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GENERALIZED RESOLVENTS OF OPERATORS
GENERATED BY INTEGRAL EQUATIONS

Abstract. We define a minimal operator L0 generated by an in-
tegral equation with an operator measure and give a description of
the adjoint operator L∗0. We prove that every generalized resolvent
of L0 is an integral operator and give a description of boundary
value problems associated to generalized resolvents.
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1. Introduction. In [13], A.V. Straus described generalized resol-
vents of a symmetric operator generated by formally selfadjoint differen-
tial expression in the scalar case. In [4] these results were extended to
the operator case. Further, the generalized resolvents of differential ope-
rators were studied in many works (a detailed bibliography is available,
for example, in [10], [12]).

In this paper, we consider the integral equation

y(t) = x0 − iJ
t∫

a

dp(s)y(s)− iJ
t∫

a

f(s)ds, (1)

where y is an unknown function; f ∈ L2(H; a, b), J is an operator in a
separable Hilbert space H, J = J∗, J2 = E (E is the identical operator);
p is an operator-valued measure defined on Borel sets ∆ ⊂ [a, b] and tak-
ing values in the set of linear bounded operators acting in H;

∫ t
t0

stands
for
∫

[t0t)
if t0 < t, for −

∫
[t0t)

if t0 > t, and for 0 if t0 = t. We assume that
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the measure p is self-adjoint, and p has a bounded variation, and the set
Sp of single-point atoms of measure p can be arranged in the form of an
increasing sequence.

We define the minimal operator L0 generated by equation (1) and give
a description of the adjoint operator L∗0. We prove that every genera-
lized resolvent of L0 is an integral operator. Unlike differential operators,
the domain and the range of the characteristic function of a generalized
resolvent are spaces of sequences. Moreover, we give a description of
generalized resolvents in terms of boundary value problems.

2. Preliminary assertions. Let H be a separable Hilbert space with
scalar product (· , ·) and norm ‖·‖. We consider a function ∆→ P(∆)
defined on Borel sets ∆ ⊂ [a, b] and taking values in the set of bounded
linear operators acting in H. The function P is called an operator measure
on [a, b] (see, e. g., [3, ch. 5]) if it is zero on the empty set and the equality
P (
⋃∞
n=1 ∆n) =

∑∞
n=1 P(∆n) holds for disjoint Borel sets ∆n, where the

series converges weakly. Further, we extend any measure P on [a,b] to a
segment [a, b0] (b0>b) letting P(∆) = 0 for all Borel sets ∆⊂ (b, b0].

By V∆(P) we denote V∆(P) = ρ(∆) = sup
∑

j ‖P(∆j)‖, where the
supremum is taken over finite sums of disjoint Borel sets ∆j ⊂ ∆. The
number V∆(P) is called variation of the measure P on the Borel set ∆.
Suppose that the measure P has the bounded variation on [a,b]. Then
for ρ-almost all ξ ∈ [a, b] there exists an operator function ξ → ΨP(ξ)
such that ΨP possesses the values in the set of bounded linear operators
acting in H, ‖ΨP(ξ)‖= 1, and the equality P(∆) =

∫
∆

ΨP(ξ)dρ holds for
each Borel set ∆⊂ [a, b] ([3, ch. 5]). A function h is integrable with re-
spect to the measure P on a set ∆ if there exists the Bochner integral∫

∆
ΨP(t)h(t)dρ =

∫
∆
(dP)h(t). Then the function y(t) =

∫ t
t0
(dP)h(s) is con-

tinuous from the left.
Denote by SP a set of single-point atoms of the measure P (i. e., a set

t ∈ [a, b] such that P({t}) 6= 0). The set SP is at most countable.
In following Lemma 1, p1, p2, q are operator measures having bounded

variations and taking values in the set of linear bounded operators acting
in H. Suppose that the measure q is self-adjoint, i. e., (q(∆))∗=q(∆) for
each Borel set ∆⊂ [a, b]. We assume that these measures are extended to
the segment [a, b0]⊃ [a, b0)⊃ [a, b] in the manner described above.

Lemma 1. [8] Let f , g be functions integrable on [a,b0] with respect to
the measure q. Then any functions
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y(t)=y0 − iJ
t∫

t0

dp1(s)y(s)− iJ
t∫

t0

dq(s)f(s),

z(t)=z0 − iJ
t∫

t0

dp2(s)z(s)− iJ
t∫

t0

dq(s)g(s) (a 6 t0< b0, t06 t 6 b0)

satisfy the following formula (analogous to the Lagrange one):
c2∫
c1

(dq(t)f(t), z(t))−
c2∫
c1

(y(t), dq(t)g(t)) = (iJy(c2), z(c2))−

− (iJy(c1), z(c1)) +

∫ c2

c1

(y(t), dp2(t)z(t))−
c2∫
c1

(dp1(t)y(t), z(t))−

−
∑

t∈Sp1∩Sp2∩[c1,c2)

(iJp1({t})y(t),p2({t})z(t))−

−
∑

t∈Sq∩Sp2∩[c1,c2)

(iJq({t})f(t),p2({t})z(t))−

−
∑

t∈Sp1∩Sq∩[c1,c2)

(iJp1({t})y(t),q({t})g(t))−

−
∑

t∈Sq∩[c1,c2)

(iJq({t})f(t),q({t})g(t)) , t0 6 c1 < c2 6 b0. (2)

Let a segment [l1, l2]⊂ [a, b0]. We consider a set of Borel measurable
functions, ranging in H, bounded on [l1, l2], continuous from the left, and
constant on [l1, l2]∩ (b, b0]. We introduce the norm ‖u‖[l1, l2] = sup

t∈[l1, l2]

‖u(t)‖

on this set and obtain a Banach space denoted by C̃[l1, l2].

Theorem 1. [7] For any function g ∈ C̃[a, b0] there exists a unique
solution of the equation

y(t) =

t∫
t0

dp(ξ)y(ξ) + g(t), a 6 t0 6 b0, (3)

belonging to the space C̃[t0 − δ, b0], where a 6 t0 < b0, δ = δ(t0) > 0 is
small enough if t0 > a and δ = 0 if t0 = a, the measure p has the bounded
variation on [a, b].
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Corollary 1. Suppose t0 = a. Then for any function g ∈ C̃[a, b0] there
exists a unique solution of equation (3) belonging to the space C̃[a, b0].

Remark 1. In general, a solution of (3) can be non-extendable to the left
(see [7]). However, if the measure p in (3) is continuous, then a solution
can be extended to the left up to the point a and this extension is unique.

Suppose further that p is a self-adjoint measure with the bounded
variation. We consider the equation

y(t) = x0 − iJ
t∫

a

dp(s)y(s)− iJλ
t∫

a

y(s)dµ(s)− iJ
t∫

a

f(s)dµ(s), (4)

where λ ∈ C; µ is the usual Lebesque measure on [a, b] (µ([α, β)) = β−α
for all α, β ∈ [a, b], α<β) extended to [a, b0] by the equality µ(∆) = 0 for
each Borel set ∆ ⊂ (b, b0]; x0 ∈ H; f ∈L2(H; a, b) and f=0 on (b, b0].

We construct the continuous measure p0 (i. e., a measure without
single-point atoms) from the measure p in the following way. We set
p0({tk})=0 for tk ∈ Sp and we set p0(∆) = p(∆) for all Borel sets such
that ∆ ∩ Sp =∅. The measure p0 is self-adjoint. Replace p by p0 in (4)
to obtain the equation

y(t) = x0 − iJ
t∫

a

dp0(s)y(s)− iJλ
t∫

a

y(s)dµ(s)− iJ
t∫

a

f(s)dµ(s). (5)

By Corollary 1, it follows that equations (4), (5) have unique solutions.
Denote by W the operator solution of the equation

W (t, λ)x0 = x0 − iJ
t∫

a

dp0(s)W (s, λ)x0 − iJλ
t∫

a

W (s, λ)x0dµ(s),

where x0 ∈ H. In Lemma 1 we take p1 = p0 + λµ, p2 = p0 + λµ, q = µ,
f=g=0, y(t)=W (t, λ)x0, z(t)=W (t, λ)z0, x0, z0 ∈ H. Since the measure
p0 is self-adjoint and the equality Sp0 = ∅ holds, we obtain

(iJW (c2, λ)x0,W (c2, λ)z0)− (iJW (c1, λ)x0,W (c1, λ)z0) = 0

for all c1, c2 (a 6 c1 6 c2 6 b0). In this equality we take c2 = t, c1 = a.
Then we get

W ∗(t, λ)JW (t, λ) = J. (6)
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The functions t → W (t, λ) and t → W−1(t, 26λ) = JW ∗(t, λ)J are
continuous with respect to the uniform operator topology. Consequently,
there exist constants α > 0, β > 0 such that the inequality

α ‖x‖2 6 ‖W (t, λ)x‖2 6 β ‖x‖2 (7)

holds for all x ∈ H, t ∈ [a, b0], λ ∈ C ⊂ C (C is a compact set). The
function λ→W (t, λ) is holomorphic for any fixed t.

Lemma 2. [7, 8] The function y is a solution of the equation (5) if and
only if y has the form

y(t) = W (t, λ)x0 −W (t, λ)iJ

t∫
a

W ∗(s, λ)f(s)dµ(s),

where x0 ∈ H, a 6 t 6 b0.

3. Linear operators generated by the integral equation. In
this section, we introduce a minimal operator L0 generated by equations
(4), (1) and give a description of the adjoint operator L∗0. Further the
following notation is used: D(A) is the domain of an operator A, R(A) is
the range of A. Since all considered operators are linear, we shall often
omit the word «linear».

Let L2(H,µ; a, b0) be the space of µ-measurable functions y with values
in H such that

∫ b0
a
‖y(t)‖2 dµ(t) <∞. This space coincides with the space

H = L2(H; a, b) since µ(∆) = 0 for each Borel set ∆ ⊂ (b, b0].
Let us define the minimal operator L0 in the following way. The do-

main D(L0) consists of functions y ∈ H for each of which there exists a
function f ∈ H such that (4) holds with λ = 0 and y satisfies the conditions

y(a) = y(b0) = y(tk) = 0, tk ∈ Sp. (8)

Then we set L0y = f . By Lemma 1, the operator L0 is symmetric. If
equalities (4), (8) hold, then y∈D(L0−λE) and (L0−λE)y = f (λ ∈ C).

We claim that if y ∈ D(L0) then y(t) = 0 for all t ∈ [b, b0]. Indeed,
limt→b+0 y(t) = 0 since y(b0) = 0. If b /∈ Sp, then y(b) = 0. If b ∈ Sp,
then equality (8) implies y(b) = 0. Since µ(∆) = 0 for each Borel set
∆ ⊂ (b, b0], we obtain the desired assertion.

It follows from (8), that y(a) = 0. In this case y is independent
of the condition a ∈ Sp. Thus the operator L0 does not change if the
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measure p is replaced by a measure p1 such that p1({a}) = p1({b}) = 0
and p1(∆)=p(∆) for all Borel sets ∆ ⊂ [a, b] \ {a, b}. Therefore, without
loss of generality, it can be assumed that b0 = b, and p({a})=p({b})=0
(i. e., a, b /∈ Sp), and µ is the usual Lebesque measure on [a, b]. Further
we write ds instead of dµ(s).

Remark 2. It is possible that D(L0) = {0}. An example is available in
[7]. In this case L∗0 = H×H, i. e., L∗0 is a linear relation. (The terminology
on linear relations can be found, for example, in [2]).

Lemma 3. [8] The operator L0 is closed. The function y belongs to the
domain D(L0−λE) if and only if the equalities

y(t) = W (t, λ)iJ

t∫
a

W ∗(s, λ)f(s)ds,

y(sk) = W (sk, λ)iJ

sk∫
a

W ∗(s, λ)f(s)ds = 0

hold, where sk ∈ Sp ∪ {b}, f = (L0 − λE)y.

Corollary 2. The function f ∈ H belongs to the range R(L0 − λE) if
and only if f satisfies the condition

sk∫
a

W ∗(s, λ)f(s)ds = 0 (9)

for all sk ∈ Sp ∪ {b}.
Remark 3. Condition (9) is equivalent to the following:

sk∫
sk−1

W ∗(s, λ)f(s)ds = 0, sk ∈ Sp ∪ {a, b}. (10)

Further, suppose that the set Sp of single-point atoms {tk} can be
arranged in the ascending order t1<t2< ...< tk< ... and the limit point
is b. By χB denote the characteristic function of a set B.

Lemma 4. The domain D(L0) of the operator L0 is dense in H.

Proof. Suppose that there exists a function h ∈ H such that the equality
(h,z)H = 0 holds for all z ∈ D(L0). By y denote a solution of equa-
tion (5), in which λ = 0 and the function f is replaced by h. Suppose that
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z ∈ D(L0) and denote zk(t) = χ[tk−1;tk]z (t0 = a, tk ∈ Sp, k ∈ N, N is the
natural number set). It follows from Lemma 3 that zk ∈ D(L0). We apply
Lagrange’s formula (2) to the functions y, h and zk, L0zk for c1 = tk−1,
c2 = tk, p1 = p2 = p0, q = µ. Then we obtain (y, L0zk)H = (h,zk)H = 0.
Hence,

(y, L0zk)H =

tk∫
tk−1

(y(s), (L0zk)(s))ds = 0

for each function z ∈ D(L0). By (7), it follows that a set of functions
t→W (t, 0)ck is closed in the space L2(H; [tk−1, tk]), where ck ∈ H. Using
corollary 2 and equality (10), we obtain that there exists ck ∈ H such
that y(t) = W (t, 0)ck (tk−1 6 t 6 tk). Lemma 2 implies h(t) = 0 for
t ∈ [tk−1, tk]. Since k is arbitrary (k ∈ N), we get h = 0. �

We denote wk(t, λ) = χ[tk−1; tk)(t)W (t, λ)W−1(tk−1, λ), t0 = a, k ∈ N.
Let W̃n(t, λ) = (w1(t, λ), . . . ,wn(t, λ)) be the operator one-row matrix. For
fixed t, λ, the operator W̃n(t, λ) maps Hn to H continuously; here Hn is
the Cartesian product of n copies of H. It is convenient to treat elements
from Hn as one-column matrices, and to assume that

W̃n(t, λ)ξ̃n =
n∑
k=1

wk(t, λ)ξk,

where we denote ξ̃n = col(ξ1, . . . , ξn) ∈ Hn, ξk ∈ H.
Let kerk(λ) be a linear space of functions t→wk(t, λ)ξk, ξk ∈ H. By

(7), it follows that kerk(λ) is closed in H. The spaces kerk(λ) and kerj(λ)
are orthogonal for k 6= j. We denote Kn(λ) = ker1(λ) ⊕ . . . ⊕ kern(λ).
Obviously, Kn(λ) ⊂ Km(λ) for n < m.

Lemma 5. The set ∪nKn(λ) is dense in ker(L∗0 − λE).

Proof. It follows from Corollary 2 and (10) that the range R(L0 − λE)
consists of functions f ∈ H orthogonal to functions of the form wk(·, λ)ξk,
where ξk ∈ H, k ∈ N. The equality ker(L∗0 − λE) ⊕ R(L0 − λE) = H
implies the desired assertion. The Lemma is proved. �

Denote the operator ξ̃n→ W̃n(· , λ)ξ̃n (ξ̃n ∈Hn) by Wn(λ). The ope-
ratorWn(λ) maps Hn continuously and one-to-one onto Kn(λ) ⊂ H. Con-
sequently, the adjoint operator W∗n(λ) maps H onto Hn continuously. We
find the form of the operator W∗n(λ). For all ξ̃n ∈ Hn, f ∈H, we have
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(f,Wn(λ) ξ̃n)H =

b∫
a

(f(s), W̃n(s, λ)ξ̃n)ds =

=

b∫
a

(W̃ ∗
n(s, λ)f(s), ξ̃n)ds = (W∗n(λ)f, ξ̃n).

Therefore,

W∗n(λ)f =

b∫
a

W̃ ∗
n(s, λ)f(s)ds. (11)

So we obtain the following statement:

Lemma 6. The operator Wn(λ) maps Hn continuously and one-to-one
onto Kn(λ). The adjoint operator W∗n(λ) maps H continuously onto Hn

and acts by (11). Moreover, W∗n(λ) maps Kn(λ) one-to-one onto Hn.

Lemma 7. There exist α, β > 0 such that the inequalities

α
n∑
k=1

∆k ‖τk‖26‖Wn(λ)τ̃n‖2
H 6 β

n∑
k=1

∆k ‖τk‖2, τ̃n = (τ1,...,τn)∈ Hn,

(12)

α
n∑
k=1

∆−1
k ‖ϕk‖

26‖Wn(λ)τ̃n‖2
H6β

n∑
k=1

∆−1
k ‖ϕk‖

2 (13)

hold for all n ∈ N, where

∆k= tk− tk−1, ϕk=

tk∫
tk−1

w∗k(s, λ)wk(s, λ)τkds.

Proof. Using (7), we get

α∆k ‖τk‖2 6

tk∫
tk−1

‖wk(s, λ)τk‖2 ds 6 β∆k ‖τk‖2 , α, β > 0.

Therefore,

α
n∑
k=1

∆k ‖τk‖2 6
n∑
k=1

tk∫
tk−1

‖wk(s, λ)τk‖2 ds 6 β
n∑
k=1

∆k ‖τk‖2 .
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This implies (12). To prove (13), use (7) to obtain

α1∆k ‖τk‖6‖ϕk‖=

∥∥∥∥
tk∫

tk−1

w∗k(s, λ)wk(s, λ)τkds

∥∥∥∥6 β1∆k ‖τk‖ ,

where α1, β1 > 0. Hence, α1∆k ‖τk‖26∆−1
k ‖ϕk‖

26 β1∆k ‖τk‖2. Thus,

α1

n∑
k=1

∆k ‖τk‖2 6
n∑
k=1

∆−1
k ‖ϕk‖

2 6 β1

n∑
k=1

∆k ‖τk‖2 .

Now, using (12), get (13). The Lemma is proved. �

Let H−, H+, H0 = l2(H) be linear spaces of sequences, respectively,
τ̃ = {τk}, ϕ̃ = {ϕk}, ξ̃ = {ξk} such that the series

∑∞
k=1 ∆k ‖τk‖2,∑∞

k=1 ∆−1
k ‖ϕk‖

2,
∑∞

k=1 ‖ξk‖
2 converge, where τk, ϕk, ξk ∈ H. These

spaces become Hilbert spaces if we introduce scalar products as

(τ̃ , η̃)−=
∞∑
k=1

(∆kτk, ηk), τ̃ , η̃∈H−, (ϕ̃, ψ̃)+ =
∞∑
k=1

(∆−1
k ϕk, ψk), ϕ̃, ψ̃∈H+,

(ξ̃, ζ̃)0 = (ξ̃, ζ̃) =
∞∑
k=1

(ξk, ζk), ξ̃, ζ̃ ∈ H0.

In these spaces, the norms are defined by the equalities

‖τ̃‖2
− =

∞∑
k=1

∆k ‖τk‖2, ‖ϕ̃‖2
+ =

∞∑
k=1

∆−1
k

∥∥ϕk∥∥2
,
∥∥ξ̃∥∥2

0
=
∞∑
k=1

∥∥ξk∥∥2
.

The spacesH+, H− can be treated as spaces with positive and negative
norms with respect to H0 (see [3, ch.1], [9, ch.2]). So, H+ ⊂ H0 ⊂ H− and
α ‖ϕ̃‖− 6 ‖ϕ̃‖0 6 β ‖ϕ̃‖+, where ϕ̃ ∈ H+, α, β > 0, i. e., the space H0 is
equipped with the spaces H+, H−. The "scalar product" (ϕ̃, τ̃) = (ϕ̃, τ̃)0

is defined for ϕ̃ ∈ H+, τ̃ ∈ H−. If τ̃ ∈ H0, then (ϕ̃, τ̃)0 coincides with the
scalar product in H0.

Let T ⊂ H− be a set of sequences vanishing starting from a certain
number (its own for each sequence). The set T is dense in the space
H−. The operator Wn(λ) is the restriction of Wn+1(λ) to Hn. By W ′(λ)
denote an operator in T , such that W ′(λ)τ̃ = Wn(λ)τ̃n for all n ∈ N,
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where τ̃ = (τ̃n, 0, . . . ). It follows from (12) that the operator W ′(λ) ad-
mits an extension by continuity to the space H−. By W(λ) denote the
extended operator. Moreover, we denote W̃ (t, λ)τ̃ = (W(λ)τ̃)(t), where
τ̃ = {τk} ∈ H−. For a fixed t, the operator W̃ (t, λ) maps H− into H.
Lemmas 5, 6 imply the following assertion.

Lemma 8. The operator W(λ) maps H− continuously and one-to-one
onto ker(L∗0 − λE). A function u belongs to ker(L∗0 − λE) if and only if
there exists τ̃ = {τk} ∈ H− such that u(t) = (W(λ)τ̃)(t) = W̃ (t, λ)τ̃ .

The adjoint operator W∗(λ) maps H continuously onto H+. Let us
find the form of W∗(λ). Suppose f ∈ H, ξ̃ ∈ T , ξ̃ = {ξ̃n, 0, . . .}. Then

(ξ̃,W∗(λ)f)=(W(λ)ξ̃, f)H =

b∫
a

(W̃ (t, λ)ξ̃, f(t))dt =

b∫
a

(ξ̃, W̃ ∗(t, λ)f(t))dt.

Since W∗(λ)f ∈ H+ and the set T is dense in H−, we obtain

W∗(λ)f =

b∫
a

W̃ ∗(t, λ)f(t)dt. (14)

Thus we obtain the following statement.

Lemma 9. The operatorW∗(λ) maps H continuously onto H+ and acts
by formula (14). Moreover,W∗(λ) maps ker(L∗0−λE) one-to-one onto H+

and kerW∗(λ) = R(L0 − λE).

Lemma 10. Suppose that f ∈ H and functions F̃an, F̃bn are defined as

F̃an(t) = −2−1W̃n(t,λ)iJ̃n

t∫
a

W̃ ∗
n(s,λ)f(s)ds, (15)

F̃bn(t) = 2−1W̃n(t, λ)iJ̃n

b∫
t

W̃ ∗
n(s, λ)f(s)ds.

Then F̃an, F̃bn ∈ D(L∗0) for all n ∈ N. If the function f vanishes on [tn, b],
then L∗0(F̃an)− λF̃an = L∗0(F̃bn)− λF̃bn = 2−1f . Here J̃n is an operator in
Hn acting by the formula J̃nξ̃n = (Jξ1, . . . ,Jξn).
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Proof. Using (15), we get

F̃an(t) =
n∑
k=1

Fk(t), Fk(t) = −2−1wk(t, λ)iJ

t∫
tk−1

w∗k(s, λ)f(s)ds.

The function Fk is continuous on the interval [tk−1,tk) and vanishes
outside this interval. The function Fk does not change in the space H if
changed at one point. Therefore, without loss of generality, the function Fk
can be assumed to be continuous from the left at the point tk. Then, taking
into account Lemma 2, we obtain that Fk is a solution of equation (5) (in
which a = tk−1 and f is replaced by 2−1f) on the segment [tk−1, tk]. In [8]
it is proved that every function y ∈ D(L0) is a solution of equality (5)
in which f is replaced by g = L0y. Therefore, we can apply Lagrange’s
formula (2) to the functions y ∈ D(L0), Fk for c1 = tk−1, c2 = tk, q = µ,
p1 = p2 = p0. Since the measure p0 is continuous and the equality
y(tk−1) = y(tk) = 0 holds, we obtain

tk∫
tk−1

(2−1f(s) + λFk(s), y(s))ds =

tk∫
tk−1

(Fk(s), g(s))ds.

This implies that F̃an ∈ D(L∗0) and L∗0(F̃an)− λF̃an = 2−1f if f(t) = 0 for
t > tn. We denote

ϑ̃n= 2−1iJ̃n

b∫
a

W̃ ∗
n(t, λ)f(t)dt = 2−1iJ̃nW∗n(λ)f ; un(t)=W̃n(t, λ)ϑ̃n.

By Lemma 6, it follows that un ∈ kern(λ). Now the equality
F̃bn(t) = un(t) + F̃an(t) implies F̃bn ∈ D(L∗0) and L∗0F̃bn − λF̃bn = 2−1f
if f(t) = 0 for t > tn. The Lemma is proved. �

Theorem 2. A function y ∈ H belongs to D(L∗0) if and only if there
exists a function f ∈ H such that

y(t) = W̃ (t, λ)τ̃ −
∞∑
k=1

wk(t, λ)iJ

t∫
a

w∗k(s, λ)f(s)ds, τ̃ = {τk} ∈ H−; (16)

in this case L∗0y − λy = f . The series in (16) converges in H.
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Proof. First we prove that if y has form (16), then y ∈ D(L∗0). It follows
from Lemma 8 that W(λ)τ̃ ∈ker(L∗0 − λE). The function

zk(t) = wk(t, λ)iJ

t∫
a

w∗k(s, λ)f(s)ds = wk(t, λ)iJ

t∫
tk−1

w∗k(s, λ)f(s)ds

vanishes outside the interval [tk−1, tk). We denote fk(t)=χ[tk−1; tk)(t)f(t).
By (7), it follows that

‖zk(t)‖6 β

tk∫
tk−1

‖f(s)‖ ds 6 β∆
1/2
k

∥∥χ[tk−1; tk)f
∥∥
H
.

Therefore,

‖zk‖2
H =

tk∫
tk−1

‖zk(t)‖2 dt 6 β2∆k

∥∥χ[tk−1; tk)f
∥∥2

H
. (17)

We denote un(t) =
∑n

k=1 zk(t) and claim that the sequence {un} con-
verges in H. Indeed, using (17), we get

‖un‖2
H =

n∑
k=1

‖zk‖2
H 6 β2

n∑
k=1

∆k

∥∥χ[tk−1; tk)f
∥∥2

H
6 β2(b− a) ‖f‖2

H .

Therefore the sequence {un} converges to some function u ∈ H and

u(t) = −
∞∑
k=1

wk(t, λ)iJ

t∫
a

w∗k(s, λ)f(s)ds, ‖u‖H 6 β1 ‖f‖H , β1>0.

By Lemma 10, it follows that un = 2F̃an ∈ D(L∗0) and L∗0un − λun =
=
∑n

k=1 χ[tk−1;tk)f . Since the operator L∗0 is closed, we see that u ∈ D(L∗0)
and L∗0u− λu = f .

Now suppose that a function ŷ ∈ D(L∗0) and L∗0ŷ − λŷ = f . If the
function y has the form (16), then the function ŷ − y ∈ ker(L∗0 − λE).
According to Lemma 8, there exists ξ̃ ∈ H− such that ŷ − y = W(λ)ξ̃.
Therefore, ŷ has form (16). The Theorem is proved. �

By standard transformations, equality (16) is reduced to the form
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y(t) = W̃ (t, λ)ζ̃ − 2−1

∞∑
k=1

wk(t, λ)iJ

t∫
a

w∗k(s, λ)f(s)ds+

+ 2−1

∞∑
k=1

wk(t, λ)iJ

b∫
t

w∗k(s, λ)f(s)ds, (18)

where ζ̃={ζk}∈H−, ζk = τk − 2−1iJ

tk∫
tk−1

w∗k(s, λ)f(s)ds.

Let J̃ denote an operator in H− acting by the formula J̃{ξk}={Jξk}.
Taking into account the convergence of the series in (18), we write equality
(18) in the form

y(t) = W̃ (t, λ)ζ̃ − 2−1W̃ (t, λ)iJ̃

t∫
a

W̃ ∗(s, λ)f(s)ds+

+ 2−1W̃ (t,λ)iJ̃

b∫
t

W̃ ∗(s, λ)f(s)ds, (19)

where ζ̃ ∈ H−, f = L∗0y − λy.
4. The description of generalized resolvents. Let A be a sym-

metric operator acting in a Hilbert space H and Ã be a selfadjoint exten-
sion of A to H̃, where H̃ is a Hilbert space, H̃ ⊃ H, and scalar products
coincide in H and H̃. By P denote an orthogonal projection of H̃ onto
H. The function λ→Rλ defined as Rλ = P (Ã − λE)−1 |H, Imλ 6= 0, is
called a generalized resolvent of the operator A (see, e. g., [1, ch.9])

Theorem 3. Every generalized resolvent Rλ (Imλ 6= 0) of the operator
L0 is the integral operator

Rλf =

b∫
a

K(t, s, λ)f(s)ds.

The kernel K(t, s, λ) has the form

K(t, s, λ) = W̃ (t, λ)(M(λ) + 2−1sgn(s− t)iJ̃)W̃ ∗(s, λ),

where M(λ) :H+→H− is the bounded operator such that M(λ)=M∗(λ),

(Imλ)−1Im(M(λ)x̃, x̃) > 0 (20)
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for every λ (Imλ 6= 0) and for every x̃ ∈ H+. The function λ→M(λ)x̃ is
holomorphic for every x̃ ∈ H+ in half-planes Imλ 6= 0.

Proof. Suppose y = Rλf . Then y has form (19). In this equality, ζ̃ ∈ H−
is uniquely determined by f and λ, Imλ 6= 0, i. e., ζ̃ = ζ̃(f, λ). Indeed,
if f = 0, then W̃ (t, λ)ζ̃ = Rλ0 = 0. It follows from Lemma 8 that
ζ̃ = 0. Moreover, ζ̃ depends on f linearly. Consequently ζ̃=S(λ)f , where
S(λ) :H→H− is a linear operator for fixed λ. We claim that the operator
S(λ) is bounded. Indeed, if a sequence {fn} converges to zero in the space
H as n → ∞, then the sequence {yn}={Rλfn} converges to zero in H.
Hence, the sequence {W(λ)ζ̃n} (where ζ̃n = S(λ)fn) converges to zero in
H. By Lemma 8, it follows that the sequence {S(λ)fn} converges to zero
in the space H−. Therefore S(λ) is a bounded operator.

Now we prove that ζ̃(f,λ) is uniquely determined by the element
W∗(λ)f ∈H+. SupposeW∗(λ)f = 0. Consider a function equal to the sum
of the last two summands in (19). This function belongs to D(L0 − λE).
Therefore, W(λ)ζ̃(f,λ) belongs to the range R(Rλ) of the operator Rλ.
Hence, ζ̃(f,λ) = 0. Thus, S(λ)f = M(λ)W∗(λ)f , where M(λ) :H+→H−
is an everywhere defined operator. Let W∗0 (λ) be a restriction of W∗(λ)
to ker(L∗0 − λE). By Lemma 9, it follows that M(λ) = S(λ)(W∗0 (λ))−1.
Hence M(λ) is the bounded operator.

Let us prove that the function λ→M(λ)x̃ is holomorphic for every
x̃ ∈ H+ (Imλ 6= 0). It follows from (19) and the holomorphicity of the
function λ→Rλ that the function λ→W(λ)S(λ)f is holomorphic. Using
(6), we obtain that the function λ→S(λ)f is holomorphic. Now the holo-
morphicity of the function λ→M(λ) follows from Lemma 11. This Lemma
is formulated after the proof of the Theorem. In Lemma 11 it should be
taken that B1 = H, B2 = H+, B3 = H−, T1(λ) = W∗(λ), T2(λ) = M(λ),
T3(λ) = S(λ).

Note that the equality R∗λ = Rλ implies M(λ) = M∗(λ).
Let us prove that (20) holds. It follows from Lemma 9 that there

exists a function f ∈ H such that x̃ = W∗(λ)f . Let pk :H−→H be the
operator defined by the formula pkξ̃ = ξk, where ξ̃={ξk}∈H−. We denote
Mk(λ) = pkM(λ) and

z(t) = W (t, λ)(M(λ)x̃− 2−1J̃ x̃) =
∞∑
k=1

wk(t, λ)(Mk(λ)x̃− 2−1Jxk),

where x̃ =W∗(λ)f , xk = pkx̃. We shall apply formula (2) to the functions
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y = Rλf , z on the interval [tk−1, tk]. Using the argument from the proof
of Lemma 10, we can assume that the function wk(t, λ) is continuous from
the left at the point tk. We note that wk(tk−1, λ)=E. Hence,

y(tk) = z(tk) = w(tk)(Mk(λ)x̃− 2−1iJxk),

y(tk−1) = w(tk)(Mk(λ)x̃+ 2−1iJxk), z(tk−1) = w(tk)(Mk(λ)x̃− 2−1iJxk).

Using (2), we get

(λ− λ)−1

( tk∫
tk−1

(Rλf, f)dt−
tk∫

tk−1

(f,Rλf)dt

)
−

tk∫
tk−1

(Rλf,Rλf)dt+

+

tk∫
tk−1

‖z(t)‖2 dt = (Imλ)−1Im(Mk(λ)x̃, x̃).

Therefore,

(Imλ)−1Im(Rλf, f)H − (Rλf,Rλf)H + ‖z‖2
H = (Imλ)−1Im(M(λ)x̃, x̃).

Since (Imλ)−1Im(Rλf, f)H − (Rλf,Rλf)H > 0, we see that (20) holds. �

The function λ→M(λ) is called characteristic function (see [13]).

Lemma 11. [6] Let B1, B2, B3 be Banach spaces. Let bounded operators
T3(λ) : B1 → B3, T1(λ) : B1 → B2, T2(λ) : B2 → B3 satisfy the equality
T3(λ) = T2(λ)T1(λ) for every fixed λ belonging to some neighborhood of
a point λ0 and suppose the range of operator T1(λ0) coincides with B2. If
the functions T1(λ), T3(λ) are strongly differentiable at the point λ0, then
the function T2(λ) is strongly differentiable at λ0.

5. Boundary value problems connected with generalized re-
solvents. To shorten the notation, we shall denote W̃ (t, 0) = W̃ (t),
w(t, 0)=w(t), W(0)=W . We put λ = 0 in formula (19). By Theorem 2,
it follows that y ∈ D(L∗0) and L∗0y = f if and only if y has the form

y(t)=W̃ (t)ζ̃ − 2−1W̃ (t)iJ̃

t∫
a

W̃ ∗(s)f(s)ds+ 2−1W̃ (t)iJ̃

b∫
t

W̃ ∗(s)f(s)ds,

(21)
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where ζ̃ ∈ H−. Each function y ∈ D(L∗0) represented by (21) is associated
with a pair of boundary values {Y,Y ′} ∈ H− ×H+, where

Y = Γ1y = ζ̃ , Y ′ = Γ2y =W∗f =

b∫
a

W̃ ∗(s)f(s)ds.

Let Γ denote the operator that takes each y∈D(L∗0) to the ordered pair
{Y, Y ′}, i. e., Γy = {Γ1y,Γ2y}.
Theorem 4. The range R(Γ) of the operator Γ coincides with H−×H+

and "the Green formula"

(L∗0y, z)H − (y, L∗0z)H = (Y ′, Z)− (Y, Z ′) (22)

holds, where y, z ∈ D(L∗0), Γy = {Y, Y ′}, Γz = {Z,Z ′}.
Proof. The equality R(Γ) = H− ×H+ follows from Lemmas 8, 9. Let us
prove (22). Suppose that the function y has form (21) and

z(t)=W̃ (t)η̃ − 2−1W̃ (t)iJ̃

t∫
a

W̃ ∗(s)g(s)ds+ 2−1W̃ (t)iJ̃

b∫
t

W̃ ∗(s)g(s)ds,

(23)
where η̃ ∈ H−, g = L∗0z. Then

(f,W η̃) = (W∗f, η̃) = (Y ′, Z); (W ζ̃ , g) = (ζ̃ ,W∗g) = (Y, Z ′). (24)

In (21), we denote

F̃a(t)=−2−1W̃ (t)iJ̃

t∫
a

W̃ ∗(s)f(s)ds=−
∞∑
k=1

2−1wk(t)iJ

t∫
a

w∗k(s)f(s)ds,

F̃b(t) = 2−1W̃ (t)iJ̃

b∫
t

W̃ ∗(s)f(s)ds =
∞∑
k=1

2−1wk(t)iJ

b∫
t

w∗k(s)f(s)ds.

We introduce the similar notation G̃a, G̃b for equality (23) by changing
f to g. We define functions Fk, Gk by formulas

Fk(t)=−2−1wk(t)iJ

t∫
tk−1

w∗k(s)f(s)ds,



36 V. M. Bruk

Gk(t)=−2−1wk(t)iJ

t∫
tk−1

w∗k(s)g(s)ds.

Also, as in the proof of Lemma 10, it can be assumed, without loss of
generality, that the functions Fk, Gk are continuous from the left at the
point tk. Arguing as in proof of Lemma 10, we apply Lagrange’s formula
(2) to the functions Fk, 2−1f andGk, 2−1g on the segment [tk−1, tk]. Taking
into account (6), we obtain

tk∫
tk−1

(2−1f(s), Gk(s))ds−
tk∫

tk−1

(Fk(s), 2
−1g(s))ds =

= 4−1

(
iJW (tk)iJ

tk∫
tk−1

W ∗(s)f(s)ds, W (tk)iJ

tk∫
tk−1

W ∗(s)g(s)ds

)
=

=4−1

(
iJ

tk∫
tk−1

W ∗(s)f(s)ds,

tk∫
tk−1

W ∗(s)g(s)ds

)
.

Therefore,
(2−1f, G̃a)H − (F̃a, 2

−1g)H = 4−1(iJ̃W∗f,W∗g). (25)

We denote u(t) = 2−1W̃ (t)iJ̃W∗f , v(t) = 2−1W̃ (t)iJ̃W∗g. By Lemma 8,
it follows that u, v∈ker(L∗0) and F̃b(t)=u(t) + F̃a(t), G̃b(t)=v(t) + G̃a(t).
Using (25), we get

(2−1f, G̃b)H − (F̃b, 2
−1g)H = (2−1f, G̃a)H − (F̃a, 2

−1g)H + (2−1f, v)H−
− (u, 2−1g)H = 4−1(iJ̃W∗f,W∗g)− 4−1(iJ̃W∗f,W∗g)−

− 4−1(iJ̃W∗f,W∗g) = −4−1(iJ̃W∗f,W∗g). (26)

From (24), (25), (26), we obtain (22). The Theorem is proved. �

We introduce operators δ− : H− → H0, δ+ : H+ → H0 by the for-
mulas δ−τ̃ = {∆1/2

k τk}, δ+ϕ̃ = {∆−1/2
k ϕk}, where τ̃ = {τk} ∈ H−,

ϕ̃ = {ϕk} ∈ H+. The operator δ− (δ+) maps continuously and one-
to-one H− onto H0 (H+ onto H0, respectively). Suppose that y ∈ D(L∗0).
We put Y = γ1y = δ−Γ1y; Y ′ = γ2y = δ+Γ2y and γy = {γ1y, γ2y}. Then
R(γ) = H0 ×H0. Using (22), we get

(L∗0y, z)H − (y, L∗0z)H = (Y ′,Z)− (Y ,Z ′), (27)
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where y, z ∈ D(L∗0), γy = {Y ,Y ′}, γz = {Z,Z ′}.
It follows from (27) that the ordered triple (H0, γ1, γ2) is the space

of boundary values (a boundary triplet in another terminology) for the
operator L0 in the sense of papers [11], [5] (see also [9], [12]).

We consider the boundary value problem

L∗0y = λy + h, (K(λ)− E)Y ′ − i(K(λ) + E)Y = 0, (28)

where {Y ,Y ′} = γy; h ∈ H; λ→K(λ) is a holomorphic operator function
in H0 such that ‖K(λ)‖ 6 1; Imλ > 0.

From [5] and (27) we obtain the following statement.

Theorem 5. There exists a one-to-one mapping between boundary prob-
lems (28) and generalized resolvents of the operator L0. For any solution y
of problem (28), a function Rλ defined by the equality y=Rλh is a gene-
ralized resolvent and, conversely, for any generalized resolvent Rλ there
exists a function K(λ) such that y=Rλh is the solution of (28).
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