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GENERALIZED RESOLVENTS OF OPERATORS
GENERATED BY INTEGRAL EQUATIONS

Abstract. We define a minimal operator Ly generated by an in-
tegral equation with an operator measure and give a description of
the adjoint operator L{. We prove that every generalized resolvent
of Ly is an integral operator and give a description of boundary
value problems associated to generalized resolvents.
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1. Introduction. In [13|, A.V. Straus described generalized resol-
vents of a symmetric operator generated by formally selfadjoint differen-
tial expression in the scalar case. In [4] these results were extended to
the operator case. Further, the generalized resolvents of differential ope-
rators were studied in many works (a detailed bibliography is available,
for example, in [10], [12]).

In this paper, we consider the integral equation

y(t) = 20 —zJ/dp —zJ/f 1)

a

where y is an unknown function; f € Ls(H;a,b), J is an operator in a
separable Hilbert space H, J = J*, J> = E (E is the identical operator);
p is an operator-valued measure defined on Borel sets A C [a, b] and tak-
ing values in the set of linear bounded operators acting in H; ftz stands

for f[tot) if to < t, for — f[tot) if tg > t, and for 0 if ¢, = t. We assume that

(© Petrozavodsk State University, 2018

[G) ev-rc |


http://creativecommons.org/licenses/by/4.0/

Generalized resolvents of operators generated by integral equations 21

the measure p is self-adjoint, and p has a bounded variation, and the set
Sp of single-point atoms of measure p can be arranged in the form of an
increasing sequence.

We define the minimal operator Ly generated by equation (1) and give
a description of the adjoint operator L§. We prove that every genera-
lized resolvent of Ly is an integral operator. Unlike differential operators,
the domain and the range of the characteristic function of a generalized
resolvent are spaces of sequences. Moreover, we give a description of
generalized resolvents in terms of boundary value problems.

2. Preliminary assertions. Let H be a separable Hilbert space with
scalar product (-,-) and norm ||-|]. We consider a function A — P(A)
defined on Borel sets A C [a,b] and taking values in the set of bounded
linear operators acting in H. The function P is called an operator measure
on [a,b] (see, e.g., |3, ch.5]) if it is zero on the empty set and the equality
P (U2, Ay =", P(A,) holds for disjoint Borel sets A,,, where the
series converges weakly. Further, we extend any measure P on [a,b] to a
segment [a, bo] (by>b) letting P(A) = 0 for all Borel sets AC (b, by].

By Va(P) we denote VA(P) = p(A) =sup)_; [|[P(A;)[|, where the
supremum is taken over finite sums of disjoint Borel sets A; C A. The
number VA (P) is called variation of the measure P on the Borel set A.
Suppose that the measure P has the bounded variation on [a,b]. Then
for p-almost all £ € [a,b] there exists an operator function & — Up(&)
such that Up possesses the values in the set of bounded linear operators
acting in H, |[¥p(&)|| =1, and the equality P(A) = [, Up(£)dp holds for
each Borel set A C [a,b] ([3, ch.5]). A function h is integrable with re-
spect to the measure P on a set A if there exists the Bochner integral
S e (t)h(t)dp = [\(dP)h(t). Then the function y(t) :fti(dP)h(s) is con-
tinuous from the left.

Denote by Sp a set of single-point atoms of the measure P (i.e., a set
t € [a,b] such that P({t}) # 0). The set Sp is at most countable.

In following Lemma 1, p1, p2, q are operator measures having bounded
variations and taking values in the set of linear bounded operators acting
in H. Suppose that the measure q is self-adjoint, i.e., (q(A))*=q(A) for
each Borel set A CJa,b]. We assume that these measures are extended to
the segment [a, by| D [a, by) D [a,b] in the manner described above.

Lemma 1.[8| Let f, g be functions integrable on [a,by] with respect to
the measure q. Then any functions
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y()=yo—iJ / dpy(s)y(s) — i / day(s)£(s),

¢ ¢
2(t) =29 — Z'J/dpg(s)z(s) — iJ/dq(s)g(s) (a <to< by, to<t < by)
to to

satisfy the following formula (analogous to the Lagrange one):

/(dQ(t)f(t%Z(t)) - /(y(t), dq(t)g(t)) = (iJy(ca), 2(c2))—

Cc2

(iTy(er), =) + / (@), dpa(t)=(t)) — / (dp (£)y (1), =(t))—

C1
C1

- Y. @Ip{thy) pe({th)=(1)) -

tGSpl ﬂSp2 N[e1,e2)

- > @a{thf), pa({th=(1) -

tGSqﬂSPQQ[Cl,CQ)

- > @i {thy(), a({t})g(t) -

teSpl ﬂSqﬂ[cl ,c2)

— > @Wa{thf0,a{thet), to<er <e<b. (2)

teSqNlcr,c2)

Let a segment [l1, o] C [a,by]. We consider a set of Borel measurable
functions, ranging in H, bounded on [, l5], continuous from the left, and

constant on [I1, lo] N (b, b]. We introduce the norm [[ulfy, ;, = S[;lpl ]||U(t)||
€li1,l2

on this set and obtain a Banach space denoted by C[iy, lo].

Theorem 1. |[7] For any function g € Cla,by] there exists a unique
solution of the equation
t

y(t) = / dp(E)y(€) + g(t), a < to < b, (3)

to

belonging to the space CN’[tO — 0,bg|, where a < tg < by, 6 =0d(tg) >0 is
small enough if ty > a and § = 0 if ty = a, the measure p has the bounded
variation on [a, b].
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Corollary 1. Suppose to = a. Then for any function g € 6’[(17 bo| there
exists a unique solution of equation (3) belonging to the space C|a, bo).

Remark 1. In general, a solution of (3) can be non-extendable to the left
(see |7]). However, if the measure p in (3) is continuous, then a solution
can be extended to the left up to the point a and this extension is unique.

Suppose further that p is a self-adjoint measure with the bounded
variation. We consider the equation

t t

y(t) = 20— iJ / dp(s)y(s) — iJA / y(s)dp(s) — iJ / F($)du(s), (&)

a a

where A € C; p is the usual Lebesque measure on [a,b] (u([a, 5)) = 8 — «
for all o, 8 € [a,b], < B) extended to [a, by] by the equality u(A)=0 for
each Borel set A C (b, byl; xg € H; f€ La(H;a,b) and f=0 on (b, byl.

We construct the continuous measure pg (i.e., a measure without
single-point atoms) from the measure p in the following way. We set
po({tr})=0 for t;, € S, and we set po(A) =p(A) for all Borel sets such
that A NS, =@. The measure py is self-adjoint. Replace p by po in (4)
to obtain the equation

t

= T — zJ/dpo - ZJA/ (s)dp(s) — U/tf(S)du(S)- (5)

By Corollary 1, it follows that equations (4), (5) have unique solutions.
Denote by W the operator solution of the equation

W(t, \)zg = xo — iJ/dpo(s)W(s, Az — iJ)\/W(s, N zodu(s),

a a

where 2o € H. In Lemma 1 we take p1= po + A\, P2 = Po + M, 9 = /t,
f=9=0,yt)=W(t, \)xo, 2(t)=W(t, N 20, T0, 20 € H. Since the measure
Po is self-adjoint and the equality Sp, = @ holds, we obtain

(iJW(CQ’ )\)ZL’Q, W(CQ, X)Z(ﬁ — (iJW(Cl, )\)QZ(), W(Cl, X)Zo) =0

for all ¢;, ¢o (a < 1 < 3 < bp). In this equality we take ¢y = ¢, ¢; = a.
Then we get _
W*(t, \)JW(t,\) = J. (6)



24 V. M. Bruk

The functions ¢t — W(t,\) and t — W~1(¢,26)\) = JW*(t,\).J are
continuous with respect to the uniform operator topology. Consequently,
there exist constants o > 0, 8 > 0 such that the inequality

alzl* < Wt Nal* < Bz (7)

holds for all x € H, t € [a,by], A € C C C (C is a compact set). The
function A— W (¢, A) is holomorphic for any fixed ¢.

Lemma 2.(7,8] The function y is a solution of the equation (5) if and
only if y has the form

y(t) = W(t, Ao — W(t, N)i] / W* (s, )£ ()dp(s).

where xo € H, a <t < by.

3. Linear operators generated by the integral equation. In
this section, we introduce a minimal operator Ly generated by equations
(4), (1) and give a description of the adjoint operator Lj. Further the
following notation is used: D(A) is the domain of an operator A, R(A) is
the range of A. Since all considered operators are linear, we shall often
omit the word «linears.

Let Lo(H, p; a, bg) be the space of p-measurable functions y with values
in H such that f;o ly(£)]|* du(t) < oo. This space coincides with the space
9 = Ly(H;a,b) since u(A) = 0 for each Borel set A C (b, b.

Let us define the minimal operator Ly in the following way. The do-
main D(Ly) consists of functions y € $ for each of which there exists a
function f € $ such that (4) holds with A = 0 and y satisfies the conditions

y(a) = y(bo) = y(tx) =0, tx € Sp. (8)

Then we set Loy = f. By Lemma 1, the operator Ly is symmetric. If
equalities (4), (8) hold, then y e D(Ly— AE) and (Lo — AE)y = f (A € C).

We claim that if y € D(Lg) then y(t) = 0 for all ¢ € [b,by]. Indeed,
limy 440 y(t) = 0 since y(by) = 0. If b ¢ Sp, then y(b) = 0. If b € S,
then equality (8) implies y(b) = 0. Since p(A) = 0 for each Borel set
A C (b, bo), we obtain the desired assertion.

It follows from (8), that y(a) = 0. In this case y is independent
of the condition a € S,. Thus the operator Ly does not change if the
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measure p is replaced by a measure p; such that p;({a}) =pi1({b}) =0
and p1(A)=p(A) for all Borel sets A C [a,b] \ {a,b}. Therefore, without
loss of generality, it can be assumed that by = b, and p({a})=p({b})=0
(i.e, a,b ¢ Sp), and p is the usual Lebesque measure on [a,b]. Further
we write ds instead of du(s).

Remark 2. It is possible that D(Ly) = {0}. An example is available in
[7]. In this case L§ = $)x 9, i.e., L} is a linear relation. (The terminology
on linear relations can be found, for example, in [2]).

Lemma 3. [8] The operator Ly is closed. The function y belongs to the
domain D(Ly—AE) if and only if the equalities

y(t) = Wit, A)z’J/W*(s,X)f(s)ds,

y(sg) = W (s, )\)iJ/W*(s,X)f(s)ds =0

hold, where s, € S, U{b}, f = (Lo — AE)y.

Corollary 2. The function f € $) belongs to the range R(Ly — AE) if
and only if f satisfies the condition

/W*(S,X)f(s)ds =0 9)

for all s, € Sp U {b}.
Remark 3. Condition (9) is equivalent to the following:

/ W*(s, ) f(s)ds = 0, s € Sy U {a,b}. (10)

Further, suppose that the set S, of single-point atoms {t;} can be
arranged in the ascending order t; <ty <... < t; < ... and the limit point
is b. By xp denote the characteristic function of a set B.

Lemma 4. The domain D(Ly) of the operator Ly is dense in ).

Proof. Suppose that there exists a function h € §) such that the equality
(h,z2)s = 0 holds for all z € D(Ly). By y denote a solution of equa-
tion (5), in which A = 0 and the function f is replaced by h. Suppose that
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2 € D(Ly) and denote 2i(t) = X, 1% (to = @, ti € Sp, k € N, N is the
natural number set). It follows from Lemma 3 that z, € D(Lg). We apply
Lagrange’s formula (2) to the functions y, h and zg, Loz for ¢; = t;_q,
¢y = tg, P1 = P2 = Po, 4 = p. Then we obtain (y, Lozx)s = (h,2)s = 0.

Hence,
tk

Loz = [ (0(5) (Loz)(s))ds =0

te—1

for each function z € D(Ly). By (7), it follows that a set of functions
t—W(t,0)cy is closed in the space Lo(H; [ty_1,tx]), where ¢, € H. Using
corollary 2 and equality (10), we obtain that there exists ¢, € H such
that y(t) = W(t,0)cx (tx—1 < t < ). Lemma 2 implies h(t) = 0 for
t € [ti—1,tx]. Since k is arbitrary (k € N), we get h = 0. O

We denote wy,(t,A) = Xty 1;00) OW(ENWH teo1,A), to=a, k € N.
Let Wn(t, A) = (wi(t, N), ..., w,(t, A)) be the operator one-row matrix. For
fixed t, A\, the operator Wn(t, A) maps H" to H continuously; here H™ is
the Cartesian product of n copies of H. It is convenient to treat elements

from H" as one-column matrices, and to assume that
Wt Nén = wi(t, Ny,
k=1

where we denote &, = col(&y,...,&,) € H, & € H.

Let keri(A) be a linear space of functions t — wy(t, A&, & € H. By
(7), it follows that kery()) is closed in §. The spaces kery(A) and ker;(\)
are orthogonal for k& # j. We denote IC,,(A) = keri(A) & ... & ker, ().
Obviously, K, (A) C K., (A) for n < m.

Lemma 5. The set U,K,(\) is dense in ker(L§ — \E).

Proof. It follows from Corollary 2 and (10) that the range R(Lo — \E)
consists of functions f € § orthogonal to functions of the form wg(-, \)&;,
where & € H, k € N. The equality ker(L§ — AE) @ R(Ly — A\E) = $
implies the desired assertion. The Lemma is proved. [J

Denote the operator & — Wi (-, A&, (&, € H™) by W,()A). The ope-
rator W, (A) maps H" continuously and one-to-one onto C,,(A) C $. Con-
sequently, the adjoint operator W*(A) maps $ onto H™ continuously. We
find the form of the operator W (\). For all En € H", f€$, we have
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f=pl

(F WV En)g = [(f(s), Wa(s, N)E)ds =

a
b

_ / (W, (5. N £(5), E)ds = Wi (V) F.E).

a

Therefore,
b
Ws = [WiGs, 05 (s)as. (1)

So we obtain the following statement:

Lemma 6. The operator W, (\) maps H" continuously and one-to-one
onto KC,(A\). The adjoint operator W (\) maps $) continuously onto H"
and acts by (11). Moreover, Wi(\) maps K, (\) one-to-one onto H".

Lemma 7. There exist a, 8 > 0 such that the inequalities

a > A 7l < Wa(VFally, < 52Ak||7k|| = (T1,0yTn) € H",
k=1
(12)
Y AT ekl IWa (V) Tallg < 5ZA Mol (13)
k=1

hold for all n € N, where

173
Ap=1tr—1tp_1, Yr= /w,’:(s,/\)wk(s,)\)mds.

tk—1

Proof. Using (7), we get

k
ol [l < / (s Vell2 ds < BA ]2 s a0 B> 0.

th—1

Therefore,

aZAk [EA T Z / llwp (s, \)7i|* ds < ZAk 7|2 -

kltk1



28 V. M. Bruk

This implies (12). To prove (13), use (7) to obtain

ty
e < lnl=|| [uwis Vunts. Nymas| < mdwn,

where ay, 81 > 0. Hence, an Ay || 7)) <AL [Jorl]? < Bl ||7:]|°. Thus,

n n n

2 — 2 2

o YAl < DDA el < B Al
k=1 k=1 k=1

Now, using (12), get (13). The Lemma is proved. OJ

Let H_, Hy, Ho = lg(H ) be linear spaces of sequences, respectively,

T = {Tk} o = {¢r} f = {&} such that the series ) = 1AkHTkH
S orey 1”90/%“ P 1kaH converge, where 75, ¢, & € H. These
spaces become Hilbert spaces if we introduce scalar products as

(?)ﬁ)—:Z(Akaank> T UGH—7 -‘r k; (;Okawk 8077:56%-"-7
= k’:l
(€00 = (£,¢) = > (& G, £.¢ € Ho.
k=1

In these spaces, the norms are defined by the equalities

72 =" Acliml®, 1815 =D A el 118l = Z x|
k=1 k=1

The spaces H,, H_ can be treated as spaces with positive and negative
norms with respect to Hy (see [3, ch.1], [9, ch.2]). So, H, C Ho C H_ and
allell- < lelly < Bllell,, where o € Hy, o, 8 > 0, i.e., the space Hy is
equipped with the spaces H, H_. The "scalar product" (¢, 7) = (¢,7)o
is defined for p € H,, 7 € H_. If T € H,, then (p, 7)o coincides with the
scalar product in H,.

Let 7 C H_ be a set of sequences vanishing starting from a certain
number (its own for each sequence). The set T is dense in the space
H_. The operator W, () is the restriction of W, ,1(\) to H". By W'(\)
denote an operator in T, such that W/(A\)7T = W, (\)7, for all n € N,
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where 7 = (7,,0,...). It follows from (12) that the operator W'(\) ad-
mits an extension by continuity to the space H_. By W()) denote the
extended operator. Moreover, we denote W (t, \)T = (W(A)T)(t), where

7 = {mn} € H_. For a fixed ¢, the operator W (¢, \) maps H_ into H.
Lemmas 5, 6 imply the following assertion.

Lemma 8. The operator W(\) maps H_ continuously and one-to-one
onto ker(L§ — AE). A function u belongs to ker(L§ — A\E) if and only if

there exists 7 = {r,} € H_ such that u(t) = W)7)(t) = W (t, \)7.

The adjoint operator W*(A) maps § continuously onto H,. Let us
find the form of W*()). Suppose f € 9, £ € T, € = {£,,0,...}. Then

b b

EW N =WNE, fs= /(W@, NE, f(t))dt = / (€, W™ (t, \) f(t))dt.

a a

Since W*(A)f € Hy and the set T is dense in H_, we obtain

Nf = / (4 \) F()dt. (14)

Thus we obtain the following statement.

Lemma 9. The operator W*(\) maps $) continuously onto ‘H and acts
by formula (14). Moreover, W*()) maps ker(Lg—AE) one-to-one onto H
and ker W*(\) = R(Lo — AE).

Lemma 10. Suppose that f € $ and functions ﬁm, Em are defined as

Fon(t) = =27 "W, (£,\)i / W*(s,X) f(s)ds, (15)
Fon(t) = 2170, (¢, \)i, / W (5, ) f(5)ds.

Then Fan, E, € D(L*) for alln € N. If the function f vanishes on [tn, b],
then Lj(Fap) — Aoy = L*(an) AFy, = 27Lf. Here J, is an operator in
H"™ acting by the formula Jnfn = (J&, ..., JE).
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Proof. Using (15), we get

n t

F..(t) = ZFk(t), F.(t) = =27ty (t, N)iJ /wZ(s,X)f(s)ds.
k=1 0

The function Fj is continuous on the interval [t;_1,t;) and vanishes
outside this interval. The function F} does not change in the space $) if
changed at one point. Therefore, without loss of generality, the function Fj,
can be assumed to be continuous from the left at the point ¢;. Then, taking
into account Lemma 2, we obtain that Fj is a solution of equation (5) (in
which a = t;_; and f is replaced by 27 f) on the segment [t;_1,?;]. In [8]
it is proved that every function y € D(Lg) is a solution of equality (5)
in which f is replaced by g = Loy. Therefore, we can apply Lagrange’s
formula (2) to the functions y € D(Ly), Fy for ¢; = ty_1, co = t, q = 4,
P1 = P2 = Po- Since the measure py is continuous and the equality
y(tg—1) = y(tx) = 0 holds, we obtain

tg 173

/ (271 /() + AFy(s), y(s))ds = / (Fa(s), g(s))ds.

te—1 te—1

This implies that F,, € D(L;) and Lj(Fap) — Ma, = 2711 if f(t) = 0 for
t > t,. We denote

b
571: 2_1ijn/ﬁ7;l< (tvx>f<t)dt = 2_1i<7nW;(X)f; Un(t) :Wn(tv )‘>§n

By Lemma 6, it follows that wu, € ker,(\). Now the equality
Fyn(t) = u,(t) + Fon(t) implies Fy, € D(L;) and LyFy, — AFy, = 271 f
if f(t) =0 for ¢ > t,,. The Lemma is proved.

Theorem 2. A function y € $ belongs to D(Lj) if and only if there
exists a function f € $) such that
t

y(t) = W(ENF— 3 wnlt, N)id / wi(s, N f(s)ds, 7= {m} € H_: (16)

k=1 w

in this case Lyy — \y = f. The series in (16) converges in $).



Generalized resolvents of operators generated by integral equations 31

Proof. First we prove that if y has form (16), then y € D(L§). It follows
from Lemma 8 that W(A)T €ker(L§ — AE). The function

t t

2 (t) = wy(t, )\)iJ/wZ(s,X)f(s)ds = w(t, \)iJ /wZ(s,X)f(s)ds

a tk—1

vanishes outside the interval [t;_q,tx). We denote fi(t) = X, 1.0 (2) f(2).
By (7), it follows that

7%
OIEY: / 1£ () ds < BAY? [t rsonr F .
th—1
Therefore,

173
2
Izl = /IIZk:(t)II2dt < B0 || Xps 0 £, (17)
lk—1

We denote u,(t) = > _; zx(t) and claim that the sequence {u,} con-
verges in §). Indeed, using (17), we get

lunlly =" elly < 873 Ax e fllg < 820 = a) £ -
k=1 k=1

Therefore the sequence {u,} converges to some function u € §) and

t

) = = Y wn(t Vi [wils. D )ds. Nl < 61 1]l 50
k=1 .

By Lemma 10, it follows that u, = 2F,, € D(L) and Liu, — A, =
= h1 Xte_1:t)f - Since the operator Lf is closed, we see that u € D(Lf)
and Lju — A\u = f.

Now suppose that a function y € D(Lf) and Liy — A\y = f. If the
function y has the form (16), then the function ¥ — y € ker(L§ — AE).
According to Lemma 8, there exists 5 € H_ such that y —y = W()\)g
Therefore, y has form (16). The Theorem is proved. [

By standard transformations, equality (16) is reduced to the form
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y(t) = W(ENE =273 wnlt, N)id / wi (s, N) f(s)ds+

+ 271 Zwk(t, /\)iJ/wZ(s,X)f(s)ds, (18)
k=1 f

23
where (={G}eH_, G =7 — 2740 /wZ(s,X)f(s)ds.
th—1
Let J denote an operator in H_ acting by the formula J{&}={J&}.

Taking into account the convergence of the series in (18), we write equality
(18) in the form

y(t) = W(t, \)C — 27" W (t, \)iJ / W*(s,X) f(s)ds+

b
+ 2T TW(E )i / W*(s,X) f(s)ds, (19)

where EG H_, f=Liy— \y.

4. The description of generalized resolvents. Let A be a sym-
metric operator acting in a Hilbert space H and A be a selfadjoint exten-
sion of A to H, where H is a Hilbert space, H D H, and scalar products
coincide in H and H. By P denote an orthogonal projection of H onto
H. The function A — Ry defined as Ry = P(A — AE)™'|g, Im\ # 0, is
called a generalized resolvent of the operator A (see, e.g., [1, ch.9])

Theorem 3. Every generalized resolvent Ry (ImA\ # 0) of the operator
Lyg is the integral operator

b
Ryf = /K(t, 5 ) F(s)ds.

The kernel K (t, s, \) has the form
K(t,s,A) = W(t, \)(M(\) + 2 "sgn(s — t)iJ)W*(s, \),

where M (X):H —H_ is the bounded operator such that M(\)=M*()\),
(ImA\) " 'm(M (\)7,2) = 0 (20)
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for every A (ImA # 0) and for every © € H.. The function A\— M (\)x is
holomorphic for every x € H in half-planes Im\ # 0.

Proof. Suppose y = R, f. Then y has form (19). In this equality, (et
is uniquely determined by f and A, ImA # 0, i.e. (= ( fyA). Indeed,
if f = 0, then W(t AC = R0 = 0. It follows from Lemma 8 that
¢ = 0. Moreover, ¢ depends on f linearly. Consequently ¢ =S (M) f, where

S(A):$9H—H_ is a linear operator for fixed A. We claim that the operator
S(A) is bounded. Indeed, if a sequence { f,,} converges to zero in the space
$ as n — oo, then the sequence {y,}={R\f.} converges to zero in $).
Hence, the sequence {W(A\)C,} (where ¢, = S(A)f,,) converges to zero in
$. By Lemma 8, it follows that the sequence {S(A)f,} converges to zero
in the space H_. Therefore S(\) is a bounded operator.

Now we prove that E( f,A) is uniquely determined by the element
W*(\)f €H,. Suppose W*(X)f = 0. Consider a function equal to the sum
of the last two summands in (19). This function belongs to D(Ly — AE).
Therefore, W()\)E(f,)\) belongs to the range R(R,) of the operator R).
Hence, C(f,A\)=0. Thus, S(\)f = M(\)W (A A f, where M(\):H, —H_
is an everywhere defined operator. Let W;()) be a restriction of W*()\)
to ker(L — AE). By Lemma 9, it follows that M()\) = S(A)(Wi(N))™?
Hence M () is the bounded operator.

Let us prove that the function A — M (\)Z is holomorphic for every
T € Hy (Imh # 0). It follows from (19) and the holomorphicity of the
function A— R, that the function A—W(X)S(A)f is holomorphic. Using
(6), we obtain that the function A— S())f is holomorphic. Now the holo-
morphicity of the function A— M () follows from Lemma 11. This Lemma
is formulated after the proof of the Theorem. In Lemma 11 it should be
taken that By = 9, By = Hy, Bs = H_, Ti(A) = W*(), Ta(\) = M(N),
T3(\) = S(N). B

Note that the equality R} = Ry implies M (\) = M*(N).

Let us prove that (20) holds. It follows from Lemma 9 that there
exists a function f € $ such that ¥ = W*(\)f. Let p,:H_ — H be the
operator defined by the formula pkg = &, where E ={&}€H_. We denote
M. (X) = pp M (\) and

2(t) = W(t, )(MNT — 271 T7) =Y wi(t, ) (Mp(N)F — 27 Txy),

where 7 = W*(A\) f, 2, = pi@. We shall apply formula (2) to the functions
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y = Ryf, z on the interval [t;_1, ;). Using the argument from the proof
of Lemma 10, we can assume that the function wg(t, A) is continuous from
the left at the point ¢;. We note that wg(tx_1, \)=F. Hence,

y(tk—l) = w(tk)(Mk(/\)f—f— Q_I’ijl'k), Z(tk_l) = w(tk)(Mk(/\)f - 2_IZJZL‘k)
Using (2), we get

t tr tr

<A—X>1( [mspa- [ <f,RAf>dt> - [ (Rt Rafyies

th—1 tp_1 te—1

4 / 12()|2 dt = (TmA) T (M, (V)7 7).

th—1

Therefore,
(ImA) ' Im (R f, f)g — (Baf, Baf)s + [I2[l5 = (ImA) ' Im(M (M7, 7).

Since (Im\)"'Im(Ryf, f)g — (Baf, Raf)s = 0, we see that (20) holds. I
The function A—M () is called characteristic function (see [13]).

Lemma 11. [6] Let By, By, B3 be Banach spaces. Let bounded operators
Tg()\) : Bl — 837 Tl()\) : Bl — BQ, TQ()\) : Bg — 83 satisfy the equa]ity
T3(\) = To(N)T1(X) for every fixed A belonging to some neighborhood of
a point Ay and suppose the range of operator T}(\g) coincides with By. If
the functions Ty (\), T5(\) are strongly differentiable at the point \o, then
the function T>(\) is strongly differentiable at ).

5. Boundary value problems connected with generalized re-

solvents. To shorten the notation, we shall denote W(t,O) = /Wv/(t),
w(t,0)=w(t), W(0)=W. We put A =0 in formula (19). By Theorem 2,
it follows that y € D(L{) and Ly = f if and only if y has the form

t b

y(O) =W () — 27 W ()i [ W*(s)f(s)ds + 27" W (t)iJ | W*(s) f(s)ds,

a t

(21)
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where ¢ € H_. Each function y € D(L{) represented by (21) is associated
with a pair of boundary values {Y)Y'} € H_ x H, where

Y =Ty =, Y’:ng:W*f:/W*(s)f(s)ds.

Let I denote the operator that takes each y € D(Lf) to the ordered pair
{v;Y'} e, Ty = {Ty, I'ay}.

Theorem 4. The range R(I") of the operator I' coincides with H_ x H
and "the Green formula"

(Lo, 2)s — (v, Lg2)s = (V' 2) = (Y, Z') (22)

holds, where y,z € D(L}), Ty ={Y,Y'}, Tz ={Z,7'}.

Proof. The equality R(I') = H_ x H follows from Lemmas 8, 9. Let us
prove (22). Suppose that the function y has form (21) and

() =W ()i — 27" W (1) ZJ/W* (s)ds + 27" W (¢) ZJ/W* (s)ds,

(23)
where n € H_, g = Ljz. Then
(F V) = W' L) = (V' Z); WC,9) = (CW'g) = (V. Z').  (24)

In (21), we denote

Fu(t)= -2 T (1) ] / W*(s) f(s)ds=—3 2 un ()i / wi(s)f(s)ds

Ey(t) = 2_1W(t)ij/w*(s)f(s)ds = Z 2_1wk(t)2}]/w,";(s)f(s)ds.

k=1 f

We introduce the similar notation Gy, Gy, for equality (23) by changing
f to g. We define functions Fy, G} by formulas

t

Fu(t)==2 " un(t)iJ [wi(s)f(s)ds,

lk—1
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Gr(t)=—2"1wi(t)iJ [wi(s)g(s)ds.

Also, as in the proof of Lemma 10, it can be assumed, without loss of
generality, that the functions Fj, Gy are continuous from the left at the
point t. Arguing as in proof of Lemma 10, we apply Lagrange’s formula
(2) to the functions Fy, 27! f and G}, 271g on the segment [t_1,t;]. Taking
into account (6), we obtain

tr 173

/ (271 £(5), Gi(s))ds — / (Fuls), 2 "g(s))ds =

te—1 tre—1

_ g (z’JW(tk)z’J / W*(s) f(s)ds, W (ty)iJ ] W*(s)g(s)ds> _
—i(is / W ()£ (3)ds, / W (als)ds ).

(271, Go)g — (Fuy27Mg) = 471 (T £, W7 g). (25)

We denote u(t) = 2_1W(t)ijW*]i, v(t) =271 ( )sz*g By Lemma 8,
it follows that u, v €ker(L?) and Fy(t)=u(t) + F,(t), Gy(t)=v(t) + Ga(t).
Using (25), we get

(271 f. Gh)s — (Fh 2 9) = (271, Ga)o — (Fu 27 'g)s + (27 f,0)5—
= (27 g)s = 47 EIWTf,Wg) — AT IV W )~
- 4—1(Jw* fWg) = =47 (@IWT £ W g). (26)
From (24), (25), (26), we obtain (22). The Theorem is proved. [J

We introduce operators d_ : H_ — Hy, 6. : Hy — Ho by the for-
mulas 0_7 = {A,lg/sz}, orp = {A;lﬂgpk}, where 7 = {7} € H_,
¢ = {ox} € Hy. The operator 6_ (0,) maps continuously and one-
to-one H_ onto Ho (H, onto Hy, respectively). Suppose that y € D(L).

We put ¥ = my = 0-T1y; V' = 7y = 049y and vy = {my, 72y} Then
R(v) = Ho x Ho. Using (22), we get

(Loy: 2)s — (, Loz)s = (V' 2) = (W, 27), (27)

Therefore,
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where y, z € D(LS), 7Y = {y7y/}’ Y& = {Z7 Z,}

It follows from (27) that the ordered triple (Ho,v1,72) is the space
of boundary values (a boundary triplet in another terminology) for the
operator Ly in the sense of papers [11], [5] (see also [9], [12]).

We consider the boundary value problem

Liy=Xy+h, (KO —E)Y —i(K\) + E)Y =0, (28)

where {V,V'} = vyy; h € $; A— K()) is a holomorphic operator function
in Hy such that ||[K(A)] < 1; ImA > 0.
From [5] and (27) we obtain the following statement.

Theorem 5. There exists a one-to-one mapping between boundary prob-
lems (28) and generalized resolvents of the operator Ly. For any solution y
of problem (28), a function R, defined by the equality y= R)h is a gene-
ralized resolvent and, conversely, for any generalized resolvent R, there
exists a function K (\) such that y= Ryh is the solution of (28).
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