations
and m, p have no common atoms consisting of one point. A pair {ỹ, f̃} ∈
∈ H× H belongs to the relation L if and only if there exists a pair {y, f}
such that the pairs {ỹ, f̃}, {y, f} are identified in H× H with each other
and the equality

y(t) = U(t, a)c+

t∫
a

U(t, s)dm(s)f(s) (39)

holds, where c ∈ Q−.

Proof. Suppose that equality (39) holds. It follows from the definition of
the relation L and Theorem 2 that {y, f} ∈ L′ ⊂ L for c ∈ Q. Since the
relation L is closed, we see that {y, f} ∈ L for c ∈ Q−.

Conversely, suppose that {y, f} ∈ L. Then there exists a sequence
of pairs {yn, fn} ∈ L′ such that it converges to {y, f} in H × H. Using
Theorem 2, we obtain
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yn(t) = U(t, a)cn +

t∫
a

U(t, s)dm(s)fn(s),

where cn ∈ Q. We put

Fn(t) =

t∫
a

U(t, s)dm(s)fn(s), F (t) =

t∫
a

U(t, s)dm(s)f(s).

Since fn→ f in H as n→∞, we have Fn→F in H. The sequence {yn}
converges to y in H. Hence there exists an element c ∈ Q− such that
the sequence {U(t, a)cn} converges to {U(t, a)c} in H. Thus equality (39)
holds. The Theorem is proved. �

Corollary 2. The operator U is a continuous one-to-one mapping of
Q− onto ker L.

5. Spaces of boundary values and states of linear relations. In
what follows we shall make use of a space of boundary values (SBV) for the
maximal relation L. Let B1, B2, B1, B2 be Banach spaces, T ⊂ B1 ×B2

be a closed linear relation, δ :T→B1 ×B2 be a linear operator, δj =Pjδ,
j = 1, 2 (Pj indicates the natural projection onto a set Gj in the Cartesian
product G = G1×G2). A quadruple (B1, B2, δ1, δ2) is called SBV for the
relation T (see [6] and the references therein), if δ maps continuously T
onto B1 × B2 and the restriction of δ1 to KerT is a one-to-one mapping
of KerT onto B1. We define the operator Φδ :B1→B2 and the relation T0

by the equalities Φδ = δ2(δ1|Ker T)−1, T0 = ker δ. We note that operator
Φδ is bounded. We shall say that the relation T0 is the minimal relation
generated by SBV. It follows from the definition of SBV that there exists
a one-to-one correspondence between relations T̂ with the property T0 ⊂
⊂ T̂ ⊂ T and relations θ ⊂ B1×B2 and this correspondence is determined
by the equality δT̂ = θ. In this case we denote T̂ = Tθ.

Let S be a linear relation S ⊂ B′1 × B′2, where B′1, B′2 are Banach
spaces. The following conditions are borrowed from [1], [2]: 1) S is closed;
2) kerS = {0}; 3) dim kerS < ∞; 4) the relation S is well-defined (i.e.,
S is invertible and the range R(S) is closed); 5) R(S) = R(S); 6) R(S)
is a closed subspace in B′2 of the finite codimension; 7) R(S) = B′2; 8) S
is continuously invertible. Following [1], [2], we shall say that the relation
S is in the state k if it satisfies condition k). The relation S is called
Fredholm if it satisfies conditions 3), 6).
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Theorem 4. Let R(T )=B2. The relation Tθ is in the state k (16k68)
if and only if the same is true for the relation θ − Φδ.

The proof is implied by the following lemma established in [6].

Lemma 7. The relation Tθ is closed if and only if the relation θ is closed.
Suppose R(T )=B2. The following statements hold true:

1) the range of R(Tθ) is closed if and only if the range of R(θ−Φδ) is
closed;

2) dimB2/R(Tθ) = dimB2/R(θ − Φδ);
3) dim kerTθ = dim ker(θ − Φδ).

Let us construct examples of spaces of boundary values for the maximal
relation L.
Example 1. Let Q̂0 be a set of elements x ∈H such that the function
s→U∗(b0, s)x is identified with zero in H. We put Q̂=H 	 Q̂0. On the

linear manifold Q̂, we introduce the norm

‖ĉ ‖− = ‖U(b0, ·)‖m =

 b0∫
a

(dm(ξ)U∗(b0, ξ)ĉ, U
∗(b0, ξ)ĉ )

1/2

, (40)

where ĉ ∈ Q̂. Using (4), (6), we obtain

‖ĉ ‖−=

 b0∫
a

(Ψm(s)U∗(b0, ξ)ĉ, U
∗(b0, ξ)ĉ) dρ

1/2

6γ ‖ĉ‖ , ĉ ∈Q. (41)

By Q̂− denote the completion Q̂ of with respect to the norm (40). It

follows from (41) that the space Q̂− can be treated as a space with a ne-

gative norm with respect to Q [4, Ch. 1]. By Q̂+ we denote the associated
space with a positive norm. The definition of spaces with positive and
negative norms imply that Q̂+ ⊂ Q.

Suppose that a sequence {ĉn} (ĉn ∈ Q̂) converges in Q̂− to ĉ0 ∈ Q̂−.
Then a sequence {U∗(b0, ·)ĉn} is fundamental in H. It follows that this
sequence converges to some element in H. By U∗(b0, ·)ĉ0 we denote this

element and V stands for the operator ĉ→U∗(b0, ·)ĉ, where ĉ∈ Q̂−. The

operator V :Q̂−→H is continuous, one-to-one, and its the range of values

is closed. Thus adjoint operator V∗ maps continuously H onto Q̂+. We

shall find the form of the operator V∗. For all x∈Q̂, f ∈H, we have
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(f,Vx)m =

b0∫
a

(dm(s)f(s), U∗(b0, s)x) =

=

b0∫
a

(U(b0, s)dm(s)f(s), x) = (V∗f, x).

Hence, taking into account that Q is densely embedded in Q−, we obtain

V∗f =

b0∫
a

U(b0, s)dm(s)f(s). (42)

Thus the following statement is obtained.

Lemma 8. The operator V∗maps continuously H onto Q̂+ and is given
by (42).

In accordance with Theorem 3, a pair {ỹ, f̃} ∈ H × H belongs to the
maximal relation L if and only if there exists a pair {y, f} such that the
pairs {ỹ, f̃}, {y, f} are identified in H × H with each other and equality
(39) holds for {y, f}.

With each pair {y, f} represented by (39) we associate a pair of boun-
dary values

Y=δ1{y, f}=c ∈ Q−, Y′= δ2{y, f}=

b0∫
a

U(b0, s)dm(s)f(s) =V∗f ∈Q̂+.

(43)
It follows from (39) that if pairs {y, f}, {ỹ, f̃} ∈ L are identified in H×H,
then their boundary values coincide.

We note that if c ∈ Q (i.e., {y, f} ∈ L′), then

Y = y(a), Y′ = y(b0)− U(b0, a)y(a). (44)

We put δ{y, f} = {Y,Y′}. It follows from Theorem 3, Lemma 8,

Corollary 2 that a quadruple (Q−, Q̂+, δ1, δ2) is a SBV for relation L; at
that, Φδ=0. We set ker δ = L0 and call L0 the minimal relation generated
by equation (3) and boundary values (43). The relation L0 is closed. By
(43), (44), it follows that the relation L0 is a restriction of L to a set of
pairs {y, f} ∈ L such that y(a) = y(b0) = 0. As above, Lθ is a linear



38 V. M. Bruk

relation such that L0 ⊂ Lθ ⊂ L and δLθ = θ ⊂ Q− × Q̂+. Theorem 4
implies the following statement.

Theorem 5. The relation Lθ is in the state k if and only if the same is
true for the relation θ.

Example 2. Let the space H be finite-dimensional, H = Cn. In this case
the spaces Q0, Q=H	Q0 are finite-dimensional and Q−= Q. With each
pair {y, f} represented by (39) we associate a pair of boundary values

Y=δ1{y, f} = y(a) = c, Y′ = δ2{y, f}=

b0∫
a

dm(s)y(s).

By Q2 denote the range of the operator δ2, Q2 = R(δ2) ⊂ H. It follows
from Theorem 3, Corollary 2 that a quadruple (Q,Q2, δ1, δ2) is a SBV

for the relation L; at that, Φδc =
b0∫
a

dm(s)U(s, a)c, c ∈ Q. The minimal

relation L0 is a restriction of L to a set of pairs {y, f} ∈ L such that
y(a) = δ2{y, f} = 0. Theorem 4 implies the following statement.

Theorem 6. The relation Lθ is in the state k if and only if the same is
true for the relation θ − Φδ.

Example 3. Let the space H be finite-dimensional, H = Cn. Suppose
that m=µE is the usual Lebesque measure on [a, b], i.e., µ([α, β))=β−α,
a6α< β 6 b (as above, we let µ(∆) = 0 for each Borel set ∆ such that
∆⊂(b, b0]). In this case the maximal relation L is an operator. We assume

that p({a}) = p({b}) = 0. Then Q=Q−= Q̂= Q̂−=H and y(b0) = y(b).
With each pair {y, f}∈L we associate a pair of boundary values

Y=δ1{y, f} = y(a) ∈ H, Y′= δ2{y, f} = {y(ζ), y(b)} ∈ H ×H,

where a < ζ < b. The space H×H is the range of the operator δ2. It
follows from Theorem 3 that a quadruple (H,H×H, δ1, δ2) is a SBV for
the operator L; at that, Φδc={U(ζ, a)c, U(b, a)c}. The minimal operator
L0 is a restriction of L to a set of y ∈ D(L) such that y(a)=y(ζ)=y(b)=0.
Theorem 4 implies a statement similar to Theorem 6.
Example 4. Under the condition of Example 3, we define the measure p
by the equality

p(∆) =

∫
∆

B(s)dµ(s) + pζ(∆)
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for all Borel sets ∆ ⊂ [a, b] (as above, p(∆) = 0 if ∆ ⊂ (b, b0] ). Here
s→ B(s) is a measurable function whose values are linear operators in
H, at that, the function s → ‖B(s)‖ belongs to L1(a, b); a < ζ < b;
pζ(∆) = 0 for each Borel set ∆ such that ∆ ∩ {ζ} = ∅ and pζ({ζ}) = A;
A is a bounded operator in H. Then equation (3) takes the form

y(t) = c+

t∫
a

B(s)y(s)dµ(s) +

t∫
a

(dpζ)y(s) +

t∫
a

f(s)dµ(s), c ∈ H. (45)

Therefore, y′(t) = B(t)y(t) + f(t) if t 6= ζ and y(ζ + 0) = y(ζ) + Ay(ζ).
So, y is a solution of the differential equation with an impulse action (see
[11]). The presence in boundary conditions of a linear relation θ allows us
to consider equations with multi-valued impulse actions.
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