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THE METHOD OF NORMAL LOCAL STABILIZATION

Abstract. A problem of nonlinear systems stabilization is studied.
Admissible controls are piecewise constant. The notion of normal
local stabilizability is proposed. A point P (not necessary equilib-
rium) is normally locally stabilizable if for any τ > 0 there exists
such neighborhood D(P ;< τ) of P that any point x ∈ D(P ;< τ)
can be steered, in a time less than τ , to any neighborhood of P and
remains there. The constructive method of normal local stabiliza-
tion of nonlinear autonomous systems is presented. This method
involves a special sequence of contracting cylinders containing a
trajectory. A domain of attraction of a given point is constructed.
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1. Introduction. The notion of normal stabilization, introduced
in this article, is motivated by the concept of normal local controllability,
introduced by N. N. Petrov [6].

Definition 1. A system ẋ = f(x, u), x ∈ Rn, is normally locally control-
lable at a point P if for each τ > 0 there exists a neighborhood D(P ;< τ)
of P such that any point x ∈ D(P ;< τ) can be steered to P , in a time
less than τ , by an admissible control u.

In case of n = 2, for analytical f and piece-wise constant control
N. N. Petrov obtained the necessary and sufficient conditions of the normal
local controllability in terms of serial expansion coefficients for f [7]. For
n > 2 such conditions are not yet found.

Definition 2. A system ẋ = f(x, u), x ∈ Rn, is normally locally stabili-
zable at a point P if for each τ > 0 there exists a neighborhood D(P ;< τ)
of P such that any point x ∈ D(P ;< τ) can be steered by an admissible
control to any neighborhood of P , in a time less than τ , and remains there.
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This notion does not deal necessarily with the equilibrium state stabi-
lization and, therefore, it differs from the finite-time stability notion [4].
The concept of normal stabilization is useful for the control of hybrid
systems, which structure may be time variant and the controller has to
be able to stabilize the desired state in some constrained time. Some
ideas of normal stabilization appeared in [5], though this notion was not
formulated there.

The admissible control is supposed to be a piecewise constant function
of time with values in {ui, i = 1, . . . , n+ 1}, where ui ∈ Rm are constant
vectors. Given a control system ẋ = f(x, u), x ∈ Rn, we prove that if
the vectors f(0, ui), i = 1, . . . , n + 1, affinely generate Rn, then the point
x = 0 can be normally stabilized by admissible control. The sufficient
condition for normal stabilization means that {f(0, ui), i = 1, . . . , n + 1}
is the positive basis of Rn [1], i. e. any x ∈ Rn may be represented as
x =

∑n+1
i=1 λif(0, ui) with nonnegative λi ∈ R.

The main result of the article is the constructive method of normal local
stabilization. It is worth to note that the result of N. N. Petrov [6], [7]
is not constructive. He proved the existence of control in the problem of
normal local controllability, using his implicit positive function theorem.

The method of normal stabilization, presented in this article, may be
used in problems of stabilization via sliding mode [2], [3]. But, unlike [3],
where the method of stabilization is constructed under the crucial obtuse
condition, i. e. the angles between vectors of a special positive basis are
obtuse, in this article the angles between vectors f(0, ui), i = 1, . . . , n, are
arbitrary.

The structure of the article is organized as follows. In Section 2 we
give some definitions, present properties of the positive basis and intro-
duce some geometric objects. Section 3 is devoted to the construction
of the main instrument of the normal stabilization method which is the
cylinder of stabilization. The method of normal stabilization, based on
the sequence of cylinders of stabilization, is presented in Section 4. Some
examples are given in Section 5.

2. Positive basis. Consider the nonlinear control system

ẋ = f(x, u), (1)

where x(t) ∈ Rn is the state, u(t) ∈ U ⊂ Rm is the control input. Let
f : Rn × Rm → Rn be Lipschitz with respect to x. Denote by xTy the
scalar product, ‖x‖2 = xTx, where T is the symbol of transposition. The
admissible control u(t) is a piecewise constant function.
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Definition 3. The set {aj}, j = 1, . . . , k, aj ∈ Rn, is called a positive
basis of Rn if for each x ∈ Rn there exist such λj ∈ R, λj > 0, j = 1, . . . , k,
that x =

∑k
j=1 λjaj.

Definition 4. The set {ai}, i = 1, . . . ,m, is called a positive basis of a
hyperplane πn−1 ∈ Rn if for each x ∈ πn−1 there exist such λi ∈ R, λi > 0,
i = 1, . . . ,m, that x =

∑m
i=1 λiai.

It is easy to see that that the minimum positive basis of Rn consists
of (n+ 1) vectors and for πn−1 it consists of n vectors.

Lemma 1. The set {a1, . . . , an+1} is the positive basis of Rn if and only
if the following both statements are true.

1. The origin O ∈ Rn is the interior point of the convex hull of
a1, . . . , an+1: O ∈ int(co(a1, . . . , an+1)).

2. Any n vectors among a1, . . . , an+1 are linear independent.

Lemma 2. If {a1, . . . , an+1} is the positive basis of Rn then any ai, i =
= 1, . . . , n+ 1 cannot be expressed as the nonnegative linear combination
of the other vectors of the positive basis.

The proofs of Lemmas 1, 2 simply follow from the definition [1].
Let ai, i = 1, . . . , n, be linear independent. Denote by A = (a1, . . . , an)

the matrix with the coordinate columns a1, . . . , an in some basis. We put
α = (α1, . . . , αn)T > 0 (> 0), if αi > 0 (> 0), i = 1, . . . , n. Denote by K
and K∗ the open cone and the conjugate open cone, respectively, spanned
by a1, . . . , an

K = {x ∈ Rn : x = Aα, α > 0}, K∗ = {y ∈ Rn : ATy < 0}, (2)

and let K, K∗ be the closures of K and K∗, respectively

K = {x : x = Aα, α > 0}, K∗ = {y : ATy 6 0}.

Denote K̃ = Rn \ (K ∪ (−K)).

Lemma 3. Assume that a1, . . . , an, ai ∈ Rn, n > 2, are linear indepen-
dent and −K∗ ⊂ K with K, K∗ defined in (2). Then for any y ∈ K∗ there
exists a hyperplane πn−1(y) ⊂ K̃ such that zTy = 0 for each z ∈ πn−1(y).

Proof. Since −y ∈ −K∗ ⊂ K then there exists α > 0 such that −y = Aα
and AT(−y) > 0. Hence ATAα > 0. The linear independence of a1, . . . , an
implies the existence of such γ ∈ Rn that z = Aγ. Then we obtain

zT(−y) = (Aγ)TAα = γTATAα = γ1β1 + . . .+ γnβn,
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where βi, γi are the components of vectors ATAα, γ, respectively, βi > 0.
In order to satisfy zTy = 0 we can put, for example, γl = −γsβl/βs, γi = 0,
s 6= i 6= l, γs 6= 0 for any fixed l, s ∈ {1, . . . , n}. �

Remark. If −K ⊂ K∗ we assume K̃ = Rn \ (K∗∪ (−K∗)), and Lemma 3
is true in this case for any y ∈ K.

Definition 5. Vector y is called a normal to plane πn−1(y).

Lemma 4. Assume that a1,..., an are linear independent and −K∗ ⊂ K.
Let bi = bi(y) be the orthogonal vector projection of ai onto πn−1(y) with
y ∈ K∗. Then {b1, . . . , bn} is the positive basis of πn−1(y).

Proof. First, we prove that the origin O is the interior point of the con-
vex hull of bi, i = 1, . . . , n. Let l(O) be the straight line with directing
vector y ∈ K∗, containing O. Denote by ei the orthogonal projection
of ai onto l(O): ei = (aT

i (−e))(−e) = −kiy, where e = y/‖y‖, ki =
= (aT

i (−e))/‖y‖ > 0. Then ai = bi + ei and

ai = bi − kiy, i = 1,..., n. (3)

Multiplying equalities (3) by αi > 0, adding them and taking into account
that −y = α1a1 + . . . + αnan with αi > 0, we obtain (k̃ − 1)y = α1b

1 +

+ . . .+αnb
n, where k̃ = α1k1 + . . .+αnkn. Multiplying the latter equality

by yT , we obtain (k̃ − 1)yTy = 0. Since y 6= 0 then k̃ = 1 and therefore
α1b

1 + . . . + αnb
n = 0, where αi > 0, which means that O is the interior

point of the convex hull of bi, i = 1, . . . , n.
Secondly, let us prove that any n − 1 vectors among b1, . . . , bn are li-

nearly independent. Assume, without loss of generality, that b1, . . . , bn−1

are linearly dependent. Then there exist δj, j = 1, . . . , n − 1, such that
δ1b1 + . . . + δn−1bn−1 = 0 for δj ∈ R, δ2

1 + . . . + δ2
n−1 6= 0. Using (3) we

obtain that (δ1 − kα1)a1 + . . . + (δn−1 − kαn−1)an−1 − kαnan = 0, where
k = δ1k1 + ...+ δn−1kn−1. Since ai, i = 1,.., n, are linearly independent and
αi > 0, we obtain that k = δ1 = . . . = δ1 = 0. Therefore b1, . . . , bn are
linearly independent. The conclusion of lemma follows from Lemma 1. �

Definition 6. Let us call b1, . . . , bn a projective positive basis of πn−1(y)
corresponding to a basis a1, . . . , an.

Remark. The similar result remains valid in the case −K ⊂ K∗, y ∈ K.

Denote ai(M) = f(M,ui), where ui ⊂ U are any constant vectors,
i = 1, . . . , n + 1, and denote by K(M ; j) a cone with vertex M , spanned
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by vectors ai(M), i = 1, . . . , n+ 1, i 6= j,

K(M ; j) = {x ∈ Rn : x =
n+1∑

i=1,i 6=j

αiai(M), αi > 0}.

Assume that there exists a neighborhood D(O), a ball of center O, such
that for any M ∈D(O) :{a1(M), . . . , an+1(M)} is the positive basis of Rn.

Lemma 5. If M ∈ D(O) then

1. K(M ; j)
⋂
K(M ; s) = ∅ if j 6= s, j, s = 1,..., n+ 1;

2.
⋃n+1
j=1 K(M ; j) = Rn;

3.
⋂n+1
j=1 K(M ; j) = M .

The proof of this lemma, with slight modification, see in [3].
3. Cylinder of Stabilization. In what follows, without loss of ge-

nerality, we consider the normal stabilization of the origin. The following
assumptions are hold valid throughout the paper

M ∈ D(O), O ∈ K(M ; j), (4)

where D(O), K(M ; j) are described above. Next, assume that

‖ai(M)‖ > ∆, i = 1, . . . , n+ 1 (5)

for some ∆ > 0.
Let K∗(M ; j) be a conjugate open cone with respect to K(M ; j) (2).

Consider the case −K∗(M ; j) ⊂ K(M ; j) for some j ∈ I = {1, . . . , n+ 1}.
Then for any y(M) ∈ K∗(M ; j)

aT
i (M)y(M) < 0, i = 1, . . . , n+ 1, i 6= j.

In what follows, y(M) is a unit vector: ‖y(M)‖ = 1. The finiteness of the
set {ai(M), i = 1, . . . , n + 1} implies the existence of constant d(M) > 0
such that

aT
i (M)y(M) 6 −d(M), i = 1, . . . , n+ 1, i 6= j.

Assume that there exist y ∈ K∗(M ; j) which does not depend on M (but
not on j) and d > 0 which does not depend onM and j such that for each
M ∈ D(O)

aT
i (M)y 6 −d, i = 1, . . . , n+ 1, i 6= j. (6)
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For instance, the continuity of ai(M) implies that if {ai(O), i=1, . . . , n+ 1}
is the positive basis then such y and d > 0 exist. Naturally, such y and
d are not unique. Denote by l(M ; y) the straight line through M with
directing vector y, and let πn−1(M ; y) be a plane through M with normal
vector y, i. e. πn−1(M ; y) is a plane orthogonal to l(M ; y). For i 6= j let
ei(M) be a vector projection of ai(M) on l(M ; y). Then

ai(M) = bi(y) + ei(M),

where {bi(y), i = 1, . . . , n + 1, i 6= j} is a projective positive basis of
πn−1(M ; y) corresponding to a basis {ai(M), i = 1, . . . , n+ 1, i 6= j}.
Lemma 6. If y satisfies (6) then

min
i∈I,i 6=j

‖ei(M)‖ > d.

Proof. Since
ei(M) = (aT

i (M)(−y))(−y),

then ‖ei(M)‖ = |aT
i (M)y| > d. �

Let us construct the stabilization cylinder C. Denote by πn−k(M ; y) a
plane throughM of codimension k, k ∈ {1, . . . , n−1}, with normal vector
y. Denote N = l(M ; y) ∩ πn−1(O; y). In what follows we need N 6= O. If
N = O we can take another y ∈ K∗(M ; j), which is not unique.

Introduce the balls

Dn(O;N) = {x ∈ Rn : ‖x‖ 6 ‖ON‖},

Dn−1(O;N) = Dn(O;N) ∩ πn−1(O; y).

Let [MN ] be the segment with M and N as the endpoints.

Definition 7. Let us call the set

C = Dn−1(O;N)× [MN ] ⊂ D(O) (7)

the cylinder of stabilization, with the bottom base Db
n−1 = Dn−1(O;N)

and the top base Dt
n−1 = C

⋂
πn−1(M ; y).

Remark. The cylinder of stabilization C is not unique, because y is not
unique. Moreover, we assume that D(O) is so large that C ⊂ D(O).

Denote by Stn−2, S
b
n−2 the spheres which are the boundaries of the

balls Dt
n−1, D

b
n−1, respectively. Let πn−2(M) be the (n − 2)-dimensional
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plane through M , tangent to Stn−2. Obviously, πn−2(M) ⊂ πn−1(M ; y).
Let x(t, t0,M, u) be the trajectory of the system (1), corresponding to a
control u, such that x(t0, t0,M, u) = M .

Lemma 7. There exists such constant control u = us ∈ U, s ∈ I, that
the trajectory x(t, t0,M, us) of the system (1) enters C at the moment
t = t0, i. e. M is the ingress point.

Proof. Let {bi(y)} be the projective basis corresponding to ai(M), i 6=
j, i = 1, . . . , n + 1, i. e. the positive basis of πn−1(M ; y). Hence the
vectors bi(y) cannot be directed from M into one half plane of πn−1(M ; y)
with the boundary πn−2(M) [1], then there exists bs(y) for some s ∈ I,
which is transversal to Stn−2 and is directed into the interior of Dt

n−1.
The corresponding us is the required control. Really, let πn−1([MN ]) be
the hyperplane tangent to C such that [MN ] ⊂ πn−1([MN ]). Denote by
p(M) a vector orthogonal to πn−1([MN ]) and such that bs(y)Tp(M) < 0.
Multiplying scalarly the equality as(M) = bs(y) + es(M) by p(M) we
obtain that as(M)Tp(M) < 0. Taking in account that aT

s (M)y 6 −d, we
obtain that the trajectory x(t, t0,M, us) enters the cylinder C when t = t0,
i. e. at point M . �

Lemma 8. There exists the admissible (piecewise constant) control
u ∈ U such that the trajectory x(t, t0,M, u), remaining in C, reaches
the bottom base Db

n−1 of C in a finite time.

Proof. Let us note that the trajectory x(t, t0,M, us), where us is the
control from Lemma 7, intersects any hyperplane parallel to πn−1(O; y)
in the direction of the half-space containing the origin O. It follows from
Lemma 6. If x(t, t0,M, us) reaches Db

n−1, remaining in C, then this lemma
is proved. Suppose that M1 is the next point (after M) at which the
trajectory x(t, t0,M, us) hits the boundary of C before attaining Db

n−1.
Then, similarly to the proof of Lemma 7, it can be proved that there
exists a constant control us1 ∈ U such that the trajectory x(t, t0,M1, us)
enters C at a point M1. Let us switch the control from us to us1 at the
moment when the trajectory hits the boundary of C at M1. Use this
control till the trajectory hits boundary of C at some point M2 before
attaining Db

n−1. Then switch the control from us1 to us2 with which the
trajectory enters C at a point M2 and so on. We obtain the control
sequence us, us1, us2, . . .. Lemma 6 implies that there exists usl ∈ U with
which the trajectory reaches Db

n−1 in a finite time. �



Normal local stabilization 79

Remark. In the case −K(M ; j) ⊂ K∗(M ; j) the proof is analogous to
the above one.

4. Method of normal stabilization.

Definition 8. A pointM is τ -reducible if there exists an admissible cont-
rol u ∈ U such that M can be steered by u, along a trajectory of the
system (1), to any neighborhood of O, in a time less than τ , and remains
there.

Definition 9. The domain of τ -reducibility of the origin is the set of all
τ -reducible points.

Theorem 1. Assume that conditions (4), (5), (6) are fulfilled. If

‖OM‖ < τd(1− δ), (8)

where δ ∈ (0, 1) is a constant determined in the proof, then M is a
τ−reducible point.

Proof. Let us construct the cylinder C as it was described in the previous
section. Introduce the radius r0 = ‖ON‖ of the base and the height
h0 = ‖NM‖ of the cylinder C. As it was proved (Lemmas 7, 8) there
exists a piecewise constant u ∈ U such that the trajectory x(t, t0,M, u)
reaches the base Db

n−1 of C at some point M1 ∈ Db
n−1 in finite time τ0:

x(t0 + τ0, t0,M, u) = M1. Then, considering M1 as the initial point, we
can construct the cylinder C1, the construction of which is analogous to
C. In addition, suppose that O ∈ K(M1; j1), j1 ∈ {1,..., n + 1}. The
trajectory x(t, t0 + τ0,M1, u) reaches the low base of C1 in some finite
time τ1. Introduce the radius r1 = ‖ON1‖ of the base and the height
h1 = ‖N1M1‖ of the cylinder C1, where N1 is the point belonging to
the bottom base of C1 and the vector N1M1 is orthogonal to the base of
C1. Proceeding this procedure we obtain the sequences τk, rk = ‖ONk‖,
hk = ‖NkMk‖, O ∈ K(Mk; jk), jk ∈ I, k = 0, 1, 2, . . ., M0 = M , N0 = N ,
j0 = j. Let us prove that Mk → O, when k →∞. Since

OMk = NkMk +ONk, (9)

where NkMk is a vector orthogonal to ONk, then ‖OMk+1‖ 6 ‖ONk‖.
Thus, denoting dk = ‖OMk‖ =

√
h2
k + r2

k, we obtain

dk+1 6 rk < dk. (10)
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Multiplying (9) scaralry by ONk, we obtain

(OMT
k )(ONk) = ‖ONk‖2 > 0.

Hence

‖ONk‖ =
(OMT

k )(ONk)

‖ONk‖
=

(OMT
k )(ONk)‖OMk‖

‖ONk‖ · ‖OMk‖
.

Thus rk = δkdk, where δk = ((OMT
k )(ONk))/(‖ONk‖ · ‖OMk‖) > 0.

Vectors OMk, ONk are not collinear. Therefore the Cauchy inequality
implies that δk < 1.

Since O ∈ K(Mk, jk) then there exist such αki > 0, i = 1,..., n+ 1, that

MkO =
n+1∑
i=1

αki ai(Mk), i 6= jk ∈ I. (11)

Assume, on the contrary, that Mk 9 O as k → ∞. Condition (5) and
nonnegativeness of αki imply that there exists ik 6= jk such that αkik > η for
some η > 0, k = 0, 1, 2, . . .. Multiplying (9) scaralry by (−yk) where yk is
a unit normal vector corresponding to a cylinder Ck (like y corresponds to
C), taking in account that ai(Mk)(−yk) > d (Lemma 6 and assumption
(6)), we obtain

MkO(−yk) =
n+1∑
i=1

αki ai(Mk)(−yk) > d
n+1∑
i=1

αki > dη,

or
dk cos βk > dη,

where cos βk = MkO(−yk)/‖MkO‖ is a cosine of an acute angle βk bet-
ween MkO and −yk. Since the sequence {dk} is bounded then the latter
inequality implies the existence of such β̄ that 0 < βk 6 β̄ < π

2
. Then

cos
(π

2
− βk

)
6 cos

(π
2
− β̄

)
= sin β̄.

Denote δ = sin β̄ < 1. Hence δk 6 δ < 1 for any k = 1, 2, . . ., and
rk 6 δdk. Then (10) implies that dk+1 6 δdk and therefore dk+1 6 δk+1d0.
Thus dk → 0 as k →∞, and Mk → O, which contradicts to assumption.

Now let us prove that for any τ > 0 there exists U(O;< τ) such that
for any point M0 ∈ U(O;< τ):

∑∞
1 τk < τ . Since τk is the time of moving

from Mk−1 to Mk, then, according to Lemma 6,

τk 6 hk−1/d < dk−1/d 6 (d0δ
k−1)/d.
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Therefore,
∞∑
k=1

τk 6 (d0/d)
∞∑
k=1

δk−1 = d0/(d(1− δ)).

Hence if d0 = ‖OM0‖ < τd(1 − δ), then
∑∞

k=1 τk < τ . Thus, M0 = M is
a τ -reducible point. Thus the point O is normally stabilized if

M0 ∈ U(O;< τ) = Ur(O) ∩ U(O; d)

for r < τd(1− δ), where Ur(O) is a ball of radius r centered at the origin.
If Mk = O for some k then we move a little bit from Mk to some point

M̃k and then use the procedure described above. �

Remark 1. The procedure described above implies Ck ⊂ U‖MkO‖(O).

Remark 2. The origin may be replaced by any point M with a positive
basis {f(M,ui), i = 1, . . . , n+ 1}.

5. Examples. In this section we present three examples to illustrate
the results discussed above.
Example 1. Consider the system

ẋ1 = g1(x1, x2) + u− u3, ẋ2 = g2(x1, x2) + 1− u2, (12)

u ∈ {−2, 0, 2},

where x1, x2 ∈ R, g1(0, 0) = g2(0, 0) = 0, g1, g2 are the Lipschitz functions.
Consider f(x1, x2, u) = (f1, f2), where f1, f2 are the right-hand sides of
equations (12). The vectors

f(0, 0, 0) = (0, 1), f(0, 0, 2) = (−6,−3), f(0, 0,−2) = (6,−3)

form the positive basis of R2. Therefore, the origin O is normally locally
stabilizable.
Example 2. Consider the Euler equations for an angular velocity of a
rigid body

I1ω̇1 = (I2 − I3)ω2ω3 + u1, I2ω̇2 = (I3 − I1)ω1ω3 + u2,

I3ω̇3 = (I1 − I2)ω1ω2 + u3,

where ωi = ωi(t) are the components of the angle velocity vector in a fixed
coordinate system coinciding with the principal axes, Ii are the princi-
pal inertia moments, i = 1, 2, 3. The applied torque u = (u1, u2, u3) is
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a piecewise constant control. If the admissible constant controls uj =
= (u1j, u2j, u3j), j = 1, 2, 3, 4, form the positive basis of R3 then the origin
O is normally locally stabilizable. For example,

u1 = (1, 0, 0), u2 = (0, 1, 0), u3 = (0, 0, 1), u4 = (−1,−1,−1).

Example 3. Consider the system

ẋ1 = x1 + cosu, ẋ2 = x1x2 + sinu, u ∈ {π/3; 2π/3; 3π/2}.

Denote x = (x1, x2), O = (0, 0), f1(x) = f(x, π/3), f2(x) = f(x, 2π/3),
f3(x) = f(x, 3π/2). The vectors fi(O) form the positive basis of R2.
Therefore, the origin O is normally locally stabilizable.

Let us construct the cylinder C. At first, we find the open set Π,
O ∈ Π ⊂ R2, such that for any x ∈ Π the vectors fi(x), i = 1, 2, 3, form
the positive basis. The conditions of collinearity for pairs of the vectors
fi(x), fj(x), i 6= j are as follows:

1. f1(x), f2(x) are collinear if and only if x1x2 = −
√

3
2
;

2. f1(x), f3(x) are collinear if and only if x2 = 1
x1

+ 2 +
√

3;

3. f2(x), f3(x) are collinear if and only if x2 = 1
x1
− (2 +

√
3).

Therefore, the continuity of fi(x) implies that

Π =
{

(x1, x2) : x1x2 > −
√

3

2
, x2 <

1

x1

− (2 +
√

3), x2 >
1

x1

+ 2 +
√

3
}
.

Let us take, for example, the initial pointM0 = (0.1; 0.1) ∈ Π and con-
struct C for it. Since O ∈ K(M0; 1), we consider the hyperplane π(O; y)
with normal vector y = (a, b), satisfying yTfi(O) < 0, i = 2, 3. Therefore,
0 < b < a√

3
. Now, take, for example, (a, b) = (1, 0.25), d = 0.125 and find

the set Π̃(d) ⊃ U(O; d), for which yTfi(x) < 0, i = 2, 3:

x1 −
1

2
+

1

4

(
x1x2 +

√
3

2

)
< −1

8
, x1 +

1

4

(
x1x2 − 1

)
< −1

8
,

which leads to Π̃(d) = {x : 8x1 + 2x1x2 < 1}. Then we obtain the
hyperplanes, containing the bases of C, e. g. π(M0; y) : x2 + 4x1 = 0,
π(O; y) : x2 + 4x1 = 0.5. Now we can construct the cylinder

C =
{
x : x2 > −4x1, x2 6 −4x1 + 1, x2 >

1

4
x1 −

1

8
, x2 6

1

4
x1 +

3

40

}
.



Normal local stabilization 83

Instead of C, constructed above, we can take any cylinder (rectangular),
containing in C, with basis on straight lines x2 + 4x1 = 0, x2 + 4x1 = 0.5
and the lateral sides parallel to x2 = 0.25x1 − 0.125, x2 = 0.25x1 + 0.075.

6. Conclusions. In this article the notion of normal stabilization of
control systems is proposed. An admissible control is piece-wise constant.
The constructive method of normal stabilization, based on a sequence of
cylinders of stabilization, is presented. An extension of the presented app-
roach to non-autonomous systems is the subject of future investigations.
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