J. E. Kim

THE CORRESPONDING CAUCHY-RIEMANN SYSTEM FOR DUAL QUATERNION-VALUED FUNCTIONS

Abstract

This paper provides differential operators in dual quaternions and represents the regularity of dual quaternionvalued functions using the dual Cauchy - Riemann system in dual quaternions. Also, we give the corresponding Cauchy theorem of the dual quaternion-valued function in Clifford analysis.

Key words: quaternion, dual number, Cauchy-Riemann system, Cauchy theorem, Clifford analysis
2010 Mathematical Subject Classification: 32A99, 32W50, 30G35, 11E88

1. Introduction. A dual quaternion can be represented in the form $p+\varepsilon q$, where p and q are ordinary quaternions and ε is the so-called dual unit, an element that commutes with every element of the algebra and is such that $\varepsilon^{2}=0$. Unlike quaternions, not every dual quaternion has an inverse. The set of dual quaternions is the following Clifford algebra:

$$
\mathbb{D}_{q}:=\left\{Z=p_{1}+\varepsilon p_{2} \mid p_{1}, p_{2} \in \mathbb{H}\right\}
$$

where \mathbb{H} is the set of quaternions which are combined by the basis elements $1, i, j, k$. It has the product rule for i, j and k given by

$$
i^{2}=j^{2}=k^{2}=i j k=-1
$$

and

$$
i j=-j i=k, \quad j k=-k j=i, \quad k i=-i k=j
$$

For two quaternions $p=z_{1}+z_{2} j$ and $q=w_{1}+w_{2} j$, where $z_{1}=x_{0}+i x_{1}$, $z_{2}=x_{2}+i x_{3}, w_{1}=y_{0}+i y_{1}$ and $w_{2}=y_{2}+i y_{3}$, the rule of addition is:

$$
p+q=\left(z_{1}+w_{1}\right)+\left(z_{2}+w_{2}\right) j
$$

[^0]and multiplication is:
$$
p q=\left(z_{1} w_{1}-z_{2} \overline{w_{2}}\right)+\left(z_{1} w_{2}+z_{2} \overline{w_{1}}\right) j .
$$

From the above rules, we give a norm for a quaternion as follows:

$$
|p|^{2}:=p p^{*}=z_{1} \overline{z_{1}}+z_{2} \overline{z_{2}}
$$

and the inverse of p as follows:

$$
p^{-1}=\frac{p^{*}}{|p|^{2}} \quad(p \neq 0)
$$

Hamilton [7, 8] introduced quaternions in 1843, and in 1873 Clifford [4, 5] obtained a broad generalization of these numbers, which is now called the Clifford algebra [14]. At the turn of the 20th century, Kotelnikov [12] and Study [15] developed dual vectors and dual quaternions. In 1891 Study realized that this associative algebra was ideal for describing the group of motions of three-dimensional spaces. He further developed the idea in [15. Kajiwara et al. [9] gave a basic estimate for inhomogeneous Cauchy - Riemann system and applied the theory to a closed densely defined operator in a Hilbert space. Kim et al. [10] obtained a corresponding inverse of functions and their properties and a regularity of functions on the form of multidual complex variables in Clifford analysis. Also, we [11] researched corresponding Cauchy - Riemann systems and properties of functions with values in special quaternions and split quaternions by using a regular function with values in dual split quaternions. Mathematicians has appeared null solutions of the Douglis operator, called hyperanalytic functions theory. Blaya et al. [1] presented the definition of conjugate hyperharmonic Douglis algebra-valued functions which proposed generalization of the classical conjugate harmonic functions in the Complex analysis case. They established an upper bound for the norm of a fractal Hilbert transform in the space of Hölder analytic functions and characterized the monogenicity of functions and generalizations of certain two-sided monogenic extension results in the sense of Douglis operator (see [2, 3]).

This paper investigates the expression of differential operators in dual quaternions. The paper also represents a corresponding Cauchy theorem of dual quaternion-valued functions by using a dual Cauchy - Riemann system in dual quaternions.
2. Preliminaries. We consider the following set

$$
\mathbb{D}_{q}=\left\{Z=p_{1}+\varepsilon p_{2} \mid p_{r} \in \mathbb{H}, \varepsilon^{2}=0, r=1,2\right\},
$$

which is isomorphic to \mathbb{H}^{2} and \mathbb{R}^{8}. For $Z=p_{1}+\varepsilon p_{2}$ and $W=q_{1}+\varepsilon q_{2}$, we have the following rules of addition and multiplication on \mathbb{D}_{q} :

$$
Z+W=\left(p_{1}+q_{1}\right)+\varepsilon\left(p_{2}+q_{2}\right)
$$

and

$$
Z W=p_{1} q_{1}+\varepsilon\left(p_{1} q_{2}+p_{2} q_{1}\right),
$$

respectively. We give a complex conjugate element of \mathbb{D}_{q} as follows:

$$
Z^{*}=p_{1}^{*}+\varepsilon p_{2}^{*}
$$

and then, the norm of Z, denoted by $|Z|$, is described by

$$
|Z|^{2}=\frac{1}{2}\left(Z Z^{*}+Z^{*} Z\right)=p_{1} p_{1}^{*}+2 \varepsilon \mathrm{~S}\left(p_{1} p_{2}^{*}\right),
$$

where $\mathrm{S}\left(p_{1} p_{2}^{*}\right)$ is the scalar part of $p_{1} p_{2}^{*}$ such that

$$
\mathrm{S}\left(p_{1} p_{2}^{*}\right)=x_{0} y_{0}+x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3} .
$$

The elements of the set $\{\varepsilon p \mid p \in \mathbb{H}\}$ are not invertible; for a dual quaternion $Z=p_{1}+\varepsilon p_{2}$ outside this set, the inverse is given by

$$
Z^{-1}=\frac{Z^{\dagger}}{p_{1} p_{1}^{*}} \quad\left(p_{1} \neq 0\right),
$$

where

$$
Z^{\dagger}=p_{1}^{*}-\varepsilon p_{1}^{-1} p_{2} p_{1}^{*}
$$

called the dual conjugate of Z with $Z Z^{\dagger}=Z^{\dagger} Z=p_{1} p_{1}^{*}$.
3. Hyperholomorphic function in dual quaternions. Let Ω be a bounded open set in \mathbb{D}_{q}. A function is given by

$$
F: \Omega \rightarrow \mathbb{D}_{q} ; \quad F(Z)=f_{1}\left(p_{1}, p_{2}\right)+\varepsilon f_{2}\left(p_{1}, p_{2}\right)
$$

where

$$
f_{1}=g_{1}\left(z_{1}, z_{2}, w_{1}, w_{2}\right)+j \overline{g_{2}}\left(z_{1}, z_{2}, w_{1}, w_{2}\right)
$$

and

$$
f_{2}=h_{1}\left(z_{1}, z_{2}, w_{1}, w_{2}\right)+j \overline{h_{2}}\left(z_{1}, z_{2}, w_{1}, w_{2}\right)
$$

are quaternion-valued functions and $g_{1}=u_{0}+i u_{1}, \overline{g_{2}}=u_{2}-i u_{3}, h_{1}=$ $=v_{0}+i v_{1}$ and $\overline{h_{2}}=v_{2}-i v_{3}$ are complex-valued functions with real-valued functions u_{r} and $v_{r}(r=0,1,2,3)$.

We consider the corresponding differential operators:

$$
D:=\left(\frac{\partial}{\partial x_{0}}-i \frac{\partial}{\partial x_{1}}-j \frac{\partial}{\partial x_{2}}-k \frac{\partial}{\partial x_{3}}\right)+\varepsilon\left(\frac{\partial}{\partial y_{0}}-i \frac{\partial}{\partial y_{1}}-j \frac{\partial}{\partial y_{2}}-k \frac{\partial}{\partial y_{3}}\right)
$$

and

$$
D^{*}=\left(\frac{\partial}{\partial x_{0}}+i \frac{\partial}{\partial x_{1}}+j \frac{\partial}{\partial x_{2}}+k \frac{\partial}{\partial x_{3}}\right)+\varepsilon\left(\frac{\partial}{\partial y_{0}}+i \frac{\partial}{\partial y_{1}}+j \frac{\partial}{\partial y_{2}}+k \frac{\partial}{\partial y_{3}}\right)
$$

Using the properties of the basis elements $1, i, j$, and k, we also write as follows:

$$
D:=\left(\frac{\partial}{\partial z_{1}}-j \frac{\partial}{\partial z_{2}}\right)+\varepsilon\left(\frac{\partial}{\partial w_{1}}-j \frac{\partial}{\partial w_{2}}\right)
$$

and

$$
D^{*}=\left(\frac{\partial}{\partial \overline{z_{1}}}+j \frac{\partial}{\partial z_{2}}\right)+\varepsilon\left(\frac{\partial}{\partial \overline{w_{1}}}+j \frac{\partial}{\partial w_{2}}\right)
$$

where $\frac{\partial}{\partial z_{r}}, \frac{\partial}{\partial w_{r}}, \frac{\partial}{\partial \overline{z_{r}}}$ and $\frac{\partial}{\partial \overline{w_{r}}}(r=1,2)$ are the usual differential operators in complex analysis. We let

$$
\frac{\partial}{\partial p_{1}}:=\frac{\partial}{\partial z_{1}}-j \frac{\partial}{\partial z_{2}}, \quad \frac{\partial}{\partial p_{2}}:=\frac{\partial}{\partial w_{1}}-j \frac{\partial}{\partial w_{2}}
$$

and

$$
\frac{\partial}{\partial p_{1}^{*}}=\frac{\partial}{\partial \overline{z_{1}}}+j \frac{\partial}{\partial z_{2}}, \quad \frac{\partial}{\partial p_{2}^{*}}=\frac{\partial}{\partial \overline{w_{1}}}+j \frac{\partial}{\partial w_{2}}
$$

Then

$$
D:=\frac{\partial}{\partial p_{1}}+\varepsilon \frac{\partial}{\partial p_{2}} \quad \text { and } \quad D^{*}=\frac{\partial}{\partial p_{1}^{*}}+\varepsilon \frac{\partial}{\partial p_{2}^{*}}
$$

Let $C^{1}\left(\Omega, \mathbb{D}_{q}\right)$ be the set of continuous functions from Ω to \mathbb{D}_{q}. The
corresponding Laplace operator on $C^{1}\left(\Omega, \mathbb{D}_{q}\right)$ is

$$
\begin{aligned}
\triangle & :=\frac{1}{2}\left(D D^{*}+D^{*} D\right)=\frac{1}{2}\left(D^{*} D+D D^{*}\right)= \\
& =\left(\frac{\partial}{\partial p_{1}} \frac{\partial}{\partial p_{1}^{*}}+\varepsilon 2 \mathrm{~S}\left(\frac{\partial}{\partial p_{1}} \frac{\partial}{\partial p_{2}^{*}}\right)\right)= \\
& =\left(\frac{\partial}{\partial p_{1}^{*}} \frac{\partial}{\partial p_{1}}+\varepsilon 2 \mathrm{~S}\left(\frac{\partial}{\partial p_{1}^{*}} \frac{\partial}{\partial p_{2}}\right)\right)
\end{aligned}
$$

Consider the following calculations with the differential operators defined above:

Remark 1. On a bounded open set Ω in \mathbb{H}^{2}, we have

$$
\begin{aligned}
D F= & \frac{\partial f_{1}}{\partial p_{1}}+\varepsilon\left(\frac{\partial f_{2}}{\partial p_{1}}+\frac{\partial f_{1}}{\partial p_{2}}\right) \\
D^{*} F= & \frac{\partial f_{1}}{\partial p_{1}^{*}}+\varepsilon\left(\frac{\partial f_{2}}{\partial p_{1}^{*}}+\frac{\partial f_{1}}{\partial p_{2}^{*}}\right)= \\
= & \left(\frac{\partial g_{1}}{\partial \overline{z_{1}}}-\frac{\partial \overline{g_{2}}}{\partial \overline{z_{2}}}+j\left(\frac{\partial \overline{g_{2}}}{\partial z_{1}}+\frac{\partial g_{1}}{\partial z_{2}}\right)\right)+ \\
& +\varepsilon\left\{\left(\frac{\partial h_{1}}{\partial \overline{z_{1}}}-\frac{\partial \overline{h_{2}}}{\partial \overline{z_{2}}}+\frac{\partial g_{1}}{\partial \overline{w_{1}}}-\frac{\partial \overline{g_{2}}}{\partial \overline{w_{2}}}\right)+\right. \\
& \left.+j\left(\frac{\partial \overline{h_{2}}}{\partial z_{1}}+\frac{\partial h_{1}}{\partial z_{2}}+\frac{\partial \overline{g_{2}}}{\partial w_{1}}+\frac{\partial g_{1}}{\partial w_{2}}\right)\right\}
\end{aligned}
$$

Definition 1. Let Ω be a bounded open set in \mathbb{H}^{2}. A function F is said to be left (resp. right) regular on Ω if the components f_{1} and f_{2} of F are both continuously differentiable functions and F satisfies the following equation

$$
\begin{equation*}
D^{*} F=0 \quad\left(\text { resp. } \quad F D^{*}=0\right) \tag{1}
\end{equation*}
$$

From Remark 1 , the left equation of $\sqrt[1)]{ }$ is equivalent to

$$
\frac{\partial f_{1}}{\partial p_{1}^{*}}=0 \quad \text { and } \quad \frac{\partial f_{2}}{\partial p_{1}^{*}}=-\frac{\partial f_{1}}{\partial p_{2}^{*}}
$$

In detail, it is also equivalent to the following system:

$$
\left\{\begin{array}{l}
\frac{\partial g_{1}}{\partial \overline{z_{1}}}=\frac{\partial \overline{g_{2}}}{\partial \overline{z_{2}}} \tag{2}\\
\frac{\partial \overline{g_{2}}}{\partial z_{1}}=-\frac{\partial g_{1}}{\partial z_{2}} \\
\frac{\partial h_{1}}{\partial z_{1}}+\frac{\partial g_{1}}{\partial \overline{w_{1}}}=\frac{\partial h_{2}}{\partial \overline{z_{2}}}+\frac{\partial g_{2}}{\partial \overline{w_{2}}} \\
\frac{\partial h_{2}}{\partial z_{1}}+\frac{\partial g_{2}}{\partial w_{1}}=-\frac{\partial h_{1}}{\partial z_{2}}-\frac{\partial g_{1}}{\partial w_{2}}
\end{array}\right.
$$

Clearly, the properties and progresses of the theory of left regular functions are equivalent to that of right regular functions. For the sake of the convenience we consider left regular functions, which are called just regular.

Let U be a compact oriented C^{∞}-manifold with boundary ∂U contained in a domain Ω of \mathbb{H}^{2}. For $r(0 \leq r \leq 3)$, let

$$
\begin{aligned}
d \widehat{x_{r}} & =d x_{0} \wedge \cdots \wedge d x_{r-1} \wedge d x_{r+1} \wedge \cdots \wedge d x_{3} \wedge d y_{0} \wedge d y_{1} \wedge d y_{2} \wedge d y_{3} \\
d \widehat{y_{r}}: & =d x_{0} \wedge d x_{1} \wedge d x_{2} \wedge d x_{3} \wedge d y_{0} \wedge \cdots \wedge d y_{r-1} \wedge d y_{r+1} \wedge \cdots \wedge d y_{3}
\end{aligned}
$$

and

$$
d \sigma=d \sigma\left(p_{1}, p_{2}\right):=d \sigma_{1}+\varepsilon d \sigma_{2}
$$

where

$$
d \sigma_{1}:=d \widehat{x_{0}}-i d \widehat{x_{1}}+j d \widehat{x_{2}}-k d \widehat{x_{3}}
$$

and

$$
\sigma_{2}:=d \widehat{y_{0}}-i d \widehat{y_{1}}+j d \widehat{y_{2}}-k d \widehat{y_{3}} .
$$

Hence, for $F=F\left(p_{1}, p_{2}\right)=g(z, w)+\varepsilon h(z, w)$ in $C^{\infty}\left(\Omega, \mathbb{D}_{q}\right)$, where

$$
g(z, w)=u_{0}+u_{1} i+u_{2} j+u_{3} k
$$

and

$$
h(z, w)=v_{0}+v_{1} i+v_{2} j+v_{3} k
$$

with

$$
(z, w)=\left(x_{0}, x_{1}, x_{2}, x_{3}, y_{0}, y_{1}, y_{2}, y_{3}\right)
$$

the corresponding dual quaternion-valued 7 -form is

$$
\begin{aligned}
\omega & :=d \sigma\left(p_{1}, p_{2}\right) F\left(p_{1}, p_{2}\right)=\left(d \sigma_{1}+\varepsilon d \sigma_{2}\right)(g(z, w)+\varepsilon h(z, w))= \\
& =d \sigma_{1} g(z, w)+\varepsilon d \sigma_{1} h(z, w)+\varepsilon d \sigma_{2} g(z, w)
\end{aligned}
$$

and the exterior derivative is

$$
\begin{aligned}
d \omega:= & \frac{\partial F}{\partial x_{0}} d x_{0} \wedge d \widehat{x_{0}}-i \frac{\partial F}{\partial x_{1}} d x_{1} \wedge d \widehat{x_{1}}+j \frac{\partial F}{\partial x_{2}} d x_{2} \wedge d \widehat{x_{2}}- \\
& -k \frac{\partial F}{\partial x_{3}} d x_{3} \wedge d \widehat{x_{3}}+\varepsilon\left(\frac{\partial g}{\partial y_{0}} d y_{0} \wedge d \widehat{y_{0}}-i \frac{\partial g}{\partial y_{1}} d y_{1} \wedge d \widehat{y_{1}}+\right. \\
& \left.+j \frac{\partial g}{\partial y_{2}} d y_{2} \wedge d \widehat{y_{2}}-k \frac{\partial g}{\partial y_{3}} d y_{3} \wedge d \widehat{y_{3}}\right)= \\
= & \left(D^{*} F\right) d V\left(p_{1}, p_{2}\right),
\end{aligned}
$$

where $d V\left(p_{1}, p_{2}\right)=d x_{0} \wedge d x_{1} \wedge d x_{2} \wedge d x_{3} \wedge d y_{0} \wedge d y_{1} \wedge d y_{2} \wedge d y_{3}$.
Remark 2. For each $Z \in \partial U$, let $n=n\left(p_{1}, p_{2}\right)=N+\varepsilon M$, where $N=n_{0}+n_{1} i+n_{2} j+n_{3} k$ and $M=m_{0}+m_{1} i+m_{2} j+m_{3} k$ be the outward unit normal to ∂U at Z. Then we have

$$
d \sigma\left(p_{1}, p_{2}\right)=n\left(p_{1}, p_{2}\right) d S\left(p_{1}, p_{2}\right)
$$

and

$$
\omega=n\left(p_{1}, p_{2}\right) F\left(p_{1}, p_{2}\right) d S\left(p_{1}, p_{2}\right)=N g(z, w)+\varepsilon(N h(z, w)+M g(z, w)),
$$

where $d S\left(p_{1}, p_{2}\right)$ is the scalar element of a surface area on ∂U.
Following [13], let

$$
\Phi(Z-W)=\frac{Z^{*}-W^{*}}{\nu|Z-W|^{8}}
$$

where

$$
Z^{*}=\zeta_{0}-\zeta_{1} i-\zeta_{2} j-\zeta_{3} k \quad \text { and } \quad W^{*}=\eta_{0}-\eta_{1} i-\eta_{2} j-\eta_{3} k
$$

with $\zeta_{r}=x_{r}+\varepsilon y_{r}$ and $\eta_{r}=\lambda_{r}+\varepsilon \mu_{r}\left(r=0,1,2,3\right.$ and $\left.x_{r}, y_{r}, \lambda_{r}, \mu_{r} \in \mathbb{R}\right)$, and ν is the surface area of the unit sphere in \mathbb{H}^{2}, it is called the Cauchy kernel on \mathbb{D}_{q}.

Remark 3. For $Z=\zeta_{0}+\zeta_{1} i+\zeta_{2} j+\zeta_{3} k$, the norm of Z is

$$
Z Z^{*}=Z^{*} Z=\sum_{r=0}^{3} \zeta_{r}^{2}
$$

Remark 4. Let $\Phi(Z-W)=\frac{Z^{*}-W^{*}}{\nu|Z-W|^{8}}$, where ν is the surface of the unit sphere in \mathbb{R}^{4}, is so-called the Cauchy kernel on \mathbb{D}_{q}. The function $\Phi(Z-W)$ is left and right regular in Ω. Indeed,

$$
\begin{aligned}
D^{*} \Phi(Z-W) & =D^{*}\left(\frac{Z^{*}-W^{*}}{\nu|Z-W|^{8}}\right)= \\
& =\left(\frac{\partial}{\partial \zeta_{0}}+i \frac{\partial}{\partial \zeta_{1}}+j \frac{\partial}{\partial \zeta_{2}}+k \frac{\partial}{\partial \zeta_{3}}\right) \times \\
& \times\left(\frac{\left(\zeta_{0}-\eta_{0}\right)-\left(\zeta_{1}-\eta_{1}\right) i-\left(\zeta_{2}-\eta_{2}\right) j-\left(\zeta_{3}-\eta_{3}\right) k}{\nu\left(\sum_{r=0}^{3}\left(\zeta_{r}-\eta_{r}\right)^{2}\right)^{4}}\right)= \\
& =\left(\frac{Z^{*}-W^{*}}{\nu|Z-W|^{8}}\right) D^{*}=0
\end{aligned}
$$

where

$$
\frac{\partial}{\partial \zeta_{r}}=\frac{\partial}{\partial x_{r}}+\varepsilon \frac{\partial}{\partial y_{r}}
$$

and

$$
\frac{\partial}{\partial \zeta_{r}} \zeta_{r}=1, \quad(r=0,1,2,3)
$$

Lemma 1. [6] Let Ω be a bounded open set in \mathbb{D}_{q}. Let u and v be smooth scalar-valued functions on Ω. Then for all r and $t(0 \leq r, t \leq 3)$,

$$
\int_{U}\left(u \frac{\partial v}{\partial x_{r}}+\frac{\partial u}{\partial x_{r}} v\right) d V=\int_{\partial U} u v n_{r} d S
$$

and

$$
\int_{U}\left(\frac{\partial v}{\partial y_{t}}+\frac{\partial u}{\partial y_{t}} v\right) d V=\int_{\partial U} u v m_{t} d S,
$$

where n_{r} and m_{t} are defined in Remark 2.
Lemma 2. 13] Let Ω be a bounded open set in \mathbb{D}_{q}. Let F and ψ be smooth dual quaternion-valued functions on Ω, where $F=g(z, w)+$
$+\varepsilon h(z, w)$ and $\psi=\phi(z, w)+\varepsilon \varphi(z, w)$ with $\phi(z, w)=\alpha_{0}+\alpha_{1} i+\alpha_{2} j+\alpha_{3} k$ and $\varphi(z, w)=\beta_{0}+\beta_{1} i+\beta_{2} j+\beta_{3} k$, where α_{r} and $\beta_{r}(r=0,1,2,3)$ are real-valued functions. Then we have

$$
\int_{U}\left\{F\left(D^{*} \psi\right)+\left(F D^{*}\right) \psi\right\} d V=\int_{\partial U} F(n \psi) d S
$$

where n is defined in Remark 2.
Theorem 1. Let Ω be a bounded open set in \mathbb{D}_{q} and U be a subset of Ω. For $Z \in \Omega$, if $D^{*} F=0$ and $W \in \operatorname{int}(U)$, then we have

$$
F(Z)=\int_{\partial U} \Phi(Z-W)\left\{d \sigma\left(p_{1}, p_{2}\right) F\left(p_{1}, p_{2}\right)\right\}
$$

where $\operatorname{int}(U)$ is the interior of U and $\Phi(Z-W)$ is a regular function expressed in Remark 4. Also, if $D^{*} F=0$ and $W \in \Omega \backslash U$, then the above integral is zero.
Proof. For $W \in \operatorname{int}(U)$ and given $\epsilon>0$, let U_{B} be U except the open ball of radius ϵ centered at W. Then from Remark 4 the function $\Phi(Z-W)$ is regular in U_{B} and from Lemma 2, we have

$$
\begin{aligned}
& \int_{U_{B}}\left\{\Phi(Z-W)\left(D^{*} F\right)+\left(\Phi(Z-W) D^{*}\right) F\right\} d V= \\
& =\int_{U_{B}}\left\{\Phi(Z-W)\left(D^{*} F\right) d V=\int_{U_{B}} \Phi(Z-W)(n F) d S=\right. \\
& =\int_{\partial U} \Phi(Z-W)(n F) d S-\int_{B_{\epsilon}} \Phi(Z-W)(n F) d S,
\end{aligned}
$$

where B_{ϵ} is the sphere of radius ϵ centered at W. Since

$$
\Phi(Z-W)(n F)=\frac{Z^{*}-W^{*}}{\nu|Z-W|^{8}} \frac{Z-W}{\nu|Z-W|}=\frac{F}{\nu|Z-W|^{7}}
$$

we have

$$
\int_{B_{\epsilon}} \Phi(Z-W)(n F) d S=\int_{U_{B}} \frac{F}{\nu|Z-W|^{7}} d S .
$$

Since $W \in \operatorname{int}(U)$ and the integral is taken over B_{ϵ}, as $\epsilon \rightarrow 0$, we get:

$$
\left|\int_{B_{\epsilon}} \frac{F}{\nu|Z-W|^{7}} d S-F\right|<\epsilon
$$

Also, for $W \in \Omega \backslash U$, we have

$$
\int_{U_{B}} \Phi(Z-W)(n F) d S=0
$$

Therefore, we obtain

$$
\begin{aligned}
& \int_{U_{B}} \Phi(Z-W)\left(D^{*} F\right) d V=\int_{U_{B}} \Phi(Z-W)(n F) d S= \\
= & \int_{\partial U} \Phi(Z-W)(n F) d S-\int_{B_{\epsilon}} \Phi(Z-W)(n F) d S= \\
= & \int_{\partial U} \Phi(Z-W) d \sigma\left(p_{1}, p_{2}\right) F\left(p_{1}, p_{2}\right)-F\left(p_{1}, p_{2}\right) .
\end{aligned}
$$

From the hypothesis $D^{*} F=0$, we obtain

$$
0=\int_{\partial U} \Phi(Z-W) d \sigma\left(p_{1}, p_{2}\right) F\left(p_{1}, p_{2}\right)-F\left(p_{1}, p_{2}\right)
$$

Acknowledgment. This work was supported by the Dongguk University Research Fund of 2017.

References

[1] Blaya R. A., Peña D. P., Reyes J. B. Conjugate hyperharmonic functions and Cauchy type integrals in Douglis analysis. Complex Var. Theory App., 2003, vol. 48 (12), pp. 1023-1039. DOI:10.1080/02781070310001634548.
[2] Blaya R. A., Reyes J. B., Vilaire J. M. Hölder norm of a fractal Hilbert transform in Douglis analysis. Commun. Math. Anal., 2014, vol. 16(1), pp. 1-8. DOI:10.1186/s13660-017-1488-7.
[3] Blaya R. A., Reyes J. B., Kats B. A. Approximate dimension applied to criteria for monogenicity on fractal domains. Bull. Braz. Math. Soc., New Series, 2012, vol. 43, pp. 529-544. DOI:10.1007/s00574-012-0025-z.
[4] Clifford W. K. Preliminary sketch of bi-quaternions. Proc. London Math. Soc., 1873, vol. 4, pp. 381-395. DOI:10.1112/plms/s1-4.1.381.
[5] Clifford W. K. Mathematical Papers. London Macmillan, 1882.
[6] Gilbert J. E., Murray M. A. M. Clifford algebras and Dirac operators in harmonic analysis. Cambridge University Press, Cambridge, 1991. DOI:10.1017/CBO9780511611582.
[7] Hamilton W. R. On Quaternions; or on a new system of imaginaries in algebra. Philos. Mag., 1843, vol. 25, pp. 489-495. DOI:10.1080/14786444608645590.
[8] Hamilton W. R. Elements of Quaternions. Longmans, Green, and Company, London, 1899. DOI:10.1017/CBO9780511707162.
[9] Kajiwara J., Li X. D., Shon K. H. Function spaces in complex and Clifford analysis. Finite or Infinite Dimensional Complex Analysis and Applications, Springer US, New York, USA, 2006, pp. 127-155. DOI:10.1007/978-3-0348-0692-3-24-1.
[10] Kim J. E. The corresponding inverse of functions of multidual complex variables in Clifford analysis. J. Non. Sci. Appl., 2016, vol. 9 (6), pp. 45204528. DOI:10.22436/jnsa.009.06.90.
[11] Kim J. E., Shon K. H. The Regularity of functions on Dual split quaternions in Clifford analysis. Abst. Appl. Anal., 2014, Artical ID 369430, 8 pages. DOI:10.1155/2014/369430.
[12] Kotelnikov A. P. Screw calculus and some applications to geometry and mechanics. Annal. Imp. Univ. Kazan, 1895.
[13] Li X., Peng L. The Cauchy integral formulas on the octonions. Bull. Belg. Math. Soc., 2002, vol. 9, pp. 47-64.
[14] McCarthy J. M. An Introduction to Theoretical Kinematics. MIT Press, 1990.
[15] Study E. Geometrie der Dynamen. Teubner, Leipzig, 1901.
Received January 9, 2018.
In revised form, April 9, 2018.
Accepted April 11, 2018.
Published online June 19, 2018.

Department of Mathematics, Dongguk University
Gyeongju-si 38066, Republic of Korea
E-mail: jeunkim@pusan.ac.kr

[^0]: (C) Petrozavodsk State University, 2018

