
42 Probl. Anal. Issues Anal. Vol. 6 (24), No. 2, 2017, pp. 42–56

DOI: 10.15393/j3.art.2017.4230

UDC 517.54

S. Yu. Graf

THE SCHWARZIAN DERIVATIVES OF HARMONIC
FUNCTIONS AND UNIVALENCE CONDITIONS

Abstract. In the paper we obtain some analogues of Nehari’s
univalence conditions for sense-preserving functions that are har-
monic in the unit disc D = {z ∈ C : |z| < 1}.

Key words: harmonic mappings, univalence criteria, Schwarzian
derivative

2010 Mathematical Subject Classification: 30C45, 30C55,
30C99

1. Preliminaries. Let D ⊂ C be a simply connected domain, h be
a locally univalent function, analytic in D. The Schwarzian derivative of
h is defined (cf., [11, 7]) as

S[h](z) =

(
h′′(z)

h′(z)

)′
− 1

2

(
h′′(z)

h′(z)

)2

.

An important role of the Schwarzian derivative in theory of univalent ana-
lytic functions is well known. Almost 70 years ago Z. Nehari [18] made the
following deep observation: let h be a locally univalent analytic function
in a simply connected domain and its Schwarzian derivative S[h] = 2ψ;
then h is univalent iff every non-trivial solution of the differential equa-
tion u′′ + ψu = 0 has no more than one zero. This key result reduces the
univalence problem to the classical Sturm comparison theorem [17]. Later
[19] Nehari proved

Theorem A. Let h be a locally univalent analytic function in D = {z ∈
∈ C : |z| < 1} and

|S[h](z)| ≤ 2p(|z|) in D.

Here the function p(x) (also called a Nehari function) is positive, con-
tinuous, even on the interval (−1, 1), and has the following properties:
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(1− x2)2p(x) is nonincreasing on [0, 1) and no non-trivial solution of the
differential equation u′′ + pu = 0 has more than one zero on (−1, 1).

Then h is globally univalent in D.

The well known special case of this theorem claims univalence of h if
|S[h](z)| ≤ 2/(1− |z|2)2 in D.

Theorem A and its special cases encouraged many mathematicians to
extend these Nehari’s results to different classes of functions. For example,
L. Ahlfors and G. Weill [2] established the condition under which a univa-
lent analytic function in D has a quasiconformal extension onto the whole
Riemann sphere. Also, L. Ahlfors [1] defined a version of the Schwarzian
derivative that provides injectivity criteria for curves γ : (−1, 1) → Rn.
Gehring and Pommerenke [9] applied the Schwarzian derivative of analytic
functions to study quasicircles.

During the recent decades several attempts to generalize the Schwarzian
derivative and Theorem A onto the case of harmonic functions were also
made. We remind (cf., [8]) that every sense-preserving function f(z), har-
monic in the unit disk D, can be represented as f(z) = h(z) + g(z), where
h and g are analytic in D. The dilatation ω(z) = g′(z)/h′(z) is analytic
in D and |ω(z)| < 1 for all z ∈ D.

In 2003 the Schwarzian derivative was generalized by P. Duren, B. Os-
good, and M. Chuaqui [4] to the case of harmonic functions f = h+ g in
the disk D with the dilatation ω = g′/h′ = q2, where q is some analytic
function in D and |h′|+ |g′| > 0. Their definition is given by

Sf (z) = 2 (ln(|h′(z)|+ |g′(z)|))zz − (ln(|h′(z)|+ |g′(z)|))2
z =

= S[h](z) +
2q(z)

1 + |q(z)|2

(
q′′(z)− q′(z)h

′′(z)

h′(z)

)
−

(
2q′(z)q(z)

1 + |q(z)|2

)2

,
(1)

where S[h] is the classical Schwarzian derivative of an analytic locally
univalent function h. Note that the function f in definition (1) need not
be sense-preserving and locally univalent. This definition obviously can
be applied to harmonic functions in arbitrary simply connected domains.

Later R. Hernández and M. J. Mart́ın [15] proposed a modified de-
finition of Schwarzian derivative that is valid for the whole family of
sense-preserving harmonic mappings. This definition preserves the main
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properties of the classical Schwarzian derivative and is following:

Sf (z) =
(
ln(|h′(z)|2 − |g′(z)|2)

)
zz
− 1

2

(
ln(|h′(z)|2 − |g′(z)|2)

)2
z

=

= S[h](z) +
ω(z)

1− |ω(z)|2

(
h′′(z)

h′(z)
ω′(z)− ω′′(z)

)
− 3

2

(
ω′(z)ω(z)

1− |ω(z)|2

)2

.

(2)

Both definitions of Schwarzian derivatives of harmonic functions pos-
sess the chain rule property (cf., [15]) exactly in the same form as in
the analytic case. Let f be a sense preserving harmonic function, ϕ be
a locally univalent analytic function such that the composition f ◦ ϕ is
defined; then

Sf◦ϕ(z) = Sf ◦ ϕ(z) · (ϕ′(z))2
+ Sϕ(z),

Sf◦ϕ(z) = Sf ◦ ϕ(z) · (ϕ′(z))2
+ Sϕ(z).

(3)

The Schwarzian derivative Sf is also invariant under affine transformations
of a harmonic function f : if A(w) = aw + bw + c, |a| > |b|, then

SA◦f (z) ≡ Sf (z). (4)

The properties of the Schwarzian derivatives (1), (2) of harmonic func-
tions have been intensively studied in many papers from different points
of view. In particular, the authors of [5] observed a deep connection of Sf
with lifts of harmonic functions onto minimal surfaces. In [15, 16] some
estimations of Sf in some subclasses of univalent harmonic functions were
obtained and many properties of the Schwarzian were established. Norms
of the Pre-Schrarzian and Schwarzian derivative Sf were estimated in [14]
for the linear- and affine-invariant families of harmonic functions in terms
of order of the family; so, analogues of the Krauss and Nehari theorem
about the upper bounds of |Sf | were obtained.

The special attention, of course, was paid to the problem of univalence
criteria for harmonic functions in terms of their Schwarzian.

Let a harmonic function f = h+ g have dilatation ω = q2, where q is
analytic (or even meromorphic) in D. Then, according to the Weierstrass-
Enneper formula (see, cf. [8]), the function f lifts locally to a minimal sur-
face Xf with the conformal parametrization f̃(z) = (u(z), v(z), t(z)), z ∈
∈ D, where

u(z) = Re f(z), v(z) = Im f(z), t(z) = 2Im

z∫
z0

q(ζ)h′(ζ)dζ. (5)
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The first fundamental form of the minimal surface Xf is given by
ds2 = λ2(z)|dz|2, where λ = |h′| + |g′|; λ2 is called the conformal fac-
tor. It is known that for every univalent harmonic function f of the
prescribed form its lift f̃ is also univalent and defines a non-parametric
minimal surface. Vice versa, every non-parametric minimal surface X =
= {u(z), v(z), F (u(z), v(z))} with the conformal parameter z ∈ D has a
projection f = u + iv that is an univalent harmonic mapping of D; also,
representation (5) is unique for f and X up to vertical shifts and reflection
relative to the plane t = 0. The authors of [5] used the Ahlfors generalized
Schwarzian for curves in R3 to obtain the following univalence criteria for
lifts of a harmonic function f to the minimal surface:

Theorem B. Let f = h + g be a harmonic function in D, its dilatation
ω = q2 for some meromorphic function q, and λ = |h′|+ |g′| 6= 0. Let f̃ be
Weierstrass-Enneper lift of f to the minimal surface Xf with the Gauss

curvature K(z) at a point f̃(z). Suppose that

|Sf (z)| − λ2(z)K(z) ≤ 2p(|z|) in D

for some Nehari function p. Then f̃ (and f) is univalent in D.

The univalence criteria for f itself is a consequence.
Note that the Gauss curvature of the minimal surface is non-positive.

If a function f is analytic, then the Xf is a plane, K ≡ 0,Sf = S[f ], and
Theorem B coincides with the classical result of Nehari.

Another univalence condition for sense-preserving harmonic functions
f was obtained in terms of Schwarzian derivative Sf .

In [16] R. Hernández and M. J. Mart́ın proved an analogue of Theorem
A for the Sf in the following form: they proved the existence of constant
C such that for f = h+ g the inequality

|Sf (z)| ≤ C

(1− |z|2)2
for all z ∈ D

implies the univalence of the analytic part h of f and, as a consequence,
the global univalence of f . However, the constant C was not estimated.

In this paper we give analogues of Theorems A and B in terms of
the Schwarzian derivative Sf for an arbitrary sense-preserving harmonic
function f in D.

2. Univalence conditions for harmonic functions. It is con-
venient to assume in the sequel that a harmonic function f = h + g is
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normalized: f(0) = 0, h′(0) = 1. It is clear that this normalization does
not influence on univalence of f nor on the values of Schwarzian deriva-
tives.

First we consider a harmonic sense-preserving function f = h+ g in D
whose dilatation ω equals the square of an analytic function q such that
|q(z)| < 1 for all z ∈ D. Let α be the order ord (f) of the function f (cf.,
[20, 21]), i.e.,

α := ord (f) =
1

2
sup
z∈D

∣∣∣∣h′′(z)

h′(z)
(1− |z|2)− 2z

∣∣∣∣ .
This means that α is equal to the supremum of the absolute values of
the second coefficients of analytic parts of the functions over the linear
invariant family L(f). This family consists of functions

F (z) =
f(Φ(z))− f(Φ(0))

h′(Φ(0))Φ′(0)
, (6)

where Φ(z) = (z+z0)/(1+z0z) and z0 runs over the disk D. Properties of
the linear and affine invariant families of harmonic functions can be found
in [21, 22, 12].

Note that the order of an univalent analytic or univalent sense pre-
serving harmonic function is always finite (cf., [6, 8]). So, it is natural to
assume that α <∞.

Theorem 1. Let a harmonic function f be sense-preserving in D, f(0) =
= h′(0)− 1 = 0 and ω = q2 in D. Let α be the order of f . Then for any
z ∈ D

|Sf (z)− Sf (z)| < 2α+ 7/2

(1− |z|2)2
. (7)

This estimation is sharp in the sense of the order of growth with |z| → 1−.

Proof. Let f meet the conditions of Theorem 1. First note that due to
the chain rule (3) the difference of the Schwarzian derivatives (2) and (1)
at an arbitrary point z ∈ D can be expressed in the form

Sf (z)− Sf (z) =
SF (0)− SF (0)

(1− |z|2)2
,

where F has the form (6), Φ(ζ) = (ζ+z)/(1+zζ), and SΦ = SΦ = S[Φ] ≡
≡ 0. Note that the dilatation of the function F has the form Ω = eiθω◦Φ =
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= eiθ(q ◦ Φ)2 with some constant θ ∈ R; so Ω = Q2, i.e., is the square of
an analytic function.

The harmonic function F has a representation F = H+G with analytic
H and G. Also, we can assume that A1 = H ′(0) = 1, because the
Schwarzian derivatives are invariant with respect to multiplication on a
constant. Then (Q(0))2 = G′(0) = B1, |B1| < 1. If B1 = 0, then SF (0) =
= SF (0) = S[H](0) and SF (0) − SF (0) = 0. So, we assume that |B1| ∈
∈ (0, 1).

Now we express the difference SF (0) − SF (0) in terms of coefficients
B1 and A2 = H ′′(0)/2 of the function F . By a straightforward though
rather bulky calculations it is possible to show that

|SF (0)− SF (0)| = 2|Q(0)|
1− |Q(0)|4

×

×

∣∣∣∣∣H ′′(0)

H ′(0)
Q′(0)−Q′′(0) +

Q(0) (Q′(0))
2

1− |Q(0)|4
(
1− 4|Q(0)|2

)∣∣∣∣∣ ≤ 2
√
|B1|

1− |B1|2
×

×

{
2|A2Q

′(0)|+ |Q′′(0)|+
√
|B1|

(
|Q′(0)|

1− |B1|

)2
1− |B1|
1 + |B1|

|1− 4|B1||

}
.

(8)
The analytic in D function Q meets the conditions of the well-known
Schwarz Lemma (cf., [11]). So, we can estimate its derivatives at the
origin:

|Q′(0)| ≤ 1− |Q(0)|2 = 1− |B1| < 1,

|Q′′(0)| ≤ 2(1− |Q(0)|2) = 2(1− |B1|) < 2.

Therefore, due to (8), we obtain an estimation

|SF (0)− SF (0)| <
2
√
|B1|

1 + |B1|

{
2|A2|+ 2 +

√
|B1|
|1− 4|B1||
1 + |B1|

}
.

It is easy to see that for x ∈ (0, 1) both functions x/(1 + x2) and x|1 −
−4x2|/(1 + x2) tend to their suprema when x→ 1−. Then

|SF (0)− SF (0)| < 2|A2|+ 2 +
3

2
.

To finish the proof note that

A2 =
1

2

(
h′′(z)

h′(z)
(1− |z|2)− 2z

)
,
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so |A2| ≤ α when z runs over the disk D. Combining the last estimations,
we obtain the desired inequality (7).

To illustrate the sharpness of estimation (7), let us construct the har-
monic univalent function f0 = h0 + g0 with the properties

g′0(z) = z2h′0(z),

h′0(z)− g′0(z) = k′(z),

where k(z) = z/(1 − z)2 is the Köebe function, which is univalent in D.
Then

h′0(z) =
1

(1− z)4
and f0(z) =

1/3

(1− z)3
+
z2 − z + 1/3

(1− z)3
− 2

3
.

The univalence of the function f0 is provided by the clever “shear construc-
tion” introduced by J. Clunie and T. Sheil-Small (see [6]). Even more,
the range of D under the mapping f0 is convex in the horizontal direction,
i.e., f0(D) has connected (or empty) intersections with any horizontal line
in C. The direct calculations show that

Sf0(z)− Sf0(z) =
2z

1− |z|4

(
4

1− z
+
z(1− 4|z|2)

1− |z|4

)
.

For z = x ∈ (−1, 1) obtain

Sf0(x)− Sf0(x) =
2x(4x2 + 5x+ 4)

(1− x2)2(1 + x2)2
≈ 13

2

1

(1− x2)2

when x tends to 1. So, the order of growth in (7) is sharp. �

The proved estimation (7) allows us to apply Theorem B to the Schwar-
zian derivative Sf and to obtain the corresponding univalence condition.
Further in this paper we assume that f is not analytic.

Theorem 2. Let a harmonic function f be sense-preserving in D with
the dilatation ω = q2 in D and α <∞ be an order of f . Let f̃ be the lift
(5) of the mapping f to a minimal surface and assume that inequality

|Sf (z)|+ 2α+ 15/2

(1− |z|2)2
≤ 2p(|z|)

holds for some Nehari function p for all z ∈ D. Then f̃ and f are univalent
in D.
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Proof. Let conditions of the theorem be fulfilled. Denote the minimal
surface determined by the lift f̃ of the function f by Xf and its curvature
by K(z). Then apply inequality (7) to obtain

|Sf (z)| − λ2(z)K(z) < |Sf (z)|+ 2α+ 7/2

(1− |z|2)2
− λ2(z)K(z) (9)

for all z ∈ D. This implies univalence of f̃ and f provided that there exists
a Nehari function p(x) such that (9) is dominated by 2p(|z|). In order to
finish the proof we need to estimate the term λ2(z)K(z) in (9). Indeed,
the Gauss curvature of the minimal surface Xf has the form (see [8])

K(z) = −4
|q′(z)|2

|h′(z)|2(1 + |q(z)|2)4
.

Therefore,

−λ2(z)K(z) = 4
|q′(z)|2(|h′(z)|+ |g′(z)|)2

|h′(z)|2(1 + |q(z)|2)4
= 4

|q′(z)|2

(1 + |q(z)|2)2
≤

≤ 4

(1− |z|2)2

(
1− |q(z)|2

1 + |q(z)|2

)2

≤ 4

(1− |z|2)2

because |q′(z)| ≤ (1 − |q(z)|2)/(1 − |z|2) due to the Schwarz Lemma.
Combine the last inequality with (9) and apply Theorem B to obtain the
desired conclusion of the theorem. �

Note that estimation of the quantity λ2K used in the proof above is
sharp. So, the condition on Sf in Theorem 2 can not be weakened in a
general case in the sense of the order of growth.

Now we are going to show that the analogue of the statement about
univalence of f in Theorem 2 is still valid without any assumption about
the dilatation of f .

Theorem 3. Let a harmonic function f be sense-preserving in D, f(0) =
= h′(0)− 1 = 0, α <∞ be an order of f and

|Sf (z)|+ 2α+ 19/2

(1− |z|2)2
< 2p(|z|) (10)

for some Nehari function p and for all z ∈ D. Then f is univalent in D.
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Proof. Let the conditions of the theorem are fulfilled and ω = g′/h′ be a
dilatation of f . It is convenient to assume here that f(0) = h′(0) − 1 =
= 0. As was have remarked above, this assumption does not influence on
univalence of f or on the value of its Schwarzian derivatives.

Suppose that ω can not be represented as a square of an analytic
function in D. Therefore, ω has zeros in D. Fix an arbitrary ρ ∈ (0, 1)
and define a harmonic sense-preserving function

fρ(z) =
1

ρ
f(ρz).

The univalence of fρ in D is equivalent to that of f in the disk |z| < ρ.
Consider a positive ε ∈ (0, 1) and define an affine deformation of fρ:

fρ,ε(z) =
f(ρz) + εf(ρz)

ρ(1 + εg′(0))
.

Note that fρ and fρ,ε are univalent (or opposite) simultaneously. The
dilatation of fρ,ε has the form

ωρ,ε(z) = eiθ
ω(ρz) + ε

1 + εω(ρz)
, θ ∈ R.

Note that |ω(ρz)| < (ρ + |ω(0)|)/(1 + ρ|ω(0)|) for all z ∈ D: this is a
simple consequence of the Schwarz Lemma. Let us choose a ε such that

ρ+ |ω(0)|
1 + ρ|ω(0)|

< ε < 1.

Then ωρ,ε does not have zeros in D and, therefore, there exists an analytic
q such that q2 = ωρ,ε.

Now show that condition (10) allows to apply Theorem B to the func-
tions fρ,ε for any arbitrary ρ < 1 and the corresponding ε. For this
purpose, transform the proofs of Theorems 1, 2 to obtain an estimation
for

|Sfρ,ε(z)| − λ2
ρ,ε(z)Kρ,ε(z),

where λ2
ρ,ε and Kρ,ε are the conformal factor and the Gauss curvature,

respectively, of the minimal surface that corresponds to the function fρ,ε.
First note that

Sfρ,ε(z) = Sfρ(z)
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due to the affine invariance (4) of Sf . Direct calculations show that

Sfρ(z) =
(
ln(|(h(ρz))′|2 − |(g(ρz))′|2)

)
zz
−

−1

2

(
ln(|(h(ρz))′|2 − |(g(ρz))′|2)

)2
z

= ρ2Sf (ρz)

and, therefore
Sfρ,ε(z) = ρ2Sf (ρz). (11)

Apply the the chain rule (3) to the Schwarzian derivatives of the func-
tion Fρ,ε (obtained by (6) from fρ,ε), similarly to the proof of Theorem 1,
to derive the estimation

|Sfρ,ε(z)− Sfρ,ε(z)| =
|Sfρ,ε(0)− Sfρ,ε(0)|

(1− |z|2)2
<

2|A2(ρ, ε)|+ 7
2

(1− |z|2)2
.

Here A2(ρ, ε) = (Hρ,ε)
′′(0)/2 and Hρ,ε is the analytic part of the harmonic

function Fρ,ε. However, this function belongs to the affine and linear hull
of function fρ(z). The estimation

ord (AL) ≤ ord (L) + 1.

is proved in [13] for the order α̃ of the affine hull AL of any linear invariant
family L. Therefore, |A2(ρ, ε)| ≤ α(ρ) + 1. Here α(ρ) denotes order of the
harmonic function fρ(z). In paper [3] D. Campbell proved that

α(ρ) ≤ (α− 1)ρ+ 1.

The sharp estimation of α(ρ) was obtained in [10], but for our purposes
the compact expression cited above is enough. It is clear that α(ρ) → α
when ρ tends to 1. As a result, we have

|Sfρ,ε(z)− Sfρ,ε(z)| <
2α+ 2(α− 1)(ρ− 1) + 11

2

(1− |z|2)2
.

Next, obtain

−λ2
ρ,ε(z)Kρ,ε(z) ≤

4

(1− |z|2)2

similarly to the proof of Theorem 2.
Finally, combining the two last estimations with equality (11), con-

clude from the condition of Theorem 3 that

|Sfρ,ε(z)| − λ2
ρ,ε(z)Kρ,ε(z) < ρ2|Sf (ρz)|+

2α+ 2(α− 1)(ρ− 1) + 4 + 11
2

(1− |z|2)2
.
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In accordance with the assumption of the theorem

|Sf (z)|+
2α+ 19

2

(1− |z|2)2
< 2p(|z|)

for any z ∈ D. Let ρ1 < 1 be fixed. Continuity of Sf and p implies
existence of a δ > 0 such that

|Sf (z)|+
2α+ 19

2

(1− |z|2)2
< 2p(|z|)− δ

for any |z| ≤ ρ1. Therefore,

|Sfρ,ε(z)| − λ2
ρ,ε(z)Kρ,ε(z) <

< |Sf (z)|+
2α+ 19

2

(1− |z|2)2
+ ρ2|Sf (ρz)| − |Sf (z)|+ 2(α− 1)(ρ− 1)

(1− |z|2)2
≤

≤ 2p(|z|)− δ + ρ2|Sf (ρz)| − |Sf (z)|+ 2(α− 1)(ρ− 1)

(1− |z|2)2
.

Here the last fraction and the difference ρ2|Sf (ρz)| − |Sf (z)| tend to 0
uniformly in |z| ≤ ρ1 as ρ→ 1− (and, thus, ε→ 1−). So,

ρ2|Sf (ρz)| − |Sf (z)|+ 2(α− 1)(ρ− 1)

(1− |z|2)2
< δ

for the appropriately chosen ρ that is sufficiently close to 1. Finally we
have

|Sfρ,ε(z)| − λ2
ρ,ε(z)Kρ,ε(z) < 2p(|z|) (12)

for |z| < ρ1 if ρ1 < 1 is fixed and ρ and ε are sufficiently close to 1.
Here we have to note that if p(x) is a Nehari function then p̃(x) =

= ρ2
1p(ρ1x) is also a Nehari function. Indeed, p̃ is even and (1− x2)2p̃(x)

is nonincreasing, because

(1− x2)2p̃(x) = ρ2
1

(1− x2)2

(1− ρ1x2)2
(1− ρ1x

2)2p(ρ1x),

where (1 − ρ1x
2)2p(ρ1x) is nonincreasing, as well as (1 − x2)/(1 − ρ1x

2)
for ρ1 < 1.

It is easy to check that if u is a solution of the differential equation

u′′(x) + p(x)u(x) = 0, (13)
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then the function ũ(x) = u(ρ1x) is a solution of

u′′(x) + p̃(x)u(x) = 0. (14)

Therefore, if u1 and u2 are two linear independent solutions of (13),
then ũ1 and ũ2 are two linear independent solutions of (14).

No nontrivial linear combination c1ũ1(x) + c2ũ2(x) = c1u1(ρ1x) +
+c2u2(ρ1x) has more than one zero, because p is a Nehari function.

Thus, p̃ is also a Nehari function.
So, if (12) holds for a function fρ,ε in |z| ≤ ρ1, then for f̃ρ,ε = fρ,ε(ρ1z)

we have

|Sf̃ρ,ε(z)| − λ̃
2
ρ,ε(z)K̃ρ,ε(z) =

= ρ2
1

(
|Sfρ,ε(ρ1z)| − λ2

ρ,ε(ρ1z)Kρ,ε(ρ1z)
)
< ρ2

12p(ρ1|z|).

Here λ̃2
ρ,ε(z) = ρ2

1λ
2
ρ,ε(ρ1z) and K̃ρ,ε(z) = Kρ,ε(ρ1z) (checked by direct

calculations).
Therefore,

|Sf̃ρ,ε(z)| − λ̃
2
ρ,ε(z)K̃ρ,ε(z) < 2p̃(|z|)

in |z| < 1 for a Nehari function p̃. From Theorem B we deduce that the
function f̃ρ,ε is univalent in D and fρ,ε is univalent in a subdisk |z| < ρ1.
Due to this, f is univalent in the subdisk |z| < ρρ1. If ρ1 → 1−, then ρ
also tends to 1 and f is univalent in D. The theorem is proved. �

As the conclusion, let us assume that a harmonic function f is quasi-
conformal. Then the following version of Theorem 2 is true:

Theorem 4. Let a harmonic function f be sense-preserving in D and
have finite order, dilatation ω = q2, and |q(z)| ≤ δ < 1 in D. Let f̃ be a
lift (5) of the mapping f to the minimal surface. Then some continuous
non-negative function C(δ) exists, such that C(0) = 0, and f̃ and f are
univalent in D provided that the inequality

|Sf (z)|+ C(δ)

(1− |z|2)2
≤ 2p(|z|) (15)

holds for some Nehari function p. In particular, this condition gives the
Nehari Theorem A when δ → 0+ for functions of finite order.

Indeed, if |q(z)| ≤ δ in D, then dilatation of every function F of the
form (6) has the form Q2 and |Q(z)| ≤ δ. In particular,

√
|B1| = |Q(0)| ≤
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≤ δ and the upper bound in (8) has the form

|SF (0)− SF (0)| <
2
√
|B1|

1 + |B1|

{
2|A2|+ 2 +

√
|B1|
|1− 4|B1||
1 + |B1|

}
≤ 2δC1(δ)

where C1(δ) is some continuous bounded function on (0, 1). An explicit
expression for C1 can be found by means of symbolic mathematical soft-
ware; however, as long as |A2| ≤ α, |B1| ≤ δ2 < 1, it is evident that
C1(δ) ≤ 2α+ 7/2, where α is the order of f .

Apply the Schwarz Lemma to the function q/δ to conclude that

|q′(z)| ≤ δ 1− |q(z)/δ|2

1− |z|2
≤ δ

1− |z|2
.

Therefore, the upper bound of −λ2(z)K(z) in the proof of Theorem 2 can
be rewritten in the form

− λ2(z)K(z) = 4
|q′(z)|2

(1 + |q(z)|2)2
≤

≤ 4δ2

(1− |z|2)2

(
1− |q(z)/δ|2

1 + |q(z)|2

)2

≤ 4δ2

(1− |z|2)2
,

that tends to 0 when δ → 0+.
Introduce a continuous non-negative function C(δ) = 2δC1(δ) + 4δ2.

From above it is clear that

C(δ) ≤ C(δ) ≤ 2δ(2α+ 7/2 + 2δ), (16)

so C(δ) tends to 0 as δ → 0+. Assume that a Nehari function p exists,
such that inequality (15) holds in D. Then, repeating actions of the proof
of Theorem 2, conclude that

|Sf (z)| − λ2(z)K(z) < |Sf (z)|+ C(δ)

(1− |z|2)2
≤ 2p(|z|).

This inequality and Theorem B provide univalence of the functions f̃ and
f in D.

In particular, univalence of f is guaranteed by the inequality

|Sf (z)| ≤ 2− δ(2α+ 7/2 + 4δ)

(1− |z|2)2
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and (16), provided that p(x) = 1/(1 − x2)2 and δ is small enough. If, in
addition, δ → 0+, then the quasiconformal harmonic mapping f tends
to some analytic function, and Theorem 4 coincides with Theorem A for
functions of finite order.
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