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Abstract. In this paper we are interested in the mutual L%*-
spectrum relatively to two Borel probability measures having the
same compact support and also in the study of their behavior
under orthogonal projections.
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1. Introduction. The notion of singularity exponents or spectrum
and generalized dimensions are the major components of the multifractal
analysis. They were introduced to characterize the geometry of measure
and are linked with the multifractal spectrum. The multifractal spectrum
is the map that affects the Hausdorff or packing dimension of the iso-
Holder set

log uB, logvB,
E(a, B)= {CC € S5, NSy; lim Mza and lim M:B}
r—0  logr r—0  logr

for a given o, 8 > 0. Here S, is the topological support of the probability
measure p on R™ and B,.(z) is the closed ball of center x and radius r. For
(q,t) € R? the mutual L%*-spectrum of (u,v) is defined as the mapping

log (Sup { > M(BT(xi))qy(Br(iUi))t})
Tuw(q,t) = lim :

r—0 log r ’

where the supremum is taken over all centered packing of S, NS, by balls
of radius r. It is easy to check that 7, ,(g,t) is a concave function [24] of
(q,t) over R?; for ¢,t > 1 it has an integrand expression.
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For ¢, > 1 and for equal compact supports S, S, we have

log / / 1B, ()1 (B, () dp) d(y).

S XSy

.. 1
Tuw(@:1) = hgglf logr

This equation unifies the mutual multifractal spectra to the mutual L9!-
spectrum 7, (q,t) via the Legendre transform [22} 23], i.e.,

dimgy (E(oz,ﬁ)) = iqr,lf {qa +t8 — TH’V(q,t)}.

In this paper we provide the mutual L%*-spectrum relatively to two
compactly supported Borel probability measures on R™. We write P,, for
the set of compactly supported Borel probability measures on R™. Let
p, v € Py, be such that S, =S, = K. For (¢,t) € R? define

PR |
Luo(a,t) = liminf o

log // 1By () (B, () dpu()do(y),

K2NB, (D?)

and

1,.(q,t) =limsup
I'L7 ( ) 7~_>0 10

or ([ u(B @) B ) due)in ),

K2NB,(D?)

where D? = {(z,2) € R? : ¢ € R} is the diagonal ray in R? and B, (D?) =
= {z € R" : dist(z,D?) < r} is the closed r-neighborhood of D?.

Itr,,(qgt) = 1,.,(g,t), then their common value at (g,t) is denoted
by I,.(q,t) and called the mutual L%'-spectrum of p and v. Note that
these quantities are strictly related to the mutual multifractal analysis
[22], [25] - [27] and the mixed multifractal analysis [1§], introduced by
Olsen.

In the recent decade there has been a great interest in understanding
the fractal dimensions of projections of sets and measures. Recently, the
projectional behavior of dimensions and multifractal spectra of sets and
measures have generated a large interest in the mathematical literature
[1] - [4], [7] - [13], [15,[19,20]. The first significant work in this area was the
result by Marstrand [I5] who proved a well-known theorem: the Hausdorff
dimension of a planar set is preserved under orthogonal projections.
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Let us mention that Falconer and Mattila [8] and Falconer and Howroyd
[7] have proved that the packing dimension of the projected set or mea-
sure will be the same for almost all projections. However, despite these
substantial advances for fractal sets, only very little is known about the
multifractal structure of projections of measures, except a paper by O’Neil
[19] and some more recent papers by Barral and Bhouri [2]. The result of
O’Neil was later generalized by Selmi et al. in [4] - [6], [21].

We continue of this research studying the behavior of the upper and
lower mutual L%!-spectra under orthogonal projections onto a lower di-
mensional linear subspace. We employ theoretical methods first used in
this context by Kaufman in [I4] and later generalized in [16].

2. Preliminaries. Let m be an integer with 1 < m < n and
Gy,m represent the Grassmannian manifold of all m-dimensional linear
subspaces of R". By 7, », denote the invariant Haar measure on G, ,,, such
that vy, m (Grn,m) = 1. The projection map my : R™ = V for V € G,, ,, is
the usual orthogonal projection onto V. Then {7y, V € G,, .} is compact
in the space of all linear maps from R™ to R, and identification of V' with
my induces a compact topology for G, ,,. Also, for a Borel probability
measure p with compact support supp ¢ on R™ and for V € G, ,,, define
the projection uy of u onto V' by

pv(A) = pu(ry (4)) YACV.

Note that p is compactly supported and supp py = 7y (supp p) for all
V € Gy, m, then for any continuous function f:V — R

[ rany = [ s @)iuto)

provided that these integrals exist (for more details see [9]). The convo-
lution is defined for 1 < m < n and r > 0 by

—-m

¢, : R — R,
x> 'yn,m{V €Gpm: |mv(z)| < r},
where 7, ,, is the rotation-invariant probability measure on G, ,,,. Define

o7 R* — R,
x> min{l,rm|x|*m}.
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This ¢;" () is equivalent to & (). We write this equivalence as ¢ () =<
= ¢, (z). For a probability measure y and V € G, ,, we have

(@) = ok 6 (0) = s 3 (0) = [ Beav)a.

and
p e (x) = /min {1 , ' — y|_m}d,u(y).
So, integrating by parts and converting into spherical coordinates (see [9])

+oo
p" () = mr™ / u” " By (z)du.

r

The following straightforward estimates concern the behaviour of p""* ()
as r — 0.

Lemma 1. [9] Let 1 <m <n and u € P,. For all z € R"
er’™ < phm ()
for all sufficiently small r, where ¢ > 0 is independent of r.

Lemma 2. [9] Let p € P,.
1) For all x € R™ and r > 0

uB,(z) < ur (x).
2) Let € > 0. For p-almost all x
B (z) > T (),

if r is sufficiently small.

We use the properties of u™™=(z) to obtain a relationship between the
kernels and projected measures.

Lemma 3. [9] Let 1 <m <n, u € P, e >0, and r be sufficiently small.
1) For all V € Gy, 1, and for p-almost all x € R™

rept" (x) < pv Br(av).
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2) For v, m-almost all V € G,, ., and all x € R”

" (2) > pv Br(zv).

3. Projection results. In this section we need an alternative cha-
racterization of the upper and lower mutual L%!-spectra in terms of con-
volution. We specify this to the mutual (g, t)-dimensions relatively to p
and v using appropriate definitions in terms of kernels.

From now on 1 < m < n are two integers and the measures u,v € P,
are such that S, =S, = K. For ¢,t > 0 we define

og [ (@) 0 @) dule)dv(y),

K2NB,.(D?)

m o
17(a:1) —llgnggf Tog

Tm : 1 r,m r,m
Iiulat) =timsup = tog ([ (@) 07 () dute)d ().
r—0 108T
K2NB,.(D?)
Note that for all x,y € K and r > 0

p"m(x) = pBy(z) and v (y) = vB(y).
It is clear that for ¢ > 0 and ¢t > 0 and for a sufficiently small r
@) < Lot and  Try(a,0) < Tuu(ad). (1)
From LemmalI]we see that for all z,y € R” and for any sufficiently small r
er™ < p”™(z) and  Jr™ < VP (y),
where ¢, ¢’ > 0 are independent of r. This leads to
I (g, t) < T, ,(q,t) < m(g+1). (2)

Proposition 1. Lete >0, u,v € P,.
1) Let g,t > 0. For all V € G,, ,, we have

[ [ v Butav )yt (o) duy v o () >

> peat) / / (17 ()" (v () dya() o ()

for all sufficiently small r.
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2) Let 0 < q,t <1. For~7  -almost all V. x W € G2 ,, we have

n,m

// pv (Br(zv))vw (B (yw)) dpy (zv ) dvw (yw) <

SC[/WWM@»%wmwwﬁw@wmw

for all sufficiently small r and C' > 0 independent of r.
Proof. 1) For all V € Gy, ,,, and z,y € K

pom (@) < py™ (wy) and v (y) <vp™ (yy).

Take € > 0 and r > 0. From Lemmawe see that for all V € G,, ,, and
wy-almost all zy € V

v (a:V)v

pv Br(zv) > 1°py
and for vy -almost all yy € V
vy By (yv) = rfvy™ (yv).

This means that

/ / (17 (@)1 (7™ () () dir(y) <

< / / (™ (@ ) ™ () oy (v oy () <
< pmelat) / / iy (B ()0 By () gy (v oy ().

2) For 0 < ¢,t < 1, using Lemma 3.11 in [17], we obtain

=[] @y ) dutaavt) -

K2NB,.(D?)

// (/min{l, P — ] du(u))q .

K2NB,(D2)

(/mln{l r™y — v 7™} dv(v) )t (z)dv(y) >
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>c // (/ Tnm iV € Gpm @ |1y (z) —my(u)| <71} du(u))q X

K20 B, (D?)
x ( [ W € G+ Irw(9) = mr (0] < 1) du(v)) du(x)dv(y) >

so [ ([utwers @ - m ) < a0 x

K2NB,(D?)

t
x ( [river e - mrw) <) d%,m<w>) dy(z) dv(y).
The Jensen inequality and the Fubini Theorem imply
I>e / / v (B () o (By (yw)) dpy (@ )do (o)

for some ¢ and ¢; independent of r. [J

Corollary 1. For all ¢,t >0 and V' € G, ,,, we have

rm* Ty 4 t
lim inf ( [ ff (v (y)t) dp(z)dv(y) D > 0.
r—0 logr JJ wv(B V(Br(yv)) dpy (zv)dvy (yv)
For 0 < ¢,t < 1, %21 m-almost all V- x W ¢ G% . and sufficiently small
r >0

1 S (= (@)1 (v (y)) () dv (y) 3
Th—r’no logr <l [ffﬂv qVW(Br(yw))tdﬂv(xv)de(yw)}) =0

Proof. Follows directly from Proposition |1} [J
Theorem 1. Let u,v € P,.

1) For all g,t >0 and V € Gy,
() Ly i (0:1) < L7, (g,1) < min (m(g + ), L, (0, 1)),
(i) Tpuy o (0.8) < T, (g, t) < min (m(qg+1t),T..(q,1)).

2) For all 0 < q,t <1 and ~} ,,-almost all V x W € G, ,,
(1) l_,UIVﬂ’W (q7 ) = Im ( )7
(11) IHVJ/W (q7 ) I,u V(Q7 t)
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Proof. This follows from , and Corollary 1. [J

Take an r > 0 and denote the set of r-mesh cubes in R™ by €,.. These
cubes have the form

H [kjra (kj + r,

where k; € Z.
Proposition 2. Ifg> —1 andt > —1, then

= limi +1,, t-|—1

L) = migt o log 3 () ,
cece,

T’u,y(q7t) = lim sup log Z q+1 t+1‘
r—0 dee,

Proposition [2| is a consequence from the following lemma.

Lemma 4. Let p,v € P,. If ¢ > 0 and t > 0, then

// W(B. oy (2) (B iy (1) dp(@) () > 3 p(C)TH (€ >

K2NB, (D?) cee,

> C(n,q.1) // (B (@) (B, () dpu(2)dv ().
K2NB,(D2?)

Proof. Let ¢ > 0 and t > 0, then

Z w(C)Hy (Ot = O)v(C // du(z)dv(y

cec, Ce@
c;r 4/ dp(z)dv(y) <
ch CQﬂg /( - B i (2))* (VB i (9)) dpa)du (y) =

— ] B @) By ) )il

K2NB,(D?)
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For the other inequality we have

J[ @B, ) duterinty) <

K2NB,.(D?)

<[ ume B i) <

CeCr c2qB, (D2)

<> ] W@ dutaanty) -

CE@T C’2HB,‘ (DQ)

= Z M(a)QV(é)t // du(x)dv(y) < Z M(a)q+ly(6)t+1 <

Cee, C2nBL(D?) Cee,
t+1

Z(Zu ) ey <

Cee Jj=1

<D T T OO < clmat) Y OO

cee,i,5=1 Ccec,

where C is the cube of side 3r, concentric with C'. [

Proposition 3. Let u,v € P,. For all ¢,t >0 and V € G,, ,,, we have

1) ly,v,l/‘/(q’ )< I/j, V(Q7 )7

2) 7LLVJ/V (Q7t) S Tu,u(Qvt)'

Proof. Assume that S, = S, € Bgr(0) with R > 0. Let V € G, be
given, 0 < r <1 and (Cl)z be a set of r-mesh sub-cubes of V' that cover

the unit cube in V' with center at the origin. For each i let (Cj,

j)j be a

column of cubes of side r above C;, so that (Ci’j)i j are a set of r-mesh

cubes which cover the unit cube with center at the origin. Let ¢ > 0 and

t > 0; then

ZZM DR DD Zﬂ DT 22m(C

J

t—|—1
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q+1 t+1
< Do ulCiy) > v(Ciy)
i\ J i
So,

ZZM ) (G t+1<Zuv )y ()T

Taking the lower and upper limits gives the desired result. [

Definition. For a measure pn on R™ and for p > 1 we say that p € LP(R™)
if there is a function f € LP(R™) such that f is the Radon-Nikodym
derivative of j1 with respect to L™ for u-a.e. x.

Now let us obtain conditions that projections of a measure belong to
LP for some p > 1. Consider a compactly supported Borel probability
measure g on R™. For s, m < s < n define the s-energy of p by

- / & — |~ du(z)dp(y)-

Mattila [17] proved that if I (u) is finite for m < s < n, then for almost
all V- € G, ,, the measure py is absolutely continuous with respect to
the m-dimensional Lebesgue measure L7} on V (denoted by R™), where

LT(E)=L"ENV) for ECR" and py € L*(V).

Proposition 4. [9] Let u be a compactly supported Radon measure on
R™. Let m < s < m. Suppose that I () < oco. Then py is absolutely
continuous with respect to L3, with py in L*(V) for v, m-almost all
V € Gy,m. Moreover, for v, m-almost all V € G, 1,

2m
om —s’

2) if 2m < s < n then the Radon-Nikodym derivative of py with
respect to L7} is bounded and essentially continuous.

1) ifm < s < 2m then py € LP(V) for all p satisfying 1 < p <

Theorem 2. Let m < s < n, I;(;t) < oo and Is(v) < oo. Then for
Yn,m-almost all V € G,, ,,
1) if 2m < s < n then

L, v (@t) =Ly vy (g,t) =m(q+1t) for 0<gq,t< oo;
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2) if m < s < 2m then

(i) for0<gq,t< 522 —1

2m—s

l,uv,uv (Q7 t) = 7Mvﬂ/v (Qa t) = m(q + ?f),

(i) for q,t > 522 — 1

2m—s

S l,uv,l/v (Q7 t) S Tuv,l/v (Q7 t) S m(q + t)a

(iii) for ¢ > 522 — 1 > ¢

2m—s

(2m —s)(¢+1)
2m

m(q+f+1— >§lwwx%ﬂ§7wyﬂ%ﬂéﬂﬂ%ﬂ,

(iv) fort > 2™ — 1> g,

2m—s

(2m — s)(t + 1) -
) £ Ly @8) < T (0.8) < mig )

m(q—l—t—l—l—

Proof. It is a simple consequence of Theorem |1} Proposition 4] and the
following Lemma. [

Lemma 5. Fix ap > 1. Suppose that u, v € LP(R™), ¢,t > 0. Then

;

nlg+t+2) (1-1), ifq+1>p and t+1>p;

n<q+t+1—ﬂ), if q+1>p and t+1<p;

P
lu,u<q7t)2
n<q+t+1—%), if q+1<p and t+12>p;
n(q+1t), if p>q+1 and p>t+1.
dp n dv n .
Proof. Let f = arn € LP(R™) and g = arn € LP(R™). The Holder

inequality gives



On the projections of mutual spectrum 105

q+1 t+1
> ueyrtveyt = 3 | [raer| | foaer| <
at1 1
< (@D (=) pnrn (1-5) §7 /fpd£" /gpdﬁn <
cec, C C
at1 1

Srn(q+t+2)(1f%) Z /fpdﬁn

cee. \g ceer \&

\g
—
Q’@
Q.
o
3
AN

( 1
(prlatt2)(1-1)

v i gl p 1>
x| > / fPdL™ /gpd/yj ,

1
v T ifg+1>p t+l<p
x| > / fracr /gpdcn ,
cec

IN

Toifgrl<p t+1>0p;
grdL"
cee, 7,

\
o
w
<
=
<)
+
4
+
>
Y
—
|
=
SN—
ﬁ\
3
Y
—
|
‘Q
s ]
SN—
\3\
3
—~
—
|
o+
~ ‘3‘4'
Lol N
X

v T i p>qtlp>t+l
<1 > / fraL" /gpd.c" ,
cec,
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(O @HH0-5) g4 1>p, b+ 1> p;

Cor(@HH1=52) Gt et 1> p t+1<p;

IN

Cor™HH1=52) it g 41 <p, t4+1> p;

Cyrmlatt) ifp>qg+1,p>t+1,

\
where C7, Cs, C3, and Cy are independent of r. Since r is sufficiently

small, we obtain the required inequality taking the lower limit. [
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