
94 Probl. Anal. Issues Anal. Vol. 6 (24), No. 2, 2017, pp. 94–108

DOI: 10.15393/j3.art.2017.4231

UDC 517.518.1, 517.518.126, 517.518.13

B. Selmi, N. Yu. Svetova

ON THE PROJECTIONS OF MUTUAL Lq,t-SPECTRUM

Abstract. In this paper we are interested in the mutual Lq,t-
spectrum relatively to two Borel probability measures having the
same compact support and also in the study of their behavior
under orthogonal projections.

Key words: orthogonal projection, dimension spectra, mutual
multifractal analysis

2010 Mathematical Subject Classification: 28A20, 28A80

1. Introduction. The notion of singularity exponents or spectrum
and generalized dimensions are the major components of the multifractal
analysis. They were introduced to characterize the geometry of measure
and are linked with the multifractal spectrum. The multifractal spectrum
is the map that affects the Hausdorff or packing dimension of the iso-
Hölder set

E(α, β)=

{
x ∈ Sµ ∩ Sν ; lim

r→0

logµBr(x)

log r
=α and lim

r→0

log νBr(x)

log r
=β

}
for a given α, β ≥ 0. Here Sµ is the topological support of the probability
measure µ on Rn and Br(x) is the closed ball of center x and radius r. For
(q, t) ∈ R2 the mutual Lq,t-spectrum of (µ, ν) is defined as the mapping

τµ,ν(q, t) = lim
r→0

log
(

sup
{∑

i

µ(Br(xi))
qν(Br(xi))

t
})

log r
,

where the supremum is taken over all centered packing of Sµ∩Sν by balls
of radius r. It is easy to check that τµ,ν(q, t) is a concave function [24] of
(q, t) over R2; for q, t > 1 it has an integrand expression.
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For q, t ≥ 1 and for equal compact supports Sµ, Sν we have

τµ,ν(q, t) = lim inf
r→0

1

log r
log

∫∫
Sµ×Sν

µ(Br(x))q−1ν(Br(y))t−1dµ(x)dν(y).

This equation unifies the mutual multifractal spectra to the mutual Lq,t-
spectrum τµ,ν(q, t) via the Legendre transform [22, 23], i.e.,

dimH

(
E(α, β)

)
= inf

q,t

{
qα+ tβ − τµ,ν(q, t)

}
.

In this paper we provide the mutual Lq,t-spectrum relatively to two
compactly supported Borel probability measures on Rn. We write Pn for
the set of compactly supported Borel probability measures on Rn. Let
µ, ν ∈ Pn be such that Sµ = Sν = K. For (q, t) ∈ R2 define

Iµ,ν(q, t) = lim inf
r→0

1

log r
log

∫∫
K2∩Br(D2)

µ(Br(x))qν(Br(y))tdµ(x)dν(y),

and

Iµ,ν(q, t) = lim sup
r→0

1

log r
log

∫∫
K2∩Br(D2)

µ(Br(x))qν(Br(y))tdµ(x)dν(y),

where D2 =
{

(x, x) ∈ R2 : x ∈ R
}

is the diagonal ray in R2 and Br(D2) =
= {x ∈ Rn : dist(x,D2) ≤ r} is the closed r-neighborhood of D2.

If Iµ,ν(q, t) = Iµ,ν(q, t), then their common value at (q, t) is denoted
by Iµ,ν(q, t) and called the mutual Lq,t-spectrum of µ and ν. Note that
these quantities are strictly related to the mutual multifractal analysis
[22], [25] – [27] and the mixed multifractal analysis [18], introduced by
Olsen.

In the recent decade there has been a great interest in understanding
the fractal dimensions of projections of sets and measures. Recently, the
projectional behavior of dimensions and multifractal spectra of sets and
measures have generated a large interest in the mathematical literature
[1] – [4], [7] – [13], [15, 19, 20]. The first significant work in this area was the
result by Marstrand [15] who proved a well-known theorem: the Hausdorff
dimension of a planar set is preserved under orthogonal projections.
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Let us mention that Falconer and Mattila [8] and Falconer and Howroyd
[7] have proved that the packing dimension of the projected set or mea-
sure will be the same for almost all projections. However, despite these
substantial advances for fractal sets, only very little is known about the
multifractal structure of projections of measures, except a paper by O’Neil
[19] and some more recent papers by Barral and Bhouri [2]. The result of
O’Neil was later generalized by Selmi et al. in [4] – [6], [21].

We continue of this research studying the behavior of the upper and
lower mutual Lq,t-spectra under orthogonal projections onto a lower di-
mensional linear subspace. We employ theoretical methods first used in
this context by Kaufman in [14] and later generalized in [16].

2. Preliminaries. Let m be an integer with 1 ≤ m ≤ n and
Gn,m represent the Grassmannian manifold of all m-dimensional linear
subspaces of Rn. By γn,m denote the invariant Haar measure onGn,m such
that γn,m(Gn,m) = 1. The projection map πV : Rn → V for V ∈ Gn,m is
the usual orthogonal projection onto V . Then {πV , V ∈ Gn,m} is compact
in the space of all linear maps from Rn to Rm, and identification of V with
πV induces a compact topology for Gn,m. Also, for a Borel probability
measure µ with compact support suppµ on Rn and for V ∈ Gn,m define
the projection µV of µ onto V by

µV (A) = µ(π−1V (A)) ∀A ⊆ V.

Note that µ is compactly supported and suppµV = πV (suppµ) for all
V ∈ Gn,m, then for any continuous function f : V −→ R∫

fdµV =

∫
f(πV (x))dµ(x)

provided that these integrals exist (for more details see [9]). The convo-
lution is defined for 1 ≤ m ≤ n and r > 0 by

φ
m

r : Rn −→ R,
x 7−→ γn,m

{
V ∈ Gn,m : |πV (x)| ≤ r

}
,

where γn,m is the rotation-invariant probability measure on Gn,m. Define

φmr : Rn −→ R,
x 7−→ min

{
1 , rm|x|−m

}
.
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This φmr (x) is equivalent to φ
m

r (x). We write this equivalence as φmr (x) �
� φmr (x). For a probability measure µ and V ∈ Gn,m we have

µr,m∗(x) = µ ∗ φmr (x) � µ ∗ φmr (x) =

∫
µVBr(xV )dV,

and

µr,m∗(x) =

∫
min

{
1 , rm|x− y|−m

}
dµ(y).

So, integrating by parts and converting into spherical coordinates (see [9])

µr,m∗(x) = mrm
+∞∫
r

u−m−1µBu(x)du.

The following straightforward estimates concern the behaviour of µr,m∗(x)
as r → 0.

Lemma 1. [9] Let 1 ≤ m ≤ n and µ ∈ Pn. For all x ∈ Rn

crm ≤ µr,m∗(x)

for all sufficiently small r, where c > 0 is independent of r.

Lemma 2. [9] Let µ ∈ Pn.

1) For all x ∈ Rn and r > 0

µBr(x) ≤ µr,n∗(x).

2) Let ε > 0. For µ-almost all x

r−εµBr(x) ≥ µr,n∗(x),

if r is sufficiently small.

We use the properties of µr,m∗(x) to obtain a relationship between the
kernels and projected measures.

Lemma 3. [9] Let 1 ≤ m ≤ n, µ ∈ Pn, ε > 0, and r be sufficiently small.

1) For all V ∈ Gn,m and for µ-almost all x ∈ Rn

rεµr,m∗(x) ≤ µVBr(xV ).
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2) For γn,m-almost all V ∈ Gn,m and all x ∈ Rn

r−εµr,m∗(x) ≥ µVBr(xV ).

3. Projection results. In this section we need an alternative cha-
racterization of the upper and lower mutual Lq,t-spectra in terms of con-
volution. We specify this to the mutual (q, t)-dimensions relatively to µ
and ν using appropriate definitions in terms of kernels.

From now on 1 ≤ m ≤ n are two integers and the measures µ, ν ∈ Pn
are such that Sµ = Sν = K. For q, t > 0 we define

Imµ,ν(q, t) = lim inf
r→0

1

log r
log

∫∫
K2∩Br(D2)

(µr,m∗(x))
q

(νr,m∗(y))
t
dµ(x)dν(y),

I
m

µ,ν(q, t) = lim sup
r→0

1

log r
log

∫∫
K2∩Br(D2)

(µr,m∗(x))
q

(νr,m∗(y))
t
dµ(x)dν(y).

Note that for all x, y ∈ K and r > 0

µr,m∗(x) ≥ µBr(x) and νr,m∗(y) ≥ νBr(y).

It is clear that for q > 0 and t > 0 and for a sufficiently small r

Imµ,ν(q, t) ≤ Iµ,ν(q, t) and I
m

µ,ν(q, t) ≤ Iµ,ν(q, t). (1)

From Lemma 1 we see that for all x, y ∈ Rn and for any sufficiently small r

crm ≤ µr,m∗(x) and c′rm ≤ νr,m∗(y),

where c, c′ > 0 are independent of r. This leads to

Imµ,ν(q, t) ≤ Imµ,ν(q, t) ≤ m(q + t). (2)

Proposition 1. Let ε > 0, µ, ν ∈ Pn.

1) Let q, t > 0. For all V ∈ Gn,m we have∫∫
µV (Br(xV ))qνV (Br(yV ))tdµV (xV )dνV (yV ) ≥

≥ rε(q+t)
∫∫ (

µr,m∗(x)
)q(

νr,m∗(y)
)t
dµ(x)dν(y)

for all sufficiently small r.
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2) Let 0 < q, t ≤ 1. For γ2n,m-almost all V ×W ∈ G2
n,m we have∫∫

µV (Br(xV ))qνW (Br(yW ))tdµV (xV )dνW (yW ) ≤

≤ C
∫∫ (

µr,m∗(x)
)q(

νr,m∗(y)
)t
dµ(x)dν(y)

for all sufficiently small r and C > 0 independent of r.

Proof. 1) For all V ∈ Gn,m and x, y ∈ K

µr,m∗(x) ≤ µr,m∗
V (xV ) and νr,m∗(y) ≤ νr,m∗

V (yV ).

Take ε > 0 and r > 0. From Lemma 3 we see that for all V ∈ Gn,m and
µV -almost all xV ∈ V

µVBr(xV ) ≥ rεµr,m∗
V (xV ),

and for νV -almost all yV ∈ V

νVBr(yV ) ≥ rενr,m∗
V (yV ).

This means that∫∫
(µr,m∗(x))q(νr,m∗(y))tdµ(x)dν(y) ≤

≤
∫∫

(µr,m∗
V (xV ))q(νr,m∗

V (yV ))tdµV (xV )dνV (yV ) ≤

≤ r−ε(q+t)
∫∫

µV (Br(xV ))qνV (Br(yV ))tdµV (xV )dνV (yV ).

2) For 0 < q, t ≤ 1, using Lemma 3.11 in [17], we obtain

I =

∫∫
K2∩Br(D2)

(µr,m∗(x))q(νr,m∗(y))tdµ(x)dν(y) =

=

∫∫
K2∩Br(D2)

(∫
min

{
1, rm|x− u|−m

}
dµ(u)

)q
×

×
(∫

min
{

1, rm|y − v|−m
}
dν(v)

)t
dµ(x)dν(y) ≥
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≥ c
∫∫

K2∩Br(D2)

(∫
γn,m {V ∈ Gn,m : |πV (x)− πV (u)| ≤ r} dµ(u)

)q
×

×
(∫

γn,m {W ∈ Gn,m : |πW (y)− πW (v)| ≤ r} dν(v)

)t
dµ(x)dν(y) ≥

≥ c
∫∫

K2∩Br(D2)

(∫
µ {u ∈ Rn : |πV (x)− πV (u)| ≤ r} dγn,m(V )

)q
×

×
(∫

ν {v ∈ Rn : |πW (y)− πW (v)| ≤ r} dγn,m(W )

)t
dµ(x) dν(y).

The Jensen inequality and the Fubini Theorem imply

I ≥ c1
∫∫

µV (Br(xV ))qνW (Br(yW ))tdµV (xV )dνW (yW )

for some c and c1 independent of r. �

Corollary 1. For all q, t > 0 and V ∈ Gn,m we have

lim inf
r−→0

1

log r

(
log

[ ∫∫
(µr,m∗(x))q(νr,m∗(y))tdµ(x)dν(y)∫∫

µV (Br(xV ))qνV (Br(yV ))tdµV (xV )dνV (yV )

])
≥ 0.

For 0 < q, t ≤ 1, γ2n,m-almost all V ×W ∈ G2
n,m and sufficiently small

r > 0

lim
r−→0

1

log r

(
log

[ ∫∫
(µr,m∗(x))q(νr,m∗(y))tdµ(x)dν(y)∫∫

µV (Br(xV ))qνW (Br(yW ))tdµV (xV )dνW (yW )

])
= 0.

Proof. Follows directly from Proposition 1. �

Theorem 1. Let µ, ν ∈ Pn.

1) For all q, t > 0 and V ∈ Gn,m
(i) IµV ,νV (q, t) ≤ Imµ,ν(q, t) ≤ min

(
m(q + t), Iµ,ν(q, t)

)
,

(ii) IµV ,νV (q, t) ≤ Imµ,ν(q, t) ≤ min
(
m(q + t), Iµ,ν(q, t)

)
.

2) For all 0 < q, t ≤ 1 and γ2n,m-almost all V ×W ∈ G2
n,m

(i) IµV ,νW (q, t) = Imµ,ν(q, t),

(ii) IµV ,νW (q, t) = I
m

µ,ν(q, t).
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Proof. This follows from (1), (2) and Corollary 1. �

Take an r > 0 and denote the set of r-mesh cubes in Rn by Cr. These
cubes have the form

n∏
j=1

[kjr, (kj + 1)r[ ,

where kj ∈ Z.

Proposition 2. If q > −1 and t > −1, then

Iµ,ν(q, t) = lim inf
r→0

1

log r
log

∑
C∈Cr

µ(C)q+1ν(C)t+1,

Iµ,ν(q, t) = lim sup
r→0

1

log r
log

∑
C∈Cr

µ(C)q+1ν(C)t+1.

Proposition 2 is a consequence from the following lemma.

Lemma 4. Let µ, ν ∈ Pn. If q ≥ 0 and t ≥ 0, then∫∫
K2∩Br(D2)

µ(B√nr(x))qν(B√nr(y))tdµ(x)dν(y) ≥
∑
C∈Cr

µ(C)q+1ν(C)t+1 ≥

≥ C(n, q, t)

∫∫
K2∩Br(D2)

µ(Br(x))qν(Br(y))tdµ(x)dν(y).

Proof. Let q ≥ 0 and t ≥ 0, then∑
C∈Cr

µ(C)q+1ν(C)t+1 =
∑
C∈Cr

µ(C)qν(C)t
∫∫
C2

dµ(x)dν(y) =

=
∑
C∈Cr

∫∫
C2

µ(C)qν(C)tdµ(x)dν(y) ≤

≤
∑
C∈Cr

∫∫
C2∩Br(D2)

µ(B√nr(x))q(νB√nr(y))tdµ(x)dν(y) =

=

∫∫
K2∩Br(D2)

µ(B√nr(x))qν(B√nr(y))tdµ(x)dν(y).
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For the other inequality we have∫∫
K2∩Br(D2)

µ(Br(x))qν(Br(y))tdµ(x)dν(y) ≤

≤
∑
C∈Cr

∫∫
C2∩Br(D2)

µ(Br(x))qν(Br(y))tdµ(x)dν(y) ≤

≤
∑
C∈Cr

∫∫
C2∩Br(D2)

µ(Ĉ)qν(Ĉ)tdµ(x)dν(y) =

=
∑
C∈Cr

µ(Ĉ)qν(Ĉ)t
∫∫

C2∩Br(D2)

dµ(x)dν(y) ≤
∑
C∈Cr

µ(Ĉ)q+1ν(Ĉ)t+1 ≤

≤
∑
C∈Cr

(
3n∑
i=1

µ(Ci)

)q+1
 3n∑
j=1

ν(Cj)

t+1

≤

≤ 3n(q+t)
∑
C∈Cr

3n∑
i,j=1

µ(Ci)
q+1ν(Cj)

t+1 ≤ c(n, q, t)
∑
C∈Cr

µ(C)q+1ν(C)t+1,

where Ĉ is the cube of side 3r, concentric with C. �

Proposition 3. Let µ, ν ∈ Pn. For all q, t > 0 and V ∈ Gn,m we have

1) IµV ,νV (q, t) ≤ Iµ,ν(q, t),

2) IµV ,νV (q, t) ≤ Iµ,ν(q, t).

Proof. Assume that Sµ = Sν ⊆ BR(0) with R > 0. Let V ∈ Gn,m be
given, 0 < r ≤ 1 and

(
Ci
)
i

be a set of r-mesh sub-cubes of V that cover

the unit cube in V with center at the origin. For each i let
(
Ci,j

)
j

be a

column of cubes of side r above Ci, so that
(
Ci,j

)
i,j

are a set of r-mesh

cubes which cover the unit cube with center at the origin. Let q > 0 and
t > 0; then

∑
i

∑
j

µ(Ci,j)
q+1ν(Ci,j)

t+1 ≤
∑
i

∑
j

µ(Ci,j)
q+1

∑
j

ν(Ci,j)
t+1

 ≤
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≤
∑
i

∑
j

µ(Ci,j)

q+1∑
j

ν(Ci,j)

t+1

.

So, ∑
i

∑
j

µ(Ci,j)
q+1ν(Ci,j)

t+1 ≤
∑
i

µV (Ci)
q+1νV (Ci)

t+1.

Taking the lower and upper limits gives the desired result. �

Definition. For a measure µ on Rn and for p ≥ 1 we say that µ ∈ Lp(Rn)
if there is a function f ∈ Lp(Rn) such that f is the Radon-Nikodym
derivative of µ with respect to Ln for µ-a.e. x.

Now let us obtain conditions that projections of a measure belong to
Lp for some p ≥ 1. Consider a compactly supported Borel probability
measure µ on Rn. For s, m ≤ s < n define the s-energy of µ by

Is(µ) =

∫∫
|x− y|−sdµ(x)dµ(y).

Mattila [17] proved that if Is(µ) is finite for m ≤ s < n, then for almost
all V ∈ Gn,m the measure µV is absolutely continuous with respect to
the m-dimensional Lebesgue measure LmV on V (denoted by Rm), where
LmV (E) = Lm(E ∩ V ) for E ⊂ Rn, and µV ∈ L2(V ).

Proposition 4. [9] Let µ be a compactly supported Radon measure on
Rn. Let m ≤ s < n. Suppose that Is(µ) < ∞. Then µV is absolutely
continuous with respect to LmV , with µV in L2(V ) for γn,m-almost all
V ∈ Gn,m. Moreover, for γn,m-almost all V ∈ Gn,m

1) if m < s ≤ 2m then µV ∈ Lp(V ) for all p satisfying 1 < p ≤ 2m

2m− s
,

2) if 2m < s < n then the Radon-Nikodym derivative of µV with
respect to LmV is bounded and essentially continuous.

Theorem 2. Let m ≤ s < n, Is(µ) < ∞ and Is(ν) < ∞. Then for
γn,m-almost all V ∈ Gn,m
1) if 2m < s < n then

IµV ,νV (q, t) = IµV ,νV (q, t) = m(q + t) for 0 < q, t <∞;
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2) if m < s < 2m then

(i) for 0 < q, t ≤ 2m
2m−s − 1

IµV ,νV (q, t) = IµV ,νV (q, t) = m(q + t),

(ii) for q, t > 2m
2m−s − 1

s(q + t+ 2)

2
≤ IµV ,νV (q, t) ≤ IµV ,νV (q, t) ≤ m(q + t),

(iii) for q > 2m
2m−s − 1 > t

m

(
q + t+ 1− (2m− s)(q + 1)

2m

)
≤ IµV ,νV (q, t) ≤ IµV ,νV (q, t) ≤ m(q+t),

(iv) for t > 2m
2m−s − 1 > q,

m

(
q + t+ 1− (2m− s)(t+ 1)

2m

)
≤ IµV ,νV (q, t) ≤ IµV ,νV (q, t) ≤ m(q+t).

Proof. It is a simple consequence of Theorem 1, Proposition 4, and the
following Lemma. �

Lemma 5. Fix a p ≥ 1. Suppose that µ, ν ∈ Lp(Rn), q, t > 0. Then

Iµ,ν(q, t) ≥



n(q + t+ 2)
(

1− 1
p

)
, if q + 1 ≥ p and t+ 1 ≥ p;

n
(
q + t+ 1− q+1

p

)
, if q + 1 ≥ p and t+ 1 < p;

n
(
q + t+ 1− t+1

p

)
, if q + 1 < p and t+ 1 ≥ p;

n(q + t), if p > q + 1 and p > t+ 1.

Proof. Let f =
dµ

dLn
∈ Lp(Rn) and g =

dν

dLn
∈ Lp(Rn). The Hölder

inequality gives
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∑
C∈Cr

µ(C)q+1ν(C)t+1 =
∑
C∈Cr

∫
C

fdLn
q+1∫

C

gdLn
t+1

≤

≤ rn(q+1)(1− 1
p )rn(t+1)(1− 1

p )
∑
C∈Cr

∫
C

fpdLn


q+1
p
∫
C

gpdLn


t+1
p

≤

≤ rn(q+t+2)(1− 1
p )
∑
C∈Cr

∫
C

fpdLn


q+1
p ∑

C∈Cr

∫
C

gpdLn


t+1
p

≤

≤




rn(q+t+2)(1− 1

p )×

×

∑
C∈Cr

∫
C

fpdLn

q+1
p
∑
C∈Cr

∫
C

gpdLn

t+1
p

,
if q + 1 ≥ p, t+ 1 ≥ p;


c1r

n(q+t+2)(1− 1
p )r−n(1− t+1

p )×

×

∑
C∈Cr

∫
C

fpdLn

q+1
p
∑
C∈Cr

∫
C

gpdLn

t+1
p

,
if q + 1 ≥ p, t+ 1 < p;


c2r

n(q+t+2)(1− 1
p )r−n(1− q+1

p )×

×

∑
C∈Cr

∫
C

fpdLn

q+1
p
∑
C∈Cr

∫
C

gpdLn

t+1
p

,
if q + 1 < p, t+ 1 ≥ p;


c3r

n(q+t+2)(1− 1
p )r−n(1− q+1

p )r−n(1− t+1
p )×

×

∑
C∈Cr

∫
C

fpdLn

q+1
p
∑
C∈Cr

∫
C

gpdLn

t+1
p

,
if p > q + 1, p > t+ 1
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≤



C1r
n(q+t+2)(1− 1

p ), if q + 1 ≥ p, t+ 1 ≥ p;

C2r
n(q+t+1− q+1

p ), if q + 1 ≥ p, t+ 1 < p;

C3r
n(q+t+1− t+1

p ), if q + 1 < p, t+ 1 ≥ p;

C4r
n(q+t), if p > q + 1, p > t+ 1,

where C1, C2, C3, and C4 are independent of r. Since r is sufficiently
small, we obtain the required inequality taking the lower limit. �
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