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COEFFICIENT PROBLEMS ON THE CLASS U(λ)

Abstract. For 0 < λ ≤ 1, let U(λ) denote the family of func-

tions f(z) = z +
∞∑
n=2

anz
n analytic in the unit disk D satisfying

the condition

∣∣∣∣( z
f(z)

)2
f ′(z)− 1

∣∣∣∣ < λ in D. Although functions

in this family are known to be univalent in D, the coefficient con-
jecture about an for n ≥ 5 remains an open problem. In this
article, we shall first present a non-sharp bound for |an|. Some
members of the family U(λ) are given by

z

f(z)
= 1− (1 + λ)φ(z) + λ(φ(z))2

with φ(z) = eiθz, that solve many extremal problems in U(λ).
Secondly, we shall consider the following question: Do there exist
functions φ analytic in D with |φ(z)| < 1 that are not of the form
φ(z) = eiθz for which the corresponding functions f of the above
form are members of the family U(λ)? Finally, we shall solve the
second coefficient (a2) problem in an explicit form for f ∈ U(λ)
of the form

f(z) =
z

1− a2z + λz
z∫
0

ω(t) dt

,

where ω is analytic in D such that |ω(z)| ≤ 1 and ω(0) = a,
where a ∈ D.

Key words: Univalent function, subordination, Julia’s lemma,
Schwarz’ lemma
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We denote the unit disk by D = {z ∈ C : |z| < 1}, and let H be the
linear space of analytic functions defined on D endowed with the topology
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of locally uniform convergence and A = {f ∈ H : f(0) = f ′(0)− 1 = 0}.
The family S of univalent functions from A and many of its subfamilies,
for which the image domains have special geometric properties, have been
investigated in detail. Among them are convex, starlike, close-to-convex,
spirallike and typically real mappings. For the general theory of univalent
functions we refer the reader to the books [7, 10, 23]. The class U(λ)
defined below seems to have many interesting properties (cf. [21, 22]).
For 0 < λ ≤ 1, we consider the family

U(λ) = {f ∈ A : |Uf (z)| < λ in D},

where

Uf (z) =

(
z

f(z)

)2

f ′(z)− 1 =
z

f(z)
− z

(
z

f(z)

)′
− 1, z ∈ D. (1)

Set U := U(1), and observe that U ( S (see [1, 2]).
Before we continue the discussion, it might be appropriate to include

a few well-known properties about the family U(λ).

1) Let Σ denote the family of univalent functions F of the form,

F (ζ) = ζ +

∞∑
n=0

cnζ
−n, |ζ| > 1,

which satisfies the condition F (ζ) 6= 0 for |ζ| > 1. Then we observe
that each f ∈ S can be associated with a mapping F ∈ Σ by the
correspondence

F (ζ) =
1

f(1/ζ)
, |ζ| > 1.

Using the change of variable ζ =
1

z
, the association f(z) = 1/F

(
1
z

)
quickly yields the formula

F ′(ζ)− 1 = Uf (z) (2)

and
zf ′(z)

f(z)
=
ζF ′(ζ)

F (ζ)
, (3)

where Uf is defined by (1). Consequently, for 0 < λ ≤ 1, the formula
(2) gives that f ∈ U(λ) if and only if |F ′(ζ) − 1| < λ for |ζ| > 1.
The formula (3) could be used to connect the starlikeness of f with
that of F .
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2) An interesting fact is that each function in

SZ =

{
z,

z

(1± z)2
,

z

1± z
,

z

1± z2
,

z

1± z + z2

}
belongs to U ∩S∗, where S∗ denoted the family of starlike functions
f on D, i.e., univalent functions f such that f(D) is a domain starlike
with respect to the origin. Also, it is well-known that these are the
only functions in S having integer coefficients in the power series
expansions of functions f ∈ S (see [9]).

3) The family U is not a subset of the starlike family S∗ as the function

f1(z) =
z

1 + 1
2z + 1

2z
3

demonstrates. Indeed, it is easy to see that f1 ∈ U and

zf ′1(z)

f1(z)
=

1− z3

1 + 1
2z + 1

2z
3

and at z0 = (−1 + i)/
√

2, |z0| = 1, we obtain that

Re

{
z0f
′
1(z0)

f1(z0)

}
=

2− 2
√

2

3
< 0,

from which it follows that the function f1 is not starlike in D. See
also [16].

4) One of the sufficient conditions for a function f(z) = z +
∞∑
n=2

anz
n

to be in S∗ is that
∞∑
n=2

n|an| ≤ 1 and this result is sharp. In spite of

the fact that neither S∗ is included in U nor includes U , it is known

that (see also [8]) the condition
∞∑
n=2

n|an| ≤ 1 implies that f ∈ U .

The result is sharp. On the other hand, if f(z) = z −
∞∑
n=2
|an|zn is

in S∗, then f ∈ U . See [17].

5) Since f(z) = z −
∞∑
n=2
|an|zn is in S∗ if and only if

∞∑
n=2

n|an| ≤ 1

(see [25, Theorem 2]), this result can be used to generate univalent
functions f ∈ U that are not starlike.
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6) Since functions in S are not necessarily in U , it is natural to consider
the largest value r0 so that for each f ∈ S the function 1

rf(rz) ∈ U
for 0 < r ≤ r0. In this case we say that r0 := rU (S) is the U radius
(or the radius of U-property) in the class S. It is known that ([15]),

rU (S) = 1√
2
. More generally, rU(λ)(S) =

√
λ

1+λ . There has been a

long history in determining radii problems in the theory of univalent
functions, see [10].

7) In [18], it was shown that if f ∈ U(λ), a := |f ′′(0)|/2 ≤ 1 and

0 ≤ λ ≤
√

2− a2 − a
2

, then f ∈ S∗. Later Fournier and Ponnusamy

[8] have proved that the upper bound on λ is sharp. Moreover, they
have shown that there exist non-starlike functions f ∈ U such that

0 <

√
2− a2 − a

2
< sup

z∈D

∣∣∣∣∣f ′(z)
(

z

f(z)

)2

− 1

∣∣∣∣∣ ≤ 1− a.

Recently, a number of useful properties of the family U(λ) were es-
tablished in [19, 20, 21, 22]. However, the coefficient problem for U(λ)
remains open. This article supplements the earlier investigations in this
topic.

Let B = {ω ∈ H : |ω(z)| < 1 on |z| < 1} and B0 = {ω ∈ B : ω(0) = 0}.
In addition, for f, g ∈ H, we use the symbol f(z) ≺ g(z), or in short f ≺ g,
to mean that there exists an ω ∈ B0 such that f(z) = g(ω(z)). We now
recall the following results from [19] which we need in the sequel.

Theorem A. Suppose that f ∈ U(λ) for some λ ∈ (0, 1] and a2 =
= f ′′(0)/2. Then we have the following:

(a) If |a2| = 1 + λ, then f must be of the form

f(z) =
z

(1 + eiθz)(1 + λeiθz)
.

(b)
z

f(z)
+ a2z ≺ 1 + 2λz + λz2 and

f(z)

z
≺ 1

(1− z)(1− λz)
, z ∈ D.

As an analogue to the famous estimate for the Taylor coefficients of
univalent functions proved by de Branges [5] (see also [3]), the following
conjecture was proposed in [19].
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Conjecture 1. Suppose that f ∈ U(λ) for some 0 < λ ≤ 1 and f(z) =

= z +
∞∑
n=2

anz
n. Then |an| ≤

n−1∑
k=0

λk for n ≥ 2.

This conjecture has been verified for n = 2 first in [26] and a simpler
proof was given in [19]. More recently, in [21], Obradović et al. proved
the conjecture for n = 3, 4 with an alternate proof for the case n = 2, but
it remains open for all n ≥ 5. Because U(1) ( S and the Koebe function
belongs to U(1), this conjecture obviously holds for λ = 1, in view of the
de Branges theorem. Since no bound has been obtained for |an| for n ≥ 5,
it seems useful to obtain a reasonable estimate. This attempt gives the
following theorem and at the same time the proof for the case λ = 1 does
not require the use of de Branges theorem that |an| ≤ n for f ∈ S with
equality for the Koebe function and its rotations.

Theorem 1. Let f(z) = z+
∞∑
n=2

anz
n belong to U(λ) for some 0 < λ ≤ 1.

Then

|an| ≤ 1 + λ
√
n− 1

√√√√n−2∑
k=0

λ2k, for n ≥ 2.

Proof. Let f ∈ U(λ). Then the second subordination relation in Theo-
rem A(b) shows that

f(z)

z
≺ 1

1− λz
1

1− z
= f1(z) f2(z), z ∈ D.

This means that there exists a function φ ∈ B0 such that

f(z)

z
= f1(φ(z)) f2(φ(z)), z ∈ D.

Define g1(z) = f1(φ(z)) and g2(z) = f2(φ(z)). Then

g1(z) =

∞∑
n=0

bnz
n ≺ f1(z)=

1

1− λz
and g2(z)=

∞∑
n=0

cnz
n ≺ f2(z)=

1

1− z
,

where b0 = c0 = 1, Rogosinski’s theorems [24] (see also [7, Theorems 6.2
and 6.4]) give that

n∑
k=1

|bk|2 ≤
n∑
k=1

λ2k and |cn| ≤ 1 for n ≥ 1. (4)
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Moreover, the relation
f(z)

z
= g1(z)g2(z) gives

an+1 =

n∑
k=0

bkcn−k.

Consequently, by (4), it follows from the classical Cauchy-Schwarz
inequality that

|an+1| ≤ 1 +

n∑
k=1

|bk| ≤ 1 +
√
n

√√√√ n∑
k=1

|bk|2 ≤ 1 +
√
n

√√√√ n∑
k=1

λ2k,

which implies the desired assertion. �

Suppose that f ∈ U(λ). Then the second subordination relation in
Theorem A(b) shows that there exists a function φ ∈ B0 such that

z

f(z)
= 1− (1 + λ)φ(z) + λ(φ(z))2, z ∈ D. (5)

From Theorem A(a), we see that there is a member in the family U(λ)
in the above form with φ(z) = eiθz. In this type of functions, we have
|a2| = 1 + λ. A natural question is whether there exist functions φ ∈ B0
that are not of the form φ(z) = eiθz of the above type for which the
corresponding f of the form (5) belongs to U(λ). In order to prove the
next result, we need the classical Julia lemma which is often quoted as
Jack’s lemma [12, Lemma 1] or Clunie-Jack’s lemma [6] although this fact
was known much before the work of Jack. See the article of Boas [4] for
a historical commentary.

Lemma B. Let |z0| < 1 and r0 = |z0|. Let f(z) =
∞∑
k=n

akz
k be continuous

on |z| ≤ r0 and analytic on {z : |z| < r0} ∪ {z0} with f(z) 6≡ 0 and
n ≥ 1. If |f(z0)| = max

|z|≤r0
|f(z)|, then z0f

′(z0)/f(z0) is real number and

z0f
′(z0)/f(z0) ≥ n.

Theorem 2. Let f ∈ U(λ) be given by (5), with a function φ analytic
on the closed unit disk D and a point eiθ0 such that φ(eiθ0) = −1. Then
φ is of the form φ(z) = eiθz.
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Proof. We observe that f ∈ U(λ) if and only if∣∣∣∣∣ z

f(z)
− z

(
z

f(z)

)′
− 1

∣∣∣∣∣ < λ, z ∈ D,

which according to (1) and (5) implies that there exists a function φ ∈ B0
such that

L(φ)(z) = |−(1 + λ)(φ(z)− zφ′(z)) + λφ(z)(φ(z)− 2zφ′(z))| < λ, z ∈ D.
(6)

Let us consider now a function φ analytic in D such that there exists θ0
with φ(eiθ0) = −1. Examples of such functions are the Blaschke products.
Now, we let φ̃(z) = φ(rz) for r > 1 and sufficiently close to 1 such that φ̃
is analytic in D. If we apply Julia’s lemma with n = 1 to φ̃ and z0 = eiθ0/r,
we see that

z0φ̃
′(z0)

φ̃(z0)
=

eiθ0φ′
(
eiθ0
)

φ (eiθ0)
= m(θ0) ≥ 1.

If we let φ(z) = zψ(z), then we see that ψ(D) ⊂ D and ψ(eiθ0) = −e−iθ0 .
Now, we assume that m(θ0) = 1. Since

zφ′(z)

φ(z)
= 1 +

zψ′(z)

ψ(z)
,

this means that ψ′(eiθ0) = 0. If ψ′ is not a constant, an angle with width
less than π, sufficiently close to π and vertex eiθ0 would be mapped by
ψ onto an angle with width sufficiently close to 2π or more and a vertex
−e−iθ0 . This contradicts the fact that ψ(D) ⊂ D. Hence, m(θ0) > 1 or φ
is of the form φ(z) = eiθz. From the above we get

eiθ0φ′(eiθ0) = −m(θ0),

and therefore,

L(φ)(z0) = | − (1 + λ)(φ(z0)− z0φ′(z0)) + λφ(z0)(φ(z0)− 2z0φ
′(z0))| =

= λ+ (1 + 3λ)(m(θ0)− 1).

If m(θ0) > 1, then L(φ)(z0) > λ. This contradicts (6) and hence, φ(z) =
= eiθz. The proof is complete. �

In [19, Theorem 5], under a mild restriction on f ∈ U(λ), the region
of variability of a2 is established as in the following form.
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Theorem C. Let f ∈ U(λ) for some 0 < λ ≤ 1, and such that

z

f(z)
6= (1− λ)(1 + z), z ∈ D. (7)

Then, we have
z

f(z)
− (1− λ)z ≺ 1 + 2λz + λz2 (8)

and the estimate |a2− (1−λ)| ≤ 2λ holds. In particular, |a2| ≤ 1 +λ and
the estimate is sharp as the function fλ(z) = z/((1 +λz)(1 + z)) shows.

Certainly, it was not unnatural to raise the question whether the con-
dition (7) is necessary for a function f to belong to the family U(λ).
This question was indeed raised in [19]. In the next result, we show that
the condition (7) cannot be removed from Theorem C. Before we present
the proof, it is worth recalling from [19] that if f ∈ U(λ), then for each
R ∈ (0, 1), the function fR(z) = R−1f(Rz) also belongs to U(λ).

Theorem 3. Let f(z) = z/((1− z)(1− λz)) and for a fixed R ∈ (0, 1),
let fR(z) = R−1f(Rz). Then we have

(a) For 0 < λ ≤ 1/2 there exists, for any R ∈ (0, 1), an r ∈ (0, 1) such
that F (R, r) = 0, where

F (R, r) =
r

fR(r)
− (1− λ)(1 + r). (9)

(b) For 1/2 < λ < 1 there exists, for any

1 > R >
1 + λ −

√
(1− λ)(1 + 7λ)

2λ
,

an r ∈ (0, 1) such that F (R, r) = 0.

Proof. We consider F (R, r) given by (9) and observe that

F (R, r) = λR2r2 − r[R(1 + λ) + 1− λ] + λ.

We see that in the cases indicated in the statement of the theorem
F (R, 0) = λ > 0 and F (R, 1) < 0. Indeed

F (R, 1) = λR2 −R(1 + λ) + 2λ− 1 = −R[(1−R)λ+ 1]− (1− 2λ)
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which is less than zero for any R ∈ (0, 1) and for 0 < λ ≤ 1/2. Similarly,
for the case 1/2 < λ < 1, one can compute the roots of the equation
F (R, 1) = 0 and obtain the desired conclusion. This proves the assertion
of Theorem 3. �

Because of the characterization of functions in U(λ) via functions in
B, the following result is of independent interest. As pointed out in the
introduction, it is known that if f ∈ U(λ), then |a2| ≤ 1 +λ with equality
for f(z) = z/[(1− z)(1− λz)] and its rotations.

Theorem 4. Let f ∈ U(λ), λ ∈ (0, 1), have the form

f(z) = z +

∞∑
n=2

anz
n =

z

1− a2z + λz
z∫
0

ω(t) dt

(10)

for some ω ∈ B such that ω(0) = a ∈ D and v(x) be defined by

v(x) =

1∫
0

x+ t

1 + xt
dt =

1

x
− 1− x2

x2
log(1 + x) < 1 for 0 < x < 1,

and v(0) = lim
x→0+

v(x) = 1/2. Then |a2| ≤ 1 +λv(|a|). The result is sharp.

Proof. Let f ∈ U(λ). Then, we may write (cf. [14])

f ′(z)

(
z

f(z)

)2

= −z
(

z

f(z)

)′
+

z

f(z)
= 1 + λω(z), (11)

where ω : D → D is analytic with ω(0) = ω′(0) = 0. By the Schwarz’
lemma, we have |ω(z)| ≤ |z|2 in D and hence, |Uf (z)| ≤ |z|2 for z ∈ D. In

view of (11), f(z) = z +
∞∑
n=2

anz
n ∈ U(λ) if and only if

z

f(z)
= 1− a2z + λz

z∫
0

ω(t) dt 6= 0, z ∈ D, (12)

where ω ∈ B. By assumption ω(0) = a ∈ D. As in the proof of [19,
Theorem 1], assume on the contrary that

|a2| =
1 + λv(|a|)

r
, r ∈ (0, 1), (13)
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and consider the function F defined by

F (z) =
1

a2

1 + λz

z∫
0

ω(t) dt

 , z ∈ D.

Then, according to the Schwarz-Pick lemma applied to ω ∈ B, we can
easily obtain that

|ω(z)| ≤ |a|+ |z|
1 + |az|

, z ∈ D,

and thus, as in the proof of [19, Theorem 2], it follows that∣∣∣∣∣∣
z∫

0

ω(t) dt

∣∣∣∣∣∣ ≤ v(|a|) < 1, z ∈ D,

where v(x) is defined as in the statement. Consequently, for |z| ≤ r, we
get by (13)

|F (z)| ≤ 1

|a2|

1 + λ|z|

∣∣∣∣∣∣
z∫

0

ω(t) dt

∣∣∣∣∣∣
 ≤ 1 + rλv(|a|)

|a2|
=

(1 + rλv(|a|))r
1 + λv(|a|)

< r.

Hence F is a mapping of the closed disk Dr into itself, where Dr = {z :
|z| < r}. Secondly, we have for z1 and z2 in Dr,

|F (z1)−F (z2)| = λr

1 + λv(|a|)

∣∣∣∣∣∣z1
z1∫
0

ω(t) dt+ (−z1 + z1 − z2)

z2∫
0

ω(t) dt

∣∣∣∣∣∣ ≤

≤ λr

1 + λv(|a|)

|z1|
∣∣∣∣∣∣
z1∫
z2

ω(t) dt

∣∣∣∣∣∣+ |z1 − z2|

∣∣∣∣∣∣
z2∫
0

ω(t) dt

∣∣∣∣∣∣
 ≤

≤ λr

1 + λv(|a|)
(|z1|+v(|a|))|z1−z2| ≤

λr(r + v(|a|))
1 + λv(|a|)

|z1−z2| < r|z1−z2|.

Therefore, F is a contraction of the disk Dr and according to Banach’s
fixed point theorem, F has a fixed point in Dr. This implies that there
exists a z0 ∈ Dr such that F (z0) = z0 which contradicts (12) at z0 ∈ D
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(and thus, (13) is not true for any r ∈ (0, 1)). Hence, we must have
|a2| ≤ 1 + λv(|a|) for f ∈ U(λ).

To prove that the second coefficient inequality is sharp, we consider

ω(z) =
z + a

1 + az
, a ∈ (0, 1), (14)

and we use the fact that v(a) =
1∫
0

ω(t) dt. Hence,

1− (1 + λv(a))z + λz

z∫
0

ω(t) dt = 1− z − λz
1∫
z

ω(t) dt =: G(z).

We claim that G(z) 6= 0 in D. Since G(0) = 1, we may assume on the
contrary that there exists a z ∈ D \ {0} such that G(z) = 0. This is
equivalent to

1

λz
=

1

1− z

1∫
z

ω(t) dt.

As ∣∣∣∣ 1

λz

∣∣∣∣ > 1 and

∣∣∣∣∣∣ 1

1− z

1∫
z

ω(t) dt

∣∣∣∣∣∣ ≤ 1,

we have now proved that G(z) 6= 0 for z ∈ D. In particular, this implies
that the function f defined by

f(z) =
z

1− (1 + λv(a))z + λz
z∫
0

ω(t) dt

belongs to the family U(λ), where ω is given by (14). This proves the
sharpness. �

Moreover, one can show that a similar sharp inequality is valid for any
ω as above.

Since

∣∣∣∣∣z2∫z1 ω(t) dt

∣∣∣∣∣ ≤ |z1 − z2|, the function
z∫
0

ω(t) dt is uniformly con-

tinuous in the open unit disk. Therefore this function can be extended
continuously onto the closed unit disk. Hence, the real functional m(ω) :=
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:= max

{∣∣∣∣ z∫
0

ω(t) dt

∣∣∣∣ : z ∈ D
}

is well defined. Suppose that f ∈ U(λ) is

given by

f(z) =
z

1− a2z + λz
z∫
0

ω(t) dt

for some 0 ≤ λ < 1, where ω ∈ B. Then

|a2| ≤ 1 + λm(ω), (15)

is valid and this inequality is sharp.
In order to prove this inequality, we assume again that

|a2| =
1 + λm(ω)

r
, r ∈ (0, 1),

and do similar steps as in the proof of Theorem 4. The inequality (15)
can be shown to be sharp in the following way: Consider

ω̃(z) = eiϕω
(
eiθz

)
,

where ϕ, θ ∈ [0, 2π) are chosen such that

m(ω) =

1∫
0

ω̃(t) dt.

Next, we may proceed as before to complete the proof. However, we omit
the details to avoid a repetition of the arguments.

A more detailed consideration of these cases can give more explicit
bounds for |a2| as follows.

Theorem 5. Let f ∈ U(λ), λ ∈ (0, 1), have the form (10) for some
analytic function ω such that |ω(z)| ≤ 1 and ω(0) = a ∈ D. Let further

Ba(z) =
1

a
− 1− |a|2

a2z
log(1 + az) = a +

(
1− |a|2

) ∞∑
k=1

(−a)k−1
zk

k + 1

for a ∈ D. Then |a2| ≤ 1+λmax{
∣∣Ba (eiτ)∣∣ : τ ∈ [0, 2π]}. The inequality

is sharp.
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Proof. The function f considered here by (10) is a member of the class
U(λ) if and only if z/f(z) 6= 0, which is equivalent to

a2 6=
1

z
+ λ

z∫
0

ω(t) dt := Cω(z), z ∈ D.

Using the above argument, it is clear that the function Cω can be extended
continuously onto the boundary ∂D. Moreover this function is univalent
on D. The proof of this assertion is similar to the above arguments. Indeed
if Cω(z1) = Cω(z2) for some z1 6= z2, z1, z2 ∈ D, then

λ

z1 − z2

z2∫
z1

ω(t) dt =
1

z1z2

which is not possible. Thus, Cω is univalent on D and therefore, for each
ω, the curve Cω

(
eiθ
)
, θ ∈ [0, 2π], is a Jordan curve which divides the

plane into two components. Let us call the bounded closed component
C\Cω(D) =: A2(ω). Obviously, the function f is in the class U(λ) if and
only if

a2 ∈
⋃

ω(0)=a

A2(ω).

Now, we look at the curves Cω
(
eiθ
)
, θ ∈ [0, 2π]. Since ω(0) = a, the

modulus of the function
ω(z) − a

1 − aω(z)

is bounded by unity in the unit disk and this function vanishes at the
origin. This means that ω can be represented in the form

ω(z) =
a + zϕ(z)

1 + azϕ(z)
,

where ϕ is analytic in D and |ϕ(z)| ≤ 1 for z ∈ D. In other words, ω(z) is
subordinate to (a+z)/(1+az), z ∈ D. Since the function (a+z)/(1+az)
maps the unit disk onto the unit disk, a convex domain, we may now use
a theorem proved by Hallenbeck and Ruscheweyh in [11] (compare with
[13, Theorem 3.1b]). In our case we use the fact that the function

p(z) =
1

z

z∫
0

ω(t) dt
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satisfies the subordination relation

p(z) + zp′(z) = ω(z) ≺ a + z

1 + az
= h(z).

According to the above theorem, in this case the function p is subordinate
to the function

1

z

z∫
0

h(t) dt =
1

z

z∫
0

a + t

1 + at
dt = Ba(z).

Therefore, we get the representation

z∫
0

ω(t) dt =
1

ϕ(z)

zϕ(z)∫
0

a + t

1 + at
dt = zBa(zϕ(z)),

where ϕ is analytic in D and |ϕ(z)| ≤ 1 for z ∈ D. Since Ba is ana-
lytic in the closed unit disk this representation together with the above
considerations implies that

|a2| ≤ sup
z∈D,θ∈[0,2π]

∣∣∣e−iθ + λeiθBa(z)
∣∣∣ ≤ 1 + λmax{

∣∣∣Ba (eiτ)∣∣∣ : τ ∈ [0, 2π]}.

Now, we have to prove the sharpness of the inequality. To that end,
let τ0 be chosen such that∣∣Ba (eiτ0)∣∣= max{

∣∣Ba (eiτ)∣∣ : τ ∈ [0, 2π]}, andBa
(
eiτ0
)

=eiα
∣∣Ba (eiτ0)∣∣ .

We take 2θ = −α, ψ = τ0 − θ, consider the function

ω(z) =
a + zeiψ

1 + azeiψ
,

and let a2 = e−iθ + λeiθBa
(
eiτ0
)
. Then we have

|a2| =
∣∣e−2iθ + λ eiα

∣∣Ba (eiτ0)∣∣ ∣∣ = 1 + λ
∣∣Ba (eiτ0)∣∣ .

Further, we consider

D(z) = 1 −
(
e−iθ + λeiθBa

(
eiτ0
))
z + λz

z∫
0

a + teiψ

1 + ateiψ
dt.
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It is easily seen that in our case

D(z) = 1 −
(
e−iθ + λeiθBa

(
eiτ0
))
z + λz2Ba

(
zeiψ

)
and D

(
eiθ
)

= 0.

The assumption that there would exist a second zero w of D in the unit
disk, via the equation D(w) = D

(
eiθ
)

leads to

1

w
+ λ

w∫
0

ω(t) dt = e−iθ + λ

eiθ∫
0

ω(t) dt.

Now we proceed similar to a reasoning above. We conclude that this
implies

1

λweiθ
=

1

eiθ − w

eiθ∫
w

ω(t) dt.

But this is impossible, since the left hand side has modulus bigger than 1,
whereas the right hand side has modulus less than or equal to 1. Hence,
the function f(z) = z/D(z) is a member of the class U(λ). �
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