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MONOTONICITY AND CONVEXITY PROPERTIES OF
THE NIELSEN’S β-FUNCTION

Abstract. The Nielsen’s β-function provides a powerful tool for
evaluating and estimating certain integrals, series and mathe-
matical constants. It is related to other special functions such as
the digamma function, the Euler’s beta function and the Gauss’
hypergeometric function. In this work, we prove some mono-
tonicity and convexity properties of the function by employing
largely the convolution theorem for Laplace transforms.
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1. Introduction and Preliminaries. Throughout this paper we
shall use the following notation: N = {1, 2, 3, 4, . . . }, N0 = N ∪ {0} and
R = {all real numbers}.
The Nielsen’s β-function β(x) was introduced in [15] and is defined by any
of the following equivalent forms.

β(x) =

1∫
0

tx−1

1 + t
dt, x > 0, (1)

=

∞∫
0

e−xt

1 + e−t
dt, x > 0, (2)

=

∞∑
k=0

(−1)k

k + x
, x > 0, (3)
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=
1

2

{
ψ

(
x+ 1

2

)
− ψ

(x
2

)}
, x > 0, (4)

where ψ(x) = d
dx ln Γ(x) is the digamma or psi function and Γ(x) is the

Euler’s Gamma function. It is known that the function β(x) satisfies the
following properties [4], [15].

β(x+ 1) =
1

x
− β(x), (5)

β(x) + β(1− x) =
π

sinπx
. (6)

For additional information on the function refer to [4], [6], [8], [13], and
[14].

Also, the function β(x) is related to the classical Euler’s beta func-
tion B(x, y) and the Gauss’ hypergeometric function 2F1(a, b; c; z) in the
following ways.

β(x) = − d

dx

{
lnB

(
x

2
,

1

2

)}
,

β(x) + β(1− x) = B(x, 1− x),

β(x) =
1

x2
F1(1, x;x+ 1;−1).

Repeatedly differentiating (1), (2), (3), (4), and (5) obtain

β(m)(x) =

1∫
0

(ln t)mtx−1

1 + t
dt, x > 0 (7)

= (−1)m
∞∫
0

tme−xt

1 + e−t
dt, x > 0 (8)

= (−1)mm!

∞∑
k=0

(−1)k

(k + x)m+1
, x > 0 (9)

=
1

2m+1

{
ψ(m)

(
x+ 1

2

)
− ψ(m)

(x
2

)}
, (10)

β(m)(x+ 1) =
(−1)mm!

xm+1
− β(m)(x), (11)
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where m ∈ N0 and β(0)(x) = β(x). Note that
∣∣β(m)(x)

∣∣ = (−1)mβ(m)(x)
for m ∈ N0 and x > 0. Then, by multiplying the recurrence relation (11)
by the factor (−1)m, we obtain∣∣∣β(m)(x+ 1)

∣∣∣ =
m!

xm+1
−
∣∣∣β(m)(x)

∣∣∣ , (12)

and as an immediate consequence we obtain the upper bound∣∣∣β(m)(x)
∣∣∣ ≤ m!

xm+1
. (13)

Also, it can easily be shown from (8) that the function
∣∣β(m)(x)

∣∣ is de-
creasing in terms of x.

Some special values of the function are given as follows.

β(1) = ln 2, β

(
1

2

)
=
π

2
, β

(
3

2

)
= 2− π

2
, β(2) = 1− ln 2,

β′(1) = −1

2
ζ(2) = −π

2

12
, β′(2) = −1 +

π2

12
, β′(3) =

3

4
− π2

12
,

β′
(

3

2

)
= 4(G− 1), β′

(
5

2

)
=

40

9
− 4G,

where ζ(x) is the Riemann zeta function and G is the Catalan’s constant.

As shown in [4] and [8], the Nielsen’s β-function is very useful in eva-
luating certain integrals.

In [1] it was established that the function xc
∣∣ψ(n)(x)

∣∣, where n ∈ N, is
strictly decreasing (increasing) on (0,∞) respectively if c ≤ n (c ≥ n+ 1).

The author of [3] established that ψ(ex) is strictly concave on R, and
that ψ(xc) is strictly concave (convex) respectively if c > 0 (c ∈ [−1, 0)).
The author further established that xc

∣∣ψ(n)(x)
∣∣, n ∈ N is strictly convex

if and only if c ≤ n, c = n+ 1 or c > n+ 2.

The authors of [5] showed that ψ(k)(ex) is strictly concave (convex)
on R if, respectively, k = 2n − 2 (k = 2n − 1), where n ∈ N. They
further showed that ψ(k)(xc) is convex on (0,∞) if either k = 2n− 1 and
c ∈ (−∞,− 1

2n−1 ] ∪ (0,∞) or k = 2n− 2 and c ∈ [− 1
2n−1 , 0).

Also, strict complete monotonicity of x
∣∣ψ(m)(x)

∣∣, m ∈ N on (0,∞)
was established in [9] among other things.
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Then the author of [2] proved that ∆n(x) = xn+1

n!

∣∣β(n)(x)
∣∣, n ∈ N

and ∆′n(x) are strictly increasing on (0,∞), and that lim
x→0

∆n(x) = 1 and

lim
x→0

∆′n(x) = 0.

On the account of these results, the natural question is whether simi-
lar results can be established for the Nielsen’s β-function, since it satisfies
some properties identical to those satisfied by the classical digamma func-
tion. This is what motivates the present work. We present our findings
in the following section.

2. Main Results. We begin by recalling the following well-known
definitions which pertain to our results.

Definition 1. A function f : (a, b) ⊆ R → R is said to be convex on
the interval (a, b) if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y),

holds for all x, y ∈ (a, b) and λ ∈ [0, 1]. If f is twice differentiable, then
it is said to be convex if and only if f ′′(x) ≥ 0 for every x ∈ (a, b). If
the inequalities are strict, then f is said to be strictly convex. If the
inequalities are reversed, then f is said to be concave.

Definition 2. A function f : (a, b) ⊆ (0,∞) → R is said to be GA-
convex on (a, b) if

f(xλy1−λ) ≤ λf(x) + (1− λ)f(y),

holds for all x, y ∈ (a, b) and λ ∈ [0, 1] [16].

Definition 3. A function f : (0,∞) → R is said to be completely
monotonic if f has derivatives of all order and

(−1)kf (k)(x) ≥ 0,

holds for x ∈ (0,∞) and k ∈ N0.

Theorem 1. Let F be defined as

F (x) = xa
∣∣∣β(m)(x)

∣∣∣ , (14)

where a ∈ R, m ∈ N and x > 0. Then F (x) is decreasing if a ≤ m + 1
and increasing if a ≥ m+ 1 + e−1.
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Proof. By using (8) and the convolution theorem for Laplace transforms,
we obtain the following.

F ′(x) = axa−1
∣∣∣β(m)(x)

∣∣∣− xa ∣∣∣β(m+1)(x)
∣∣∣ =

= xa
[a
x

∣∣∣β(m)(x)
∣∣∣− ∣∣∣β(m+1)(x)

∣∣∣] ,
F ′(x)

xa
=
a

x

∣∣∣β(m)(x)
∣∣∣− ∣∣∣β(m+1)(x)

∣∣∣ =

= a

∞∫
0

e−xt dt

∞∫
0

tme−xt

1 + e−t
dt−

∞∫
0

tm+1e−xt

1 + e−t
dt =

= a

∞∫
0

 t∫
0

sm

1 + e−s
ds

 e−xt dt− ∞∫
0

tm+1e−xt

1 + e−t
dt =

∞∫
0

φm(t)e−xt dt,

where

φm(t) = a

t∫
0

sm

1 + e−s
ds− tm+1

1 + e−t
.

Then φm(0) = lim
t→0+

φm(t) = 0 and

φ′m(t) =
atm

1 + e−t
− (m+ 1)tm

1 + e−t
− tm+1e−t

(1 + e−t)2
=

=
tm

1 + e−t

[
a− (m+ 1)− te−t

1 + e−t

]
. (15)

If a ≤ m+1, then φ′m(t) < 0, which implies that φm(t) is decreasing. Then
for t > 0 we obtain φm(t) < φm(0) = 0. Thus, F ′(x) < 0 which gives the
desired result. Likewise, if a ≥ m+1+e−1, then φ′m(t) > 0, which implies
that φm(t) is increasing. Then for t > 0, we have φm(t) > φm(0) = 0.
Hence, F ′(x) > 0 and this completes the proof. �

Theorem 2. Let m ∈ N. Then the inequality∣∣∣β(m)(xy)
∣∣∣ ≤ ∣∣∣β(m)(x)

∣∣∣+
∣∣∣β(m)(y)

∣∣∣ , (16)

holds for x > 0 and y ≥ 1.
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Proof. Let G(x, y) =
∣∣β(m)(xy)

∣∣− ∣∣β(m)(x)
∣∣− ∣∣β(m)(y)

∣∣ for m ∈ N, x > 0
and y ≥ 1. Without loss of generality, let y be fixed. Then

G′(x, y) = −y
∣∣∣β(m+1)(xy)

∣∣∣+
∣∣∣β(m+1)(x)

∣∣∣ =

=
1

x

[
x
∣∣∣β(m+1)(x)

∣∣∣− xy ∣∣∣β(m+1)(xy)
∣∣∣] .

Recall from Theorem 1 that the function x
∣∣β(m)(x)

∣∣ is decreasing. Also,
since y ≥ 1, then xy ≥ x. Hence, G′(x, y) ≥ 0 and this implies that
G(x, y) is increasing. Then for 0 < x <∞, we obtain

G(x, y) ≤ lim
x→∞

G(x, y) = −
∣∣∣β(m)(y)

∣∣∣ < 0,

which yields the result (16). �

Theorem 3. Let m ∈ N. Then the function

H(x) = x
∣∣∣β(m)(x)

∣∣∣ (17)

is strictly completely monotonic on (0,∞).

Proof. Note that

H ′(x) =
∣∣∣β(m)(x)

∣∣∣− x ∣∣∣β(m+1)(x)
∣∣∣ ,

H ′′(x) = −2
∣∣∣β(m+1)(x)

∣∣∣+ x
∣∣∣β(m+2)(x)

∣∣∣ ,
H ′′′(x) = 3

∣∣∣β(m+2)(x)
∣∣∣− x ∣∣∣β(m+3)(x)

∣∣∣ .
By continuing the process, we obtain

H(n)(x) = (−1)n−1n
∣∣∣β(m+n−1)(x)

∣∣∣+ (−1)nx
∣∣∣β(m+n)(x)

∣∣∣ ,
which implies

(−1)nH(n)(x)

x
= −n

x

∣∣∣β(m+n−1)(x)
∣∣∣+
∣∣∣β(m+n)(x)

∣∣∣ .
Then by the convolution theorem for Laplace transforms, we obtain

(−1)nH(n)(x)

x
= −n

∞∫
0

e−xt dt

∞∫
0

tm+n−1e−xt

1 + e−t
dt+

∞∫
0

tm+ne−xt

1 + e−t
dt =
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= −n
∞∫
0

 t∫
0

sm+n−1

1 + e−s
ds

 e−xt dt+

∞∫
0

tm+ne−xt

1 + e−t
dt =

∞∫
0

δm(t)e−xt dt,

where

δm(t) = −n
t∫

0

sm+n−1

1 + e−s
ds+

tm+n

1 + e−t
.

Note that δm(0) = lim
t→0+

δm(t) = 0 and also,

δ′m(t) = −nt
m+n−1

1 + e−t
+

(m+ n)tm+n−1

1 + e−t
+

tm+ne−t

(1 + e−t)2
=

=
tm+n−1

1 + e−t

[
m+

te−t

1 + e−t

]
> 0.

Hence δm(t) is increasing. Then for t > 0, we have δm(t) > δm(0) = 0.
Thus, (−1)nH(n)(x) > 0 which concludes the proof. �

Theorem 4. Let m ∈ N. Then the function

Q(x) =
∣∣∣β(m)(ax)

∣∣∣ , a > 1, (18)

is strictly convex on (0,∞).

Proof. Direct differentiation yields

Q′′(x) = −(ln a)2
[
ax
∣∣∣β(m+1)(ax)

∣∣∣− a2x ∣∣∣β(m+2)(ax)
∣∣∣] .

Let ax = z. Then

Q′′(x)

(ln a)2z2
= −1

z

∣∣∣β(m+1)(z)
∣∣∣+
∣∣∣β(m+2)(z)

∣∣∣ =

= −
∞∫
0

e−zt dt

∞∫
0

tm+1e−zt

1 + e−t
dt+

∞∫
0

tm+2e−zt

1 + e−t
dt =

∞∫
0

Am(t)e−zt dt,

where

Am(t) = −
t∫

0

sm+1

1 + e−s
ds+

tm+2

1 + e−t
.
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Then Am(0) = lim
t→0+

Am(t) = 0 and also,

A′m(t) = − tm+1

1 + e−t
+

(m+ 2)tm+1

1 + e−t
+

tm+2e−t

(1 + e−t)2
=

=
tm+1

1 + e−t

[
m+ 1 +

te−t

1 + e−t

]
> 0.

Thus Am(t) is increasing. Then for t > 0, we have Am(t) > Am(0) = 0.
Therefore, Q′′(x) > 0 and this completes the proof. �

With regard to Theorem 4, there is no a such that Q(x) is concave.
Also, Q(x) is increasing if 0 < a < 1 and decreasing if a > 1. Furthermore,
the convexity of Q(x) implies that for r, s > 0, u > 1, 1

u + 1
v = 1 we have

∣∣∣β(m)
(
a

r
u+ s

v

)∣∣∣ ≤ ∣∣β(m)(ar)
∣∣

u
+

∣∣β(m)(as)
∣∣

v
.

By letting x = ar and y = as we obtain∣∣∣β(m)
(
x

1
u y

1
v

)∣∣∣ ≤ ∣∣β(m)(x)
∣∣

u
+

∣∣β(m)(y)
∣∣

v
, (19)

which implies that the function
∣∣β(m)(x)

∣∣ is GA-convex. Moreover, since
the exponential function is convex, we have

a
r
u+ s

v ≤ ar

u
+
as

v
,

for u > 1, 1
u + 1

v = 1. Then by the decreasing property of
∣∣β(m)(x)

∣∣ we
obtain ∣∣∣∣β(m)

(
ar

u
+
as

v

)∣∣∣∣ ≤ ∣∣∣β(m)
(
a

r
u+ s

v

)∣∣∣ ,
which upon letting x = ar and y = as, yields∣∣∣β(m)

(x
u

+
y

v

)∣∣∣ ≤ ∣∣∣β(m)
(
x

1
u y

1
v

)∣∣∣ . (20)

Now, combining (19) and (20) gives the double-inequality∣∣∣β(m)
(x
u

+
y

v

)∣∣∣ ≤ ∣∣∣β(m)
(
x

1
u y

1
v

)∣∣∣ ≤ ∣∣β(m)(x)
∣∣

u
+

∣∣β(m)(y)
∣∣

v
.
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Theorem 5. Let m ∈ N. Then the function

T (x) =
∣∣∣β(m)(xc)

∣∣∣ , (21)

is strictly convex on (0,∞) if c ≤ −1 or c > 0.

Proof. Similarly, direct differentiation gives

T ′′(x) = −c
[
(c− 1)xc−2

∣∣∣β(m+1)(xc)
∣∣∣− cx2c−2 ∣∣∣β(m+2)(xc)

∣∣∣] =

= (cxc−1)2
[

1− c
c

1

xc

∣∣∣β(m+1)(xc)
∣∣∣+
∣∣∣β(m+2)(xc)

∣∣∣] .
Let xc = z. Then

T ′′(x)

(cz
c−1
c )2

=
1− c
c

1

z

∣∣∣β(m+1)(z)
∣∣∣+
∣∣∣β(m+2)(z)

∣∣∣ =

=
1− c
c

∞∫
0

e−zt dt

∞∫
0

tm+1e−zt

1 + e−t
dt+

∞∫
0

tm+2e−zt

1 + e−t
dt =

∞∫
0

Km(t)e−zt dt,

where

Km(t) =
1− c
c

t∫
0

sm+1

1 + e−s
ds+

tm+2

1 + e−t
.

Then, Km(0) = lim
t→0+

Km(t) = 0 and

K ′m(t) =
tm+1

1 + e−t

[
1

c
+m+ 1 +

te−t

1 + e−t

]
> 0

for c ≤ −1 or c > 0. Thus Km(t) is increasing. Then for t > 0 we have
Km(t) > Km(0) = 0. Therefore, T ′′(x) > 0 which yields the desired
result. �

Theorem 6. Let a function Dm be defined as

Dm(x) =
xm+1

m!

∣∣∣β(m)(x)
∣∣∣ , (22)

where x > 0 and m ∈ N. Then Dm(x) is strictly decreasing, strictly
concave, and the limits

lim
x→0

Dm(x) = 1 and lim
x→0

D′m(x) = 0 hold. (23)
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Proof. By direct differentiation we obtain

D′m(x) =
(m+ 1)xm

m!

∣∣∣β(m)(x)
∣∣∣− xm+1

m!

∣∣∣β(m+1)(x)
∣∣∣ = (24)

=
xm+1

m!

[
m+ 1

x

∣∣∣β(m)(x)
∣∣∣− ∣∣∣β(m+1)(x)

∣∣∣] .
That is,

m!

xm+1
D′m(x) =

m+ 1

x

∣∣∣β(m)(x)
∣∣∣− ∣∣∣β(m+1)(x)

∣∣∣ =

= (m+ 1)

∞∫
0

e−xt dt

∞∫
0

tme−xt

1 + e−t
dt−

∞∫
0

tm+1e−zt

1 + e−t
dt =

∞∫
0

χm(t)e−zt dt,

where

χm(t) = (m+ 1)

t∫
0

sm

1 + e−s
ds− tm+1

1 + e−t
.

Then χm(0) = lim
t→0+

χm(t) = 0 and also,

χ′m(t) = − tm+1

(1 + e−t)2
< 0.

Hence, χm(t) is decreasing. Then for t > 0 we have χm(t) < χm(0) = 0.
Thus, D′m(x) < 0, which implies that Dm(x) is strictly decreasing. Next,
we have D′′m(x) =

=
xm+1

m!

[
m(m+ 1)

x2

∣∣∣β(m)(x)
∣∣∣− 2(m+ 1)

x

∣∣∣β(m+1)(x)
∣∣∣+
∣∣∣β(m+2)(x)

∣∣∣] .
Then,

m!

xm+1
D′′m(x) =

m(m+ 1)

x2

∣∣∣β(m)(x)
∣∣∣− 2(m+ 1)

x

∣∣∣β(m+1)(x)
∣∣∣+

+
∣∣∣β(m+2)(x)

∣∣∣ = m(m+ 1)

∞∫
0

te−xt dt

∞∫
0

tme−xt

1 + e−t
dt−
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−2(m+ 1)

∞∫
0

e−xt dt

∞∫
0

tm+1e−xt

1 + e−t
dt+

∞∫
0

tm+2e−zt

1 + e−t
dt =

∞∫
0

Ωm(t)e−zt dt,

where

Ωm(t) = m(m+ 1)

t∫
0

(t− s)sm

1 + e−s
ds− 2(m+ 1)

t∫
0

sm+1

1 + e−s
ds+

tm+2

1 + e−t
.

Clearly, Ωm(0) = lim
t→0+

Ωm(t) = 0. In addition,

Ω′m(t) =
tm+1e−t

(1 + e−t)2
[
−m−met + t

]
=

= − tm+1e−t

(1 + e−t)2

[
2m+ (m− 1)t+

∞∑
k=2

mtk

k!

]
< 0

Hence, Ωm(t) is decreasing. Then for t > 0 we have Ωm(t) < Ωm(0) = 0.
Thus, D′′m(x) < 0, which implies that Dm(x) is strictly concave. Finally,
the limits (23) are deduced from (12), (22), and (24). �

3. Concluding Remarks. In this work we have shown that:

(a) F (x) = xa
∣∣β(m)(x)

∣∣, m ∈ N is decreasing if a ≤ m+ 1 and increasing
if a ≥ m+ 1 + e−1.

(b)
∣∣β(m)(xy)

∣∣ ≤ ∣∣β(m)(x)
∣∣+
∣∣β(m)(y)

∣∣, for x > 0, y ≥ 1 and m ∈ N.

(c) H(x) = x
∣∣β(m)(x)

∣∣, m ∈ N is strictly completely monotonic.

(d) Q(x) =
∣∣β(m)(ax)

∣∣, m ∈ N, a > 1 is strictly convex.

(e) T (x) =
∣∣β(m)(xc)

∣∣, m ∈ N is strictly convex if c ≤ −1 or c > 0.

(f)
∣∣β(m)

(
x
u + y

v

)∣∣ ≤ ∣∣∣β(m)
(
x

1
u y

1
v

)∣∣∣ ≤ |β(m)(x)|
u +

|β(m)(y)|
v , where u > 1,

1
u + 1

v = 1 and m ∈ N.

(g) Dm(x) = xm+1

m!

∣∣β(m)(x)
∣∣, m ∈ N is strictly decreasing, strictly con-

cave, lim
x→0

Dm(x) = 1, and lim
x→0

D′m(x) = 0.

The function β(x) studied in this paper satisfies the equality

β(x) =
1

2
G(x),
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where G(x) is the function referred to as the Bateman’s G-function in the
works [10], [11], and [12]. In these works their authors made reference
to the work of Erdelyi et al. [7] where, probably, the name ”Bateman’s
G-function” originates. However, before the work [7] the function β(x)
appeared in Nielsen’s work [15]. Also, it is worth noting that page 54 of the
work [7] actually captures Nielsen’s work in the reference list. As a result
of this, we prefer to call either of the functions the Nielsen’s β-function.

4. Open Problems.

1. In relation to Theorem 3, find all values of a ∈ R such that the function
Ha(x) = xa

∣∣β(m)(x)
∣∣ is completely monotonic.

2. With regard to Theorem 5, is the function T (x) =
∣∣β(m)(xc)

∣∣ concave
on (0,∞) if c ∈ (−1, 0)?
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