
Probl. Anal. Issues Anal. Vol. 7 (25), No. 1, 2018, pp. 3–22 3
DOI: 10.15393/j3.art.2018.4170

UDC 517.98

Samira Bissar, Madani Moussai

POINTWISE MULTIPLICATION IN THE REALIZED
HOMOGENEOUS BESOV AND TRIEBEL – LIZORKIN

SPACES

Abstract. For either homogeneous Besov spaces Ḃs
p,q(Rn) or

homogeneous Triebel – Lizorkin spaces Ḟ s
p,q(Rn), with the condi-

tions either s < n/p, or s = n/p and q ≤ 1 in the Ḃs
p,q-case,

p ≤ 1 in the Ḟ s
p,q-case, we prove some pointwise multiplication

assertions in their realized spaces.
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1. Introduction and the main result. Let Ḃsp,q(Rn) be the

homogeneous Besov space and let Ḟ sp,q(Rn) be the homogeneous Triebel –
Lizorkin space. These spaces are abbreviated by B and F in the following.
We will use the notation Ȧsp,q(Rn) for either Ḃsp,q(Rn) or Ḟ sp,q(Rn) when
there is no need to distinguish them. Also, as all function spaces occurring
below are defined on Euclidean space Rn, we omit Rn in notations.

The space Ȧsp,q is defined by distributions modulo polynomials. By

means of the “realization” we can consider the version of Ȧsp,q in the tem-
pered distribution space S ′. Recall that G. Bourdaud [2] introduced the
realization, which is a linear continuous mapping σ : Ȧsp,q → S ′ such that

∀f ∈ Ȧsp,q the equivalence class of σ(f) modulo polynomials is precisely f ,
i.e., [σ(f)]P = f , cf., see Definition 3 below ([f ]P denotes the equivalence
class of a tempered distribution f modulo polynomials). We then obtain

the so-called realized space of Ȧsp,q denoted by
˙̃
Asp,q (i.e.,

˙̃
Bsp,q in the B-case

or
˙̃
F sp,q in the F -case), which has a fundamental property that is, under

some conditions on n, s, p and q, all elements in
˙̃
Asp,q vanish at the infinity
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in the weak sense, see Subsection 2.2 below.

Our aim is to study, in certain cases, the pointwise multiplication in
˙̃
Asp,q,

since now we have the spaces defined in S ′ and not in distributions modulo
polynomials. Moreover, it is important to say that there is not enough
literature on this subject, in comparison to the inhomogeneous case. In
this direction, we recall that in [10, Theorem 6.2] it has been proved

that any bounded function f such that [f ]P ∈ Ȧ
n/p
p,∞ acts by (pointwise)

multiplication on
˙̃
Asp,q if (n/p − n)+ < s < n/p in the B-case and if

(n/min(p, q)− n)+ < s < n/p in the F -case. So, we will show principally

the pointwise multiplication on
˙̃
Asp,q for s ≤ n/p, by bounded functions

f such that [f ]P belong to Ȧµp1,∞ for some µ > 0 and p1 > 0. So, our
principal contribution of this paper is the following statement.

Theorem 1. Let 0 < p, p1, p2, q ≤ ∞ (p, p1, p2 <∞ in the F -case) be
such that 1/p = 1/p1 + 1/p2. Let 0 ≤ s < µ <∞. Let in addition

either :
(
n/p− n

)
+
< s < n/p and 0 < p <∞ in the B-case,(

n/min(p, q)− n
)
+
< s < n/p in the F -case, (1)

or : s = n/p, 0 < q ≤ 1 in the B-case (0 < p ≤ 1 in the F -case), (2)

be satisfied. If f ∈ L∞ and g ∈ ˙̃
Asp,q are such that [f ]P ∈ Ȧµp1,∞ and

[g]P ∈ Ȧs−µp2,q , then fg ∈ ˙̃
Asp,q. Moreover, there exists a constant c > 0

such that

‖[fg]P‖Ȧsp,q ≤ c
(
‖f‖∞‖[g]P‖Ȧsp,q + ‖[f ]P‖Ȧµp1,∞‖[g]P‖Ȧs−µp2,q

)
(3)

holds, for all such functions f and g.

In Theorem 1 the case s = 0 can be obtained by taking p = ∞ in
(2) with the B-case. Also, we can consider the case µ := s, by taking
the space Ḃ0

∞,1 instead of Ȧs−µp2,q , since Ḃ0
∞,1 presents the largest space of

Ḃ0
∞,q when q ≤ 1, see Theorem 2 below for more details. On the other

hand, the condition on g guarantees the “good” representative, indeed, if

we replace the assumption g ∈ ˙̃
Asp,q by [g]P ∈ Ȧsp,q, then, it is possible

to fall on a wrong choice of representative which yields a contradiction.
For instance, if g is any nonzero polynomial on Rn, i.e., ‖[g]P‖Ȧsp,q =
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= ‖[g]P‖Ȧs−µp2,q
= 0, then the left hand-side of (3) becomes ‖[fg]P‖Ȧsp,q = 0

for all such functions f , but this is an obviously false assertion.
A consequence of Theorem 1 is the following result which concerns the

case µ = n/p1 and s = n/p, respectively.

Corollary 1. (i) Let 0 < q ≤ ∞, 0 < p ≤ p1 <∞ and (n/p− n)+ < s <
< n/p1 (with (n/min(p, q)− n)+ < s < n/p1 in the F -case). Then

‖[fg]P‖Ȧsp,q ≤ c
(
‖f‖∞ + ‖[f ]P‖Ȧn/p1p1,∞

)
‖[g]P‖Ȧsp,q

holds, for all f ∈ L∞ such that [f ]P ∈ Ȧn/p1p1,∞ and all g ∈ ˙̃
Asp,q.

(ii) Let 0 < p ≤ ∞ and 0 < q ≤ 1, in the B-case. Let 0 < q ≤ ∞ and
0 < p ≤ 1, in the F -case. Then

‖[fg]P‖Ȧn/pp,q
≤ c(‖f‖∞ + ‖[f ]P‖Ȧn/pp,q

)‖[g]P‖Ȧn/pp,q

holds, for all f ∈ L∞ such that [f ]P ∈ Ȧn/pp,q and all g ∈ ˙̃
A
n/p
p,q .

Remark 1. The result [10, Theorem 6.2] is now a particular case of
Theorem 1, at least for s < n/p we take p1 such that p ≤ p1 < n/s and
apply Corollary 1(i).

For simplicity of the proofs we split them in two parts. First we
decompose the product fg in three terms using the Littlewood – Paley’s
approach, (we refer to, e.g., [12, Chapter 4], [14, 2.8.1]), then we esti-
mate these terms in `q(Z;Lp(Rn)) or Lp(Rn; `q(Z)), which will be given
as independent assertions (Propositions 7–10 below). Afterwards, we re-
duce the proofs to an approximation by smooth functions by considering
the case of g being smooth enough. This is principally justified by the
Fatou property of the Ȧsp,q spaces. Additionally, we will deduce some im-
provements for the pointwise multiplication on inhomogeneous Besov and
Triebel – Lizorkin spaces.

The paper is organized as follows. In Section 2 we collect some ne-
cessary facts about Ȧsp,q. Sections 3 and 4 are devoted to the proof and
extensions, respectively.

Notation. The symbol N denotes the set of natural numbers including
0, Z the integers and R the real numbers. For s ∈ R, [s] denotes the grea-
test integer less than or equal to s. For a ∈ R we put a+ := max(0, a). The
notation A ↪→ B indicates that A ⊆ B and is continuous. For any function



6 Samira Bissar, Madani Moussai

f , the symbol f(·) means that x 7→ f(x). With ‖ · ‖p we denote the quasi-
norm of Lp (0 < p ≤ ∞). If p ∈ [1,+∞], we denote by p′ the conjugate ex-
ponent, i.e., p′ := p/(p−1). For any quasi-normed space E, if 0 < q ≤ ∞,
then `q(Z;E) is the set of all sequences (aj)j∈Z of elements in E such

that ‖(aj)j∈Z‖`q(Z;E) :=
(∑

j∈Z ‖aj‖
q
E

)1/q
< ∞; if E = R or C we note

`q(Z). For brevity, we use the notation Ep,q as Ep,q := `q(Z;Lp(Rn)), i.e.,
‖(fj)j∈Z‖Ep,q := (

∑
j∈Z ‖fj‖qp)1/q, in the B-case and Ep,q := Lp(Rn; `q(Z)),

i.e., ‖(fj)j∈Z‖Ep,q := ‖(
∑
j∈Z |fj |q)1/q‖p, in the F -case, with the usual

modification if p =∞ or q =∞. We denote by P∞ the set of all polyno-
mials in Rn. We denote by S∞ the set of all functions f in the Schawrtz
space S such that 〈f, u〉 = 0 (∀u ∈ P∞). The symbol S ′∞ denotes the
topological dual of S∞. The mapping which takes any [f ]P to the restric-
tion of f to S∞ turns out to be an isomorphism from S ′/P∞ onto S ′∞, for
this reason, S ′∞ is called the space of distributions modulo polynomials.
Sometimes, we will use the Hardy-Littlewood maximal function Mg of a
locally integrable function g defined as Mg(x) := sup |Q|−1

∫
Q
|g(y)|dy

(∀x ∈ Rn), where the supremum is taken with respect to all cubes Q
with sides parallel to the axes and containing x. Here |Q| means the
Lebesgue measure of the cube Q. The standard norms in S are given by
ζm(f) := sup|α|≤m supx∈Rn (1 + |x|)m|f (α)(x)| (m ∈ N). If f ∈ L1, then

Ff(ξ) = f̂(ξ) :=
∫
Rn f(x)e−ix·ξ dx and F−1f denote the Fourier trans-

form of f and its inverse Fourier transform, respectively. The operators F
and F−1 can be extended to the whole S ′ in the usual way. Throughout
the paper we use the parameters s, p, and q as:

s ∈ R, 0 < p, q ≤ ∞ and p <∞ in the F -case

unless otherwise stated. Finally, constants c, c1, . . . are strictly positive
and depend only on the fixed parameters, e.g., n, s, p, q, . . ., and probably
on auxiliary functions, their values may vary from line to line.

2. Preliminaries. To introduce the homogeneous as well as the
inhomogeneous Besov spaces and Triebel – Lizorkin spaces, the Fourier-
theoretical approach via the Littlewood – Paley decomposition presents
the basic method. This approach has been developed by Bergh and
Löfström [1], Peetre [11], Triebel [14, 15], ...

We choose, once and for all, a radial C∞ function ρ, such that
0 ≤ ρ ≤ 1, ρ(ξ) = 1 if |ξ| ≤ 1 and ρ(ξ) = 0 if |ξ| ≥ 3/2. We define
γ(ξ) := ρ(ξ)−ρ(2ξ) for all ξ ∈ Rn, with a support located in the compact
annulus 1/2 ≤ |ξ| ≤ 3/2. Then it holds

∑
j∈Z γ(2jξ) = 1 (∀ξ 6= 0) and
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ρ(2−kξ) +
∑
j>k γ(2−jξ) = 1 (∀ξ ∈ Rn, ∀k ∈ Z). We introduce the con-

volution operators denoted by Sj and Qj (j ∈ Z), and defined by means

of the formulas Ŝjf(ξ) := ρ(2−jξ)f̂(ξ) and Q̂jf(ξ) := γ(2−jξ)f̂(ξ), which
are defined on S ′. The operators Qj are also defined on S ′∞ since Qjf = 0
(∀j ∈ Z) if and only if f is a polynomial; then in the following we say

if f ∈ S ′∞ we set Qjf := Qjf1 for all f1 ∈ S ′ such that [f1]P = f .

All these operators take values in the space of analytical functions of
exponential type, indeed, this fact is an immediate consequence of the
Paley – Wiener theorem, see, e.g., [13, Theorem 29.2, p. 311]. Then we
obtain the Littlewood – Paley decompositions:

(i) For every f ∈ S∞ (S ′∞, respectively), it holds that f =
∑
j∈ZQjf

in S∞ (S ′∞, respectively).
(ii) For every f ∈ S (S ′, respectively) and every k ∈ Z, it holds that

f = Skf +
∑
j>kQjf in S (S ′, respectively).

The operators Sj and Qj are uniformly bounded in L(Lp), for any
p ∈ [1,+∞] (the Young inequality). Also, we have the following statement
proved in, e.g., [10, Proposition 2.5]:

Lemma 1. For any N ∈ N, there exist constants c1, c2 > 0 and a
natural number m such that
(i) ‖Qjf‖p ≤ c12−jNζm(f) for all f ∈ S and all j ∈ N.
(ii) ‖Qjf‖p + ‖Sjf‖p ≤ c22jNζm(f) for all f ∈ S∞ and all j ∈ Z\N.

2.1. Homogeneous Besov and Triebel – Lizorkin spaces.

Definition 1. The homogeneous Besov space Ḃsp,q (or, the homogeneous

Triebel – Lizorkin space Ḟ sp,q) is the set of f ∈ S ′∞ such that ‖f‖Ȧsp,q :=

:= ‖(2sjQjf)j∈Z‖Ep,q <∞.

For all f ∈ S ′, we define

‖f‖Ȧsp,q := ‖[f ]P‖Ȧsp,q . (4)

Ȧsp,q becomes a quasi-Banach space in relation to this quasi-norm and it
has the following properties:
• S∞ ↪→ Ȧsp,q ↪→ S ′∞, which can be obtained easily by Lemma 1 and

an estimate of the Nikol’skij representation method type.
• There exist constants c1, c2 > 0 such that

c1‖f‖Ȧsp,q ≤ λ
n/p−s‖f(λ(·))‖Ȧsp,q ≤ c2‖f‖Ȧsp,q (∀f ∈ Ȧsp,q, ∀λ > 0). (5)
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• Ḃsp,min(p,q) ↪→ Ḟ sp,q ↪→ Ḃsp,max(p,q) and the following embeddings:

Proposition 1. (See [8]) Let s1, s2 ∈ R and 0 < p1 < p2 < ∞ be such
that s1 − n/p1 = s2 − n/p2. Let 0 < q, r ≤ ∞. Then Ḃs1p1,q ↪→ Ḃs2p2,q ↪→
Ḃ
s2−n/p2
∞,q , Ḟ s1p1,q ↪→ Ḃs2p2,p1 and Ḟ s1p1,q ↪→ Ḟ s2p2,r.

We will need an estimate of the Nikol’skij’s type, for which the proof
is essentially given, in homogeneous or inhomogeneous case, in [4, Propo-
sition 4], [9, Proposition 3.4], [10, Proposition 2.15], [12, p. 59] and [16].

Proposition 2. Let a, b be real numbers such that 0 < a < b. Let
(uj)j∈Z be a sequence in S ′ such that
• ûj is supported by the compact annulus a2j ≤ |ξ| ≤ b2j ,
• A := ‖(2jsuj)j∈Z‖Ep,q <∞.

(i) Then the series
∑
j∈Z uj converges in S ′∞ to a limit denoted by u and

which satisfies ‖u‖Ȧsp,q ≤ cA, where c depends only on n, s, p, q, a and b.

(ii) If in addition s > (n/p− n)+
(
s > (n/min(p, q)− n)+ in the F -case

)
,

the same conclusion holds for a = 0.

We will also need the Fatou property of Ȧsp,q, see, e.g., [4, Proposition 7]
and [9, Proposition 3.13].

Proposition 3. Let f ∈ S ′∞. If there exists a bounded sequence (uk)k∈N
in Ȧsp,q such that limk→∞ uk = f in S ′∞, then f belongs to Ȧsp,q and
‖f‖Ȧsp,q ≤ c lim infk→∞ ‖uk‖Ȧsp,q .

The characterization of B and F spaces by the maximal functions is
also useful in what follows. To recall this thing we introduce the maximal
operators, thus for f ∈ S ′∞, a > 0 and j ∈ Z, we set

Q∗,aj f(x) := sup
y∈Rn

(1 + |2jy|a)−1|Qjf(x− y)| (∀x ∈ Rn). (6)

Proposition 4. (See e.g., [7, p. 45]) Let a > n/p in the B-case (a >
> n/min(p, q) in the F -case). Then we have an equivalent quasi-norm in
Ȧsp,q defined by the expression ‖f‖∗

Ȧsp,q
:= ‖(2sjQ∗,aj f)j∈Z‖Ep,q .

2.2. Realized spaces. We begin by the following definition:

Definition 2. A distribution f ∈ S ′ is said to be vanishing at infinity
in the weak sense if limλ→0 f

(
λ−1(·)

)
= 0 in S ′. The set of all such

distributions on Rn is denoted by C̃0.
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Here are some examples: (i) The elements of Lp for 1 ≤ p < ∞. (ii)

The derivatives in D′ of any element of C̃0. (iii) The derivatives in D′ of
a bounded function.

We note that P∞∩C̃0 = {0} (it is an easy assertion). Another example
will be given by the following assertion proved in, e.g., [3, Proposition 4.4].

Lemma 2. If f ∈ L∞ and supp f̂ is a compact subset in Rn\{0}, then

f ∈ C̃0.

Now, we give the notion of the realization:

Definition 3. Let E be a vector subspace of S ′∞ endowed with a quasi-
seminorm such that E ↪→ S ′∞ holds. A realization of E in S ′ is a conti-
nuous linear mapping σ : E → S ′ such that [σ(f)]P = f for all f ∈ E.
The image set σ(E) is called the realized space of E.

By the Littlewood – Paley series we have an example of realization. Let

either s < n/p , or s = n/p and 0 < q ≤ 1 in the B-case

(0 < p ≤ 1 in the F -case), (7)

then for any u ∈ Ȧsp,q the series
∑
j∈ZQju converges in S ′, and the linear

mapping σ(u) :=
∑
j∈ZQju is a realization on Ȧsp,q satisfying [σ(u)]P = u

in S ′∞ and σ(u) ∈ C̃0; more precisely, the element σ(u) is the unique
representative of u that belongs to S ′, see [3, Proposition 4.6] and [10,

Theorems 1.2, 4.1, Section 4.2]. So, if we take v ∈ S ′ ∩ C̃0 such that

[v]P ∈ Ȧsp,q, we deduce that σ([v]P)− v ∈ P∞ ∩ C̃0 = {0}. Then, without
referencing to the Littlewood – Paley decomposition, we define the realized
homogeneous space of Ȧsp,q:

Definition 4. Assume that (7) holds. The realized homogeneous space

of Ȧsp,q, denoted by
˙̃
Asp,q, is the set of all f ∈ C̃0 such that [f ]P ∈ Ȧsp,q,

and endowed with the quasi-norm ‖f‖ ˙̃
Asp,q

:= ‖f‖Ȧsp,q , see (4).

2.3. Inhomogeneous Besov and Triebel – Lizorkin spaces. The
definition of inhomogeneous Besov and Triebel – Lizorkin spaces relies
upon Littlewood – Paley theory, similarly to the case of homogeneous
spaces.

Definition 5. (i) Let 0 < p ≤ ∞. The Besov space Bsp,q is the set of

f ∈ S ′ such that ‖f‖Bsp,q := ‖S0f‖p + (
∑
j≥1(2sj‖Qjf‖p)q)1/q <∞.
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(ii) Let 0 < p <∞. The Triebel – Lizorkin space F sp,q is the set of f ∈ S ′

such that ‖f‖F sp,q := ‖S0f‖p + ‖(
∑
j≥1(2sj |Qjf |)q)1/q‖p <∞.

We denote by Asp,q either Bsp,q or F sp,q, and recall S ↪→ Asp,q ↪→ S ′ and
the following statement proved in, e.g., [15, p. 98]; other properties can
be found in, e.g., [1, 11, 14, 15].

Proposition 5. Assume that s > (n/p− n)+. A function f belongs to
Asp,q if and only if f ∈ Lp and [f ]P ∈ Ȧsp,q. Moreover, ‖f‖p + ‖f‖Ȧsp,q is

an equivalent quasi-norm in Asp,q.

2.4. Necessary conditions for pointwise multiplication. By the
following assertion, where the proof is similar to that given by Franke [6,
Proposition 2.5/1] for Asp,q, we can formulate some necessary conditions
such that ‖f1f2‖Ȧsp,q ≤ c‖f1‖Ȧs1p1,q1 ‖f2‖Ȧs2p2,q2 for all f1, f2 ∈ S∞.

Proposition 6. Let si ∈ R, 0 < pi, qi ≤ ∞ (pi < ∞ in the F -case)
(i = 1, 2). Assume that there exists a constant c > 0 such that, either
‖f1f2‖Ȧsp,q ≤ c‖f1‖Ḃs1p1,q1 ‖f2‖Ȧs2p2,q2 or ‖f1f2‖Ḟ sp,q ≤ c‖f1‖Ḟ s1p1,q1‖f2‖Ḟ s2p2,q2
for all f1, f2 ∈ S∞, are satisfied. Then it follows:

(i) either si > s or si = s and qi ≤ q.
(ii) s1 + s2 ≥ 0.

3. Proof.
3.1. Decomposition and estimate of the product. We intro-

duce the bilinear maps Ts,ν,µ(f, g) :=
{

2ksQk
(
(Sk+νf)(Qk+µg)

)}
k∈Z and

Rs,ν,µ(f, g) :=
{

2ks
∑
j≥kQk

(
(Qj+νf)(Qj+µg)

)}
k∈Z, defined on S ′ × S ′∞

and S ′∞×S ′∞, respectively, where s ∈ R and (ν, µ) ∈ {−3,−2, . . . , 3}2. In
the case ν = µ = 0, we set Ts := Ts,0,0 and Rs := Rs,0,0.

Proposition 7. Let f ∈ L∞. Let g ∈ Lp (0 < p ≤ ∞) be a function
of class C∞ such that ĝ has a compact support. Then the product fg is
correctly defined in S ′, and for all k ∈ Z we can write

Qk(fg) =

1∑
ν=−2

Qk
(
(Sk−3g)(Qk+νf)

)
+

3∑
ν=−2

Qk
(
(Sk+1f)(Qk+νg)

)
+

+

1∑
ν=−3

∑
j≥k+2

Qk
(
(Qjf)(Qj+νg)

)
in S ′∞. (8)

Moreover, if in addition [fg]P ∈ Ȧsp,q then it holds
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‖fg‖Ȧsp,q ≤ c
( 1∑
ν=−2

‖Ts,−3,ν(g, f)‖Ep,q+

+

3∑
ν=−2

‖Ts,1,ν(f, g)‖Ep,q +

1∑
ν=−3

‖Rs,0,ν(f, g)‖Ep,q
)
. (9)

Proof. Step 1. Let ϕ ∈ S∞. By the Hölder inequality |〈g, ϕ〉| ≤ ‖g‖p‖ϕ‖p′
if p ≥ 1. In the case 0 < p < 1 we apply the following lemma proved in,
e.g., [11, Lemma 1, p. 54] or [14, Remark 1.4.1/4, p. 23]:

Lemma 3. Let 0 < p ≤ q ≤ ∞. Then it holds ‖f‖q ≤ cRn/p−n/q‖f‖p,
for all R > 0 and all f satisfying supp f̂ ⊆ {ξ : |ξ| ≤ R}.

We have |〈g, ϕ〉| ≤ ‖ϕ‖∞‖g‖1 ≤ c‖ϕ‖∞‖g‖p where c depends only
on p and supp ĝ. This gives g ∈ S ′∞. Let now ϕ ∈ S, then |〈fg, ϕ〉| ≤
≤ ‖f‖∞‖gϕ‖1, and ‖gϕ‖1 can be bounded similarly as above. Then fg ∈
∈ S ′.
Step 2: proof of (8) and (9). Since f , g and fg belong to S ′∞, then

Qk(fg) =
∑
j,`∈Z

Qk((Qjf)(Q`g)) (∀k ∈ Z). (10)

Denote by I`,j and Ik intervals [(2max(j,`) − 3 · 2min(j,`))+, 3(2j + 2`)]
and [2k, 3 · 2k], respectively, for all j, k, ` ∈ Z. A careful examination of
the intersection of the supports of γ(2−k(·)) and F ((Qjf)(Q`g)) allows
us to obtain γ(2−kξ)F((Qjf)(Q`g))(ξ) = 0 in the following four cases:
• if j ≥ k + 2, ` ≥ j + 2 then 2` − 3 · 2j > 3 · 2k, (Ik ∩ I`,j = ∅),
• if j ≥ k + 2, ` ≤ j − 4 then 2j − 3 · 2` > 3 · 2k, (Ik ∩ I`,j = ∅),
• if j ≤ k + 1, ` ≥ k + 4 then 2` − 3 · 2j > 3 · 2k, (Ik ∩ I`,j = ∅),
• if ` ≤ k − 3, j ≤ k − 3 then 3(2` + 2j) < 2k, (Ik ∩ I`,j = ∅).

Consequently, in the right-hand side of (10) we have∑
j,`∈Z

. . . =
∑
j≥k+2

∑
j−3≤`≤j+1

+
∑
j≤k+1

∑
k−2≤`≤k+3

+
∑

k−2≤j≤k+1

∑
`≤k−3

. . . =:

=: Wk + Vk + Uk.

We introduce Q̃k,1 :=
∑1
ν=−2Qk+ν , Q̃k,2 :=

∑3
ν=−2Qk+ν and Q̃j,3 :=

:=
∑1
ν=−3Qj+ν then Qk(fg) = Uk + Vk +Wk where Uk, Vk, and Wk are

defined as we want in (8), i.e., we have Uk := Qk((Sk−3g)(Q̃k,1f)), Vk :=

:= Qk((Sk+1f)(Q̃k,2g)) and Wk :=
∑
j≥k+2Qk((Qjf)(Q̃j,3g)). Finally,

(9) follows from the definition of ‖ · ‖Ȧsp,q and (8). �
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Proposition 8. There exists a constant c > 0 such that the inequality
‖Ts(f, g)‖Ep,q ≤ c‖f‖∞‖g‖Ȧsp,q holds, for all f ∈ L∞ and all g ∈ Ȧsp,q.

Proof. Let us recall that Ts is defined on S ′ × S ′∞. On the other hand,
we have supk∈Z ‖Skf‖∞ ≤ c‖f‖∞. Then

|Qk
(
(Skf)(Qkg)

)
(x)| ≤ c‖f‖∞Q∗,ak g(x)

∫
Rn

(
1 + |y|a

)
|F−1γ(y)|dy, (11)

for all x ∈ Rn and all a > 0 (see (6) for the definition of Q∗,ak ). Now, to
apply Proposition 4 we choose a > n/p in the B-case, and a > n/min(p, q)
in the F -case. The desired estimate follows. �

Proposition 9. (i) Let −∞ < s < µ < ∞. Let 0 < p1, p2 ≤ ∞
(p1, p2 < ∞ in the F -case) be such that 1/p = 1/p1 + 1/p2. Then there
exists a constant c > 0 such that ‖Ts(g, f)‖Ep,q ≤ c‖f‖Ȧµp1,∞‖g‖Ȧs−µp2,q

for

all f ∈ Ȧµp1,∞ and all g ∈ S ′ with [g]P ∈ Ȧs−µp2,q .

(ii) There exists a constant c > 0 such that, for all f ∈ Ȧsp,q and all g ∈ S ′

with [g]P ∈ Ḃ0
∞,1, it holds ‖Ts(g, f)‖Ep,q ≤ c‖f‖Ȧsp,q‖g‖Ḃ0

∞,1
.

Proof. As in (11), we first have

‖Ts(g, f)‖Ep,q ≤ c
∥∥∥{2ks

(
Q∗,ak f

)∑
j≤k

Q∗,aj g
}
k∈Z

∥∥∥
Ep,q

(∀a > 0). (12)

Step 1: proof of (i). We will apply both the following elementary estimate

(∑
j

ηj

)d
≤
∑
j

ηdj , 0 < d ≤ 1, ηj ≥ 0, (13)

and the following lemma, which can be proved as in, e.g., [16, Lemma 3.8]:

Lemma 4. For all 0 < u ≤ ∞ and all a > 1, there exists a constant c > 0,
such that ‖(

∑
ε(j−k)≤0 a

ε(j−k)ηj)k∈Z‖`u(Z) ≤ c‖(ηj)j∈Z‖`u(Z) (ε = ±1)

holds, for all (ηj)j∈Z ∈ `u(Z).

We begin with the B-case. We choose a > n/p (then a > n/p1 and
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a > n/p2), put d := min(1, p) and apply the Hölder inequality, then

‖Ts(g, f)‖`q(Lp) ≤ c1
∥∥∥{2ks

(∑
j≤k

‖(Q∗,ak f)(Q∗,aj g)‖dp
)1/d}

k∈Z

∥∥∥
`q(Z)

≤

≤ c1
∥∥∥{2kµ · 2k(s−µ)‖Q∗,ak f‖p1

(∑
j≤k

‖Q∗,aj g‖dp2
)1/d}

k∈Z

∥∥∥
`q(Z)

≤

≤ c2‖f‖Ḃµp1,∞
(∑
k∈Z

{∑
j≤k

2d(k−j)(s−µ)
(
2j(s−µ)‖Q∗,aj g‖p2

)d}q/d)1/q
.

Then by Lemma 4 with u := q/d we obtain the bound c‖f‖Ḃµp1,∞‖g‖Ḃs−µp2,q
.

We now consider the F -case. We apply the Hölder inequality in (12),
then ‖Ts(g, f)‖Lp(`q) is bounded by

c
∥∥ sup
`∈Z

2`µQ∗,a` f
∥∥
p1

∥∥∥(∑
k∈Z

{∑
j≤k

2(k−j)(s−µ)
(
2j(s−µ)Q∗,aj g

)}q)1/q∥∥∥
p2

;

so, we choose a > n/min(p, q), which implies a > n/min(p1, q) and
a > n/min(p2, q), then Lemma 4 with u := q gives the desired bound
c‖f‖Ḟµp1,∞‖g‖Ḟ s−µp2,q

.

Step 2: proof of (ii). In (12) we choose a > n/min(p, q) ≥ n/p, then

‖Ts(g, f)‖Ep,q ≤ c‖{2ksQ∗,ak f}k∈Z‖Ep,q
∑
j∈Z ‖Q

∗,a
j g‖∞ which is bounded

by c‖f‖Ȧsp,q‖g‖Ḃ0
∞,1

. The proof is finished. �

Proposition 10. Let µ ∈ R. Let 0 < p1, p2, r ≤ ∞ (p1, p2 < ∞ in the
F -case) be such that 1/p = 1/p1 + 1/p2. Assume that s > n/p − n in
the B-case and s > n/min(p, q) − n in the F -case. Then there exists a
constant c > 0 such that

‖Rs(f, g)‖Ep,q ≤ c‖f‖Ȧµp1,q‖g‖Ȧs−µp2,r
(∀f ∈ Ȧµp1,q,∀g ∈ Ȧ

s−µ
p2,r ). (14)

In the case p = p1 and p2 =∞, inequality (14) becomes

‖Rs(f, g)‖Ep,q ≤ c‖f‖Ȧµp,q‖g‖Ḃs−µ∞,r (∀f ∈ Ȧµp,q,∀g ∈ Ḃs−µ∞,r ). (15)

Proof. We will use the Marschall pointwise inequality.

Lemma 5. (See e.g., [17, Proposition 6.1]) Let h ∈ C∞ and ϕ ∈ D be

such that ĥ and ϕ are supported by the balls |ξ| ≤ AR and |ξ| ≤ A,
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respectively, for some A > 0 and R ≥ 1. With 0 < t ≤ 1, it follows

|(F−1ϕ) ∗ h(x)| ≤ c(AR)n/t−n‖ϕ‖
Ḃ
n/t
1,t

(
M |h|t(x)

)1/t
,

where c does not depend on ϕ, h,A,R and x.

Step 1: the B-case. Applying Lemma 5 with h := (Qjf)(Qjg), ϕ :=

:= γ(2−k(·)), A := 3 · 2k−1 and R := 2j−k+1 (j ≥ k), then, for some
0 < t ≤ 1,

|Qk
(
(Qjf)(Qjg)

)
(x)| ≤ c2(j−k)(n/t−n)

(
M |(Qjf)(Qjg)|t(x)

)1/t
, (16)

for all j ≥ k and all x ∈ Rn; here we used the homogeneous property of

Ḃ
n/t
1,t , i.e., ‖γ(2−k(·))‖

Ḃ
n/t
1,t
≤ c2−k(n/t−n)‖γ‖

Ḃ
n/t
1,t

where c depends only on

n and t, see (5). We set d := min(1, p). Choosing t such that 0 < t < p
(recall that 0 < t ≤ 1), and using both (13) and the Minkowski inequality
with respect to Lp/d

(
Rn; `1(Z)

)
, we see that

∥∥∑
j≥kQk

(
(Qjf)(Qjg)

)∥∥
p

is bounded by

c
(∫

Rn

{∑
j≥k

2d(j−k)(n/t−n)
(
M |(Qjf)(Qjg)|t(x)

)d/t}p/d
dx
)1/p

≤

≤ c
(∑
j≥k

2d(j−k)(n/t−n)
∥∥M |(Qjf)(Qjg)|t

∥∥d/t
p/t

)1/d
.

Now, as the maximal function M is bounded on Lv if 1 < v ≤ ∞
(see [5]), we then apply this assertion with v := p/t > 1, and obtain
‖M |(Qjf)(Qjg)|t

∥∥
p/t
≤ c‖(Qjf)(Qjg)‖tp for some c > 0 independent of

f , g, and j. Therefore, by the Hölder inequality the term ‖Rs(f, g)‖`q(Z;Lp)
is bounded by c(

∑
k∈Z 2qks{

∑
j≥k 2d(j−k)(n/t−n)‖Qjf‖dp1‖Qjg‖

d
p2}

q/d)1/q,
which is bounded by

c
(∑
j∈Z

(
2j(s−µ)‖Qjg‖p2

)r)1/r×
×
(∑
k∈Z

{∑
j≥k

2d(j−k)(n/t−n−s)
(
2jµ‖Qjf‖p1

)d}q/d)1/q
.

Now we also choose n/t − n − s < 0, then it suffices to take t such that
n/(n+ s) < t < min(1, p) (see the assumption on s), then Lemma 4 with
u := q/d yields ‖Rs(f, g)‖`q(Z;Lp) ≤ c‖f‖Ḃµp1,q‖g‖Ḃs−µp2,r

.
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Step 2: the F -case. By (16), ‖Rs(f, g)‖Lp(Rn;`q(Z)) is estimated by

c
∥∥∥(∑

k∈Z

{
2ks
∑
j≥k

2(k−j)(n−n/t)
(
M |(Qjf)(Qjg)|t

)1/t}q)1/q∥∥∥
p
. (17)

Since 0 < t ≤ 1, then in (17) the term with
∑
j≥k . . . is bounded by

{
∑
j≥k 2(k−j)(nt−n)M |(Qjf)(Qjg)|t(x)}1/t for all x ∈ Rn and all k ∈ Z.

By inserting this estimate into (17), choosing

t < min(p, q) (18)

and using the fact that ‖(Mhk)k‖Lv(Rn;`w(Z)) ≤ c‖(hk)k‖Lv(Rn;`w(Z)) holds
for 1 < v < ∞ and 1 < w ≤ ∞ and for some c > 0 depending on
n, v and w (see [16, Theorem 2.2]); and with v := p/t, w := q/t and
hk := 2kts

∑
j≥k 2(k−j)(nt−n)|(Qjf)(Qjg)|t, then using the Hölder inequa-

lity with 1/p = 1/p1 + 1/p2, the term ‖Rs(f, g)‖Lp(Rn;`q(Z)) is bounded
by

c1

∥∥∥(∑
k∈Z

{
2kts

∑
j≥k

2(k−j)(nt−n)|(Qjf)(Qjg)|t
}q/t)1/q∥∥∥

p
≤

≤ c2
∥∥∥(∑

j∈Z

(
2j(s−µ)|Qjg|

)r)1/r∥∥∥
p2
×

×
∥∥∥(∑

k∈Z

{∑
j≥k

2(k−j)(nt+st−n)
(
2jµ|Qjf |

)t}q/t)1/q∥∥∥
p1
, (19)

under the condition n/(n+ s) < t; the compatibility of this condition
with (18) is guaranteed by assumptions on s, p, q. Then we choose t as
n/(n+ s) < t < min(p, q, 1), and deduce the bound c‖f‖Ḟµp1,q‖g‖Ḟ s−µp2,r

. If

p = p1, i.e., p2 =∞, we estimate (19) by

c‖g‖Ḃs−µ∞,r
∥∥∥(∑

k∈Z

{∑
j≥k

2(k−j)(nt+st−n)
(
2jµ|Qjf |

)t}q/t)1/q∥∥∥
p

which yields the correct bound c‖f‖Ḟµp,q‖g‖Ḃs−µ∞,r . �

Remark 2. By easy computations, and owing to the translation inva-
riance on k ∈ Z when we take the sum over all k ∈ Z, Propositions 8, 9
and 10 also hold with Ts,ν,µ and Rs,ν,µ (where (ν, µ) ∈ {−3,−2, . . . , 3}2)
instead of Ts and Rs, respectively.
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3.2. Proof of Theorem 1 and Corollary 1.
Proof of Theorem 1. We recall that “↪→” indicates a continuous em-
bedding, see the section of Notation in Introduction. Let f ∈ L∞ and

g ∈ ˙̃
Asp,q be such that [f ]P ∈ Ȧµp1,∞ and [g]P ∈ Ȧs−µp2,q .

Step 1: proof of fg ∈ S ′ and [fg]P ∈ Ȧsp,q. We defined a sequence
(gk)k∈N by gk :=

∑
|j|≤kQjg = Skg − S−k−1g, which has the following

properties:
• ĝk is supported by the compact annulus 2−k−1 ≤ |ξ| ≤ 3 · 2k−1,
• [gk]P belongs to Ȧsp,q ∩ Ȧs−µp2,q (this follows by Proposition 2) with
‖gk‖Ȧsp,q ≤ c‖g‖Ȧsp,q and ‖gk‖Ȧs−µp2,q

≤ c‖g‖Ȧs−µp2,q
for all k ∈ N,

• gk ∈ C∞ ∩Lp; indeed, if we put d := min(p, 1), by the embedding

Ȧsp,q ↪→ Ḃsp,∞ (see Subsection 2.1) it follows ‖gk‖p ≤ (
∑
|j|≤k ‖Qjg‖dp)1/d

which is bounded by (
∑
|j|≤k 2−sjd)1/d‖g‖Ḃsp,∞ ≤ c(k)‖g‖Ȧsp,q .

Using Propositions 7, 8, 9(i), and 10 with functions f and gk (recall
that by Proposition 7, fgk ∈ S ′), it holds that the two terms ‖Ts(f, gk)‖Ep,q
and ‖Ts(gk, f)‖Ep,q + ‖Rs(f, gk)‖Ep,q can be estimated by c‖f‖∞‖g‖Ȧsp,q
and c‖f‖Ȧµp1,∞‖g‖Ȧs−µp2,q

, respectively. Then, owing to Remark 2 we get

‖fgk‖Ȧsp,q ≤ c
(
‖f‖∞‖g‖Ȧsp,q + ‖f‖Ȧµp1,∞‖g‖Ȧs−µp2,q

)
, (20)

where the constant c > 0 is independent of f , g, and k. Now, we claim

lim
k→∞

(gk − g)f = 0 in S ′ and fg ∈ S ′. (21)

Indeed, we prove (21) with respect to the cases s < n/p and s = n/p,
separately:
The case s < n/p. (Recall that here 0 < p < ∞ in all spaces, see (1)).
Since g − Skg =

∑
j>kQjg (see the beginning of Section 2), we have

|〈(gk − g)f, ϕ〉| ≤ ‖f‖∞
(
‖(S−k−1g)ϕ‖1 +

∑
j>k

‖(Qjg)ϕ‖1
)
, ∀ϕ ∈ S; (22)

and we separately estimate each term in the right-hand side of (22). If
p ≥ 1, then using the Hölder inequality, we obtain∑

j>k

‖(Qjg)ϕ‖1 ≤ ‖ϕ‖p′
∑
j>k

‖Qjg‖p ≤ ‖ϕ‖p′‖g‖Ḃsp,∞
∑
j>k

2−sj ≤

≤ c2−sk‖ϕ‖p′‖g‖Ȧsp,q (recall that s > 0); (23)
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if 0 < p < 1, we use the Bernstein inequality (see Lemma 3) and obtain∑
j>k

‖(Qjg)ϕ‖1 ≤ ‖ϕ‖∞
∑
j>k

‖Qjg‖1 ≤ c1‖ϕ‖∞
∑
j>k

2j(n/p−n)‖Qjg‖p ≤

≤ c1
2k(n/p−n−s)

1− 2n/p−n−s
‖ϕ‖∞‖g‖Ḃsp,∞ ≤ c22k(n/p−n−s)‖ϕ‖∞‖g‖Ȧsp,q ; (24)

again, by the Bernstein inequality we get

‖(S−k−1g)ϕ‖1 ≤ ‖ϕ‖1
∑
j<−k

‖Qjg‖∞ ≤ c1‖ϕ‖1
∑
j<−k

2jn/p‖Qjg‖p ≤

≤ c1
2−k(n/p−s)

1− 2−(n/p−s)
‖ϕ‖1‖g‖Ḃsp,∞ ≤ c22−k(n/p−s)‖ϕ‖1‖g‖Ȧsp,q ; (25)

by inserting (23) or (24) (for each case) and (25) into (22), and by taking
k →∞ we obtain the convergence of the sequence {(gk−g)f}k∈N to 0 in S ′
since the conditions (np −n)+ < s < n

p (in the B-case) or ( n
min(p,q)−n)+ <

< s < n
p (in the F -case) are at our disposal; noticing that in the estimate

(24) we have n/p−n−s < 0 in the F -case since n
p−n ≤ ( n

min(p,q)−n)+ < s.

Now, for an arbitrary ε > 0, there exists a natural number kε such that
for all k ≥ kε, it holds

|〈fg, ϕ〉| ≤ ε+ |〈fgk, ϕ〉| <∞ (∀ϕ ∈ S), (26)

and fg ∈ S ′.
The case s = n/p and 0 < q ≤ 1 in the B-case (0 < p ≤ 1 in the F -case).

“This case also includes a situation when we consider B-spaces

for p =∞ (and consequently s = 0).” (27)

First, we have

|fgk(x)− fg(x)| ≤ ‖f‖∞
∑
|j|>k

‖Qjg‖∞ a.e. on Rn, (∀k ∈ N). (28)

By the embedding Ȧ
n/p
p,q ↪→ Ḃ0

∞,1, which can be obtained by the fact

that Ḃ
n/p
p,q ↪→ Ḃ0

∞,q ↪→ Ḃ0
∞,1 if 0 < q ≤ 1 (in the B-case) and Ḟ

n/p
p,q ↪→

↪→ Ḃ0
∞,p ↪→ Ḃ0

∞,1 if 0 < p ≤ 1 (in the F -case), we have∑
j∈Z
‖Qjg‖∞ = ‖g‖Ḃ0

∞,1
≤ c‖g‖

Ȧ
n/p
p,q
.
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Then the last term of (28) converges to 0 when k → ∞, and conse-
quently fgk converges to fg pointwise (i.e., limk→∞ fgk(x) = fg(x)
a.e. on Rn). Second, ‖gk‖∞ ≤

∑
|j|≤k ‖Qjg‖∞ ≤ ‖g‖Ḃ0

∞,1
implies that

‖fgk‖∞ ≤ c‖f‖∞‖g‖Ȧn/pp,q
(∀k ∈ N). Then applying the Lebesgue domi-

nated convergence theorem, we deduce limk→∞ fgk = fg in S ′, and (21)
follows as in (26) in this case also.

Now the separate treatment of cases s < n/p and s = n/p is com-
plete and the paragraph below concerns both of them. Trivially, we have
limk→∞〈fgk+u, ϕ〉 = 〈fg+v, ϕ〉 for all ϕ ∈ S∞ and all (u, v) ∈ P∞×P∞,
then the sequence ([fgk]P)k∈N converges to [fg]P in S ′∞ too. Hence, we
apply the Fatou property of Ȧsp,q in (20) (see Proposition 3). Then the
inequality (3) holds.

Step 2: proof of fg ∈ C̃0.
Substep 2.1: the case s < n/p. (Here 0 < p <∞, see (1)). We use:

Lemma 6. There exists a constant c > 0 and a natural number m ∈ N,
such that |〈u, ϕ〉| ≤ cζm(ϕ)‖u‖Ȧsp,q , ∀ϕ ∈ S, ∀u ∈ S ′ with [u]P ∈ Ȧsp,q.

Proof of Lemma 6. The bilinear map 〈·, ·〉 is separately continuous on
Ȧsp,q × S, then, as Ȧsp,q and S are Fréchet spaces, this map is continuous;
cf., [13, Section 34.2, Corollary, p. 354]. �

We set fλ := f(λ−1(·)) and gλ := g(λ−1(·)) for all λ > 0. By (5)
we have ‖gλ‖Ȧsp,q � λn/p−s‖g‖Ȧsp,q , ‖gλ‖Ȧs−µp2,q

� λn/p2−s+µ‖g‖Ȧs−µp2,q
and

‖fλ‖Ȧµp1,∞ � λn/p1−µ‖f‖Ȧµp1,∞ . By applying, both Lemma 6 with u :=

:= fλgλ, and the estimate (3) with fλ and gλ, we get for all ϕ ∈ S,

|〈fλgλ, ϕ〉| ≤ c1ζm(ϕ)
(
‖f‖∞‖gλ‖Ȧsp,q + ‖fλ‖Ȧµp1,∞‖gλ‖Ȧs−µp2,q

)
≤

≤ c2λn/p−sζm(ϕ)
(
‖f‖∞‖g‖Ȧsp,q + ‖f‖Ȧµp1,∞‖g‖Ȧs−µp2,q

)
(29)

for some natural numbers m and some positive constants c1, c2 indepen-
dent of f, g, ϕ, λ, and m. Taking λ→ 0 into (29), we obtain the result.
Substep 2.2: the case s = n/p and 0 < q ≤ 1 in the B-case (0 < p ≤ 1 in
the F -case).

“This case also includes a situation when we consider B-spaces

for p =∞ (and consequently s = 0).” (30)

We defined a sequence (uk)k∈N by uk :=
∑
|j|≤kQj(fg), and
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• ûk is supported by the compact annulus 2−k−1 ≤ |ξ| ≤ 3 · 2k−1,

• ‖uk‖∞ ≤ c‖fg‖Ȧn/pp,q
(∀k ≥ 0), this follows by Ȧ

n/p
p,q ↪→ Ḃ0

∞,1.

These yield uk ∈ C̃0, cf., Lemma 2, on the one hand. On the other
hand

∑
|j|>k ‖Qj(fg)‖∞ ≤ ‖fg‖Ḃ0

∞,1
≤ c‖fg‖

Ȧ
n/p
p,q

(∀k ∈ N) implies that

the first term converges to 0 when k → ∞. Consequently, we obtain
limk→∞ ‖uk − fg‖∞ = 0. Now, for all ϕ ∈ S and all λ > 0, we get

|〈fg(λ−1(·)), ϕ〉| ≤ ‖uk − fg‖∞‖ϕ‖1 + |〈uk(λ−1(·)), ϕ〉|,

and for an arbitrary ε > 0, there exists a number kε ∈ N such that the
right-hand side of the last inequality is bounded by ε + |〈uk(λ−1(·)), ϕ〉|
for all k ≥ kε. Thus, by taking λ→ 0 we have limλ→0〈uk(λ−1(·)), ϕ〉 = 0
implies limλ→0〈fg(λ−1(·)), ϕ〉 = 0. Hence we obtain a desired result, and
the proof of Theorem 1 is complete. �

Before we prove Corollary 1 we need to formulate the complement of
Theorem 1 when µ = s as mentioned in the introduction.

Theorem 2. Assume that either (1) or (2) is satisfied. If f ∈ L∞ and

g ∈ ˙̃
Asp,q are such that [f ]P ∈ Ȧsp,q and [g]P ∈ Ḃ0

∞,1, then fg ∈ ˙̃
Asp,q.

Moreover, there exists a constant c > 0 such that for all such functions f
and g it holds ‖fg‖Ȧsp,q ≤ c(‖f‖∞‖g‖Ȧsp,q + ‖f‖Ȧsp,q‖g‖Ḃ0

∞,1
).

Proof. Using Propositions 7, 8, 9(ii) and the inequality (15) with (µ = s
and r = 1) we obtain (20) with ‖g‖Ḃ0

∞,1
instead of ‖g‖Ȧs−µp2,q

. Then by

observations (27) and (30), the proof is similar to that of Theorem 1. �

Proof of Corollary 1. The assertion (i) follows by both, (3) with

µ := n/p1 and Ȧsp,q ↪→ Ȧ
s−n/p1
p2,q where p2 := (1/p − 1/p1)−1. For (ii)

we apply Theorem 2 with s = n/p and Ḃ
n/p
p,q ↪→ Ḃ0

∞,1 (in B-case) and

Ḟ
n/p
p,q ↪→ Ḃ0

∞,p ↪→ Ḃ0
∞,1 (in F -case). �

4. An extension to inhomogeneous case. The following two
corollaries concern the pointwise multiplication in case of the inhomoge-
neous spaces Asp,q. For brevity, if E ⊆ S ′, we shall write f ∈ E ∩ Ȧsp,q if

f ∈ E and [f ]P ∈ Ȧsp,q, also E ⊂ Ȧsp,q means that for arbitrary f ∈ E we

have [f ]P ∈ Ȧsp,q.

Corollary 2. Let 0 < p ≤ p1 < ∞. Assume that (n/p − n)+ < s <
< n/p1 in the B-case ((n/min(p, q)− n)+ < s < n/p1 in the F -case). Let
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g ∈ Asp,q and let f ∈ L∞ be such that [f ]P ∈ Ȧn/p1p1,∞. Then fg ∈ Asp,q.
Moreover, there exists a constant c > 0 such that ‖fg‖Asp,q ≤ c(‖f‖∞ +

+‖f‖
Ȧ
n/p1
p1,∞

)‖g‖Asp,q . We write
(
L∞ ∩ Ȧn/p1p1,∞

)
·Asp,q ↪→ Asp,q.

Proof. We first prove that g ∈ C̃0. Indeed, if 1 ≤ p < ∞, the assertion
follows from the embeddings Asp,q ⊂ Lp ⊂ C̃0 (see example (i) just after
Definition 2); if 0 < p < 1 then s + n − n/p > 0, and again we have

Asp,q ⊂ A
s+n−n/p
1,q ⊂ L1 ⊂ C̃0. We set p2 := (1/p − 1/p1)−1. Then the

assumption s < n/p1 ≤ n/p yields g ∈ ˙̃
Asp,q, and Ȧsp,q ↪→ Ȧ

s−n/p1
p2,q implies

[g]P ∈ Ȧs−n/p1p2,q . Then there exist c1, c2 > 0 independent of g such that
(see Proposition 5)

‖g‖
Ȧ
s−n/p1
p2,q

≤ c1‖g‖Ȧsp,q ≤ c2‖g‖Asp,q . (31)

Now, by Theorem 1 (with µ := n/p1) (see also Corollary 1) it holds
‖fg‖Asp,q ≤ c(‖fg‖p + ‖fg‖Ȧsp,q ) which is bounded by c(‖f‖∞‖g‖p +

+‖f‖∞‖g‖Ȧsp,q + ‖f‖
Ȧ
n/p1
p1,∞
‖g‖

Ȧ
s−n/p1
p2,q

). Thus, the desired result follows

by (31), see again Proposition 5. �

Corollary 3. Let p, q be such that 0 < p < ∞ and 0 < q ≤ 1 in the

B-case, 0 < p ≤ 1 and 0 < q ≤ ∞ in the F -case. Let g ∈ An/pp,q and let

f ∈ L∞ be such that [f ]P ∈ Ȧ
n/p
p,q . Then fg ∈ A

n/p
p,q . Moreover, there

exists a constant c > 0 such that ‖fg‖
A
n/p
p,q
≤ c(‖f‖∞ + ‖f‖

Ȧ
n/p
p,q

)‖g‖
A
n/p
p,q
.

We write
(
L∞ ∩ Ȧn/pp,q

)
·An/pp,q ↪→ A

n/p
p,q .

Proof. Using Proposition 5, Theorem 2, and Corollary 1(ii) the proof is
similar to that of Corollary 2. We omit the details. �

The main motivation of Corollaries 2 and 3 is that we have now com-
plements of some previous works given in case of A

n/p
p,q . Namely:

Remark 3. (i) Since A
n/p
p,∞ $ Ȧ

n/p1
p1,∞ if p1 ≥ p, Corollary 2 implies(

L∞ ∩An/pp,∞
)
·Asp,q ↪→ Asp,q if (n/p− n)+ < s < n/p (with (n/min(p, q)−

−n)+ < s < n/p in the F -case). If in addition 0 < p ≤ 1, we have the
result given in [12, Theorem 4.6.2/2(24)–(25), p. 200].

(ii) Because of A
n/p
p,q1 ↪→ A

n/p
p,q and A

n/p
p,q2 $ L∞ ∩ Ȧn/pp,q , by Corollary

3 we have the following two assertions: B
n/p
p,q1 · B

n/p
p,q2 ↪→ B

n/p
p,q if q :=

:= max(q1, q2) ≤ 1, and F
n/p
p,q1 · F

n/p
p,q2 ↪→ B

n/p
p,q if 0 < p ≤ 1 and q :=
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:= max(q1, q2), given in [12, Theorem 4.6.1/2(20), p. 192] and [12, Theo-
rem 4.6.1/1(8), p. 190], respectively.

Remark 4. The case p =∞ in Corollary 3 can be given as the following:

(L∞ ∩ Ḃ0
∞,q) ·

˙̃
B0
∞,q ↪→ B0

∞,q if 0 < q ≤ 1. (32)

Indeed, assume that f ∈ L∞ ∩ Ḃ0
∞,q and g ∈ ˙̃

B0
∞,q. By Theorem 2,

fg ∈ S ′, and as S0(fg) =
∑
j≤0Qj(fg) then ‖S0(fg)‖∞ ≤ c‖fg‖Ḃ0

∞,q
.

Also, since ‖fg‖B0
∞,q
≤ c(‖S0(fg)‖∞+‖fg‖Ḃ0

∞,q
), Theorem 2 again yields

‖fg‖B0
∞,q
≤ c(‖f‖∞ + ‖f‖Ḃ0

∞,q
)‖g‖Ḃ0

∞,q
. Now, with respect to

Bn/p1p1,q ·B
0
∞,q ↪→ B0

∞,q if 0 < p1 <∞ and 0 < q ≤ 1, (33)

see [12, Remark 4.4.4/6, p. 180], we have B
n/p1
p1,q $ L∞ ∩ Ḃn/p1p1,q ⊂ L∞ ∩

∩Ḃ0
∞,q. However, (33) fails in case p1 = ∞ (see again [12]), then an

interesting problem is to obtain (32) with B0
∞,q instead of L∞ ∩ Ḃ0

∞,q.

Remark 5. A complement of Remarks 3-4, that it would be interesting
to extend to homogeneous spaces the results given in, e.g., [14], [12, 4.6.1–
4.6.2, pp. 190–207] for inhomogeneous ones.
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[1] Bergh G., Löfström J. Interpolation Theory, An Introduction. Grundlehren
Math. Wiss. 223, Springer, Berlin, 1976. DOI: 10.1007/978-3-642-66451-9.
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