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THE CORRESPONDING CAUCHY – RIEMANN SYSTEM
FOR DUAL QUATERNION-VALUED FUNCTIONS

Abstract. This paper provides differential operators in dual
quaternions and represents the regularity of dual quaternion-
valued functions using the dual Cauchy – Riemann system in dual
quaternions. Also, we give the corresponding Cauchy theorem of
the dual quaternion-valued function in Clifford analysis.
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1. Introduction. A dual quaternion can be represented in the form
p+ εq, where p and q are ordinary quaternions and ε is the so-called dual
unit, an element that commutes with every element of the algebra and is
such that ε2 = 0. Unlike quaternions, not every dual quaternion has an
inverse. The set of dual quaternions is the following Clifford algebra:

Dq := {Z = p1 + εp2 | p1, p2 ∈ H},

where H is the set of quaternions which are combined by the basis elements
1, i, j, k. It has the product rule for i, j and k given by

i2 = j2 = k2 = ijk = −1

and
ij = −ji = k, jk = −kj = i, ki = −ik = j.

For two quaternions p = z1 + z2j and q = w1 +w2j, where z1 = x0 + ix1,
z2 = x2 + ix3, w1 = y0 + iy1 and w2 = y2 + iy3, the rule of addition is:

p+ q = (z1 + w1) + (z2 + w2)j
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and multiplication is:

pq = (z1w1 − z2w2) + (z1w2 + z2w1)j.

From the above rules, we give a norm for a quaternion as follows:

|p|2 := pp∗ = z1z1 + z2z2

and the inverse of p as follows:

p−1 =
p∗

|p|2
(p 6= 0).

Hamilton [7, 8] introduced quaternions in 1843, and in 1873 Clifford [4, 5]
obtained a broad generalization of these numbers, which is now called
the Clifford algebra [14]. At the turn of the 20th century, Kotelnikov
[12] and Study [15] developed dual vectors and dual quaternions. In 1891
Study realized that this associative algebra was ideal for describing the
group of motions of three-dimensional spaces. He further developed the
idea in [15]. Kajiwara et al. [9] gave a basic estimate for inhomogeneous
Cauchy – Riemann system and applied the theory to a closed densely de-
fined operator in a Hilbert space. Kim et al. [10] obtained a correspon-
ding inverse of functions and their properties and a regularity of functions
on the form of multidual complex variables in Clifford analysis. Also,
we [11] researched corresponding Cauchy – Riemann systems and proper-
ties of functions with values in special quaternions and split quaternions
by using a regular function with values in dual split quaternions. Ma-
thematicians has appeared null solutions of the Douglis operator, called
hyperanalytic functions theory. Blaya et al. [1] presented the definition
of conjugate hyperharmonic Douglis algebra-valued functions which pro-
posed generalization of the classical conjugate harmonic functions in the
Complex analysis case. They established an upper bound for the norm of
a fractal Hilbert transform in the space of Hölder analytic functions and
characterized the monogenicity of functions and generalizations of certain
two-sided monogenic extension results in the sense of Douglis operator
(see [2, 3]).

This paper investigates the expression of differential operators in dual
quaternions. The paper also represents a corresponding Cauchy theorem
of dual quaternion-valued functions by using a dual Cauchy – Riemann
system in dual quaternions.
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2. Preliminaries. We consider the following set

Dq = {Z = p1 + εp2 | pr ∈ H, ε2 = 0, r = 1, 2},

which is isomorphic to H2 and R8. For Z = p1 + εp2 and W = q1 + εq2,
we have the following rules of addition and multiplication on Dq:

Z +W = (p1 + q1) + ε(p2 + q2)

and
ZW = p1q1 + ε(p1q2 + p2q1),

respectively. We give a complex conjugate element of Dq as follows:

Z∗ = p∗1 + εp∗2

and then, the norm of Z, denoted by |Z|, is described by

|Z|2 =
1

2
(ZZ∗ + Z∗Z) = p1p

∗
1 + 2εS(p1p

∗
2),

where S(p1p
∗
2) is the scalar part of p1p

∗
2 such that

S(p1p
∗
2) = x0y0 + x1y1 + x2y2 + x3y3.

The elements of the set {εp | p ∈ H} are not invertible; for a dual quater-
nion Z = p1 + εp2 outside this set, the inverse is given by

Z−1 =
Z†

p1p∗1
(p1 6= 0),

where
Z† = p∗1 − εp−11 p2p

∗
1,

called the dual conjugate of Z with ZZ† = Z†Z = p1p
∗
1.

3. Hyperholomorphic function in dual quaternions. Let Ω be
a bounded open set in Dq. A function is given by

F : Ω → Dq; F (Z) = f1(p1, p2) + εf2(p1, p2),

where
f1 = g1(z1, z2, w1, w2) + jg2(z1, z2, w1, w2)
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and

f2 = h1(z1, z2, w1, w2) + jh2(z1, z2, w1, w2)

are quaternion-valued functions and g1 = u0 + iu1, g2 = u2 − iu3, h1 =
= v0+iv1 and h2 = v2−iv3 are complex-valued functions with real-valued
functions ur and vr (r = 0, 1, 2, 3).

We consider the corresponding differential operators:

D :=
( ∂

∂x0
− i ∂

∂x1
− j ∂

∂x2
− k ∂

∂x3

)
+ ε
( ∂

∂y0
− i ∂

∂y1
− j ∂

∂y2
− k ∂

∂y3

)
and

D∗ =
( ∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
+ k

∂

∂x3

)
+ ε
( ∂

∂y0
+ i

∂

∂y1
+ j

∂

∂y2
+ k

∂

∂y3

)
.

Using the properties of the basis elements 1, i, j, and k, we also write as
follows:

D :=
( ∂

∂z1
− j ∂

∂z2

)
+ ε
( ∂

∂w1
− j ∂

∂w2

)
and

D∗ =
( ∂

∂z1
+ j

∂

∂z2

)
+ ε
( ∂

∂w1
+ j

∂

∂w2

)
,

where ∂
∂zr

, ∂
∂wr

, ∂
∂zr

and ∂
∂wr

(r = 1, 2) are the usual differential operators
in complex analysis. We let

∂

∂p1
:=

∂

∂z1
− j ∂

∂z2
,

∂

∂p2
:=

∂

∂w1
− j ∂

∂w2

and
∂

∂p∗1
=

∂

∂z1
+ j

∂

∂z2
,

∂

∂p∗2
=

∂

∂w1
+ j

∂

∂w2
.

Then

D :=
∂

∂p1
+ ε

∂

∂p2
and D∗ =

∂

∂p∗1
+ ε

∂

∂p∗2
.

Let C1(Ω,Dq) be the set of continuous functions from Ω to Dq. The
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corresponding Laplace operator on C1(Ω,Dq) is

4 :=
1

2
(DD∗ +D∗D) =

1

2
(D∗D +DD∗) =

=
( ∂

∂p1

∂

∂p∗1
+ ε2S

( ∂

∂p1

∂

∂p∗2

))
=

=
( ∂

∂p∗1

∂

∂p1
+ ε2S

( ∂

∂p∗1

∂

∂p2

))
.

Consider the following calculations with the differential operators de-
fined above:

Remark 1. On a bounded open set Ω in H2, we have

DF =
∂f1
∂p1

+ ε
(∂f2
∂p1

+
∂f1
∂p2

)
,

D∗F =
∂f1
∂p∗1

+ ε
(∂f2
∂p∗1

+
∂f1
∂p∗2

)
=

=
(∂g1
∂z1
− ∂g2
∂z2

+ j
(∂g2
∂z1

+
∂g1
∂z2

))
+

+ε
{(∂h1

∂z1
− ∂h2
∂z2

+
∂g1
∂w1

− ∂g2
∂w2

)
+

+j
(∂h2
∂z1

+
∂h1
∂z2

+
∂g2
∂w1

+
∂g1
∂w2

)}
.

Definition 1. Let Ω be a bounded open set in H2. A function F is said
to be left (resp. right) regular on Ω if the components f1 and f2 of F are
both continuously differentiable functions and F satisfies the following
equation

D∗F = 0 (resp. FD∗ = 0). (1)

From Remark 1, the left equation of (1) is equivalent to

∂f1
∂p∗1

= 0 and
∂f2
∂p∗1

= −∂f1
∂p∗2

.
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In detail, it is also equivalent to the following system:

∂g1
∂z1

=
∂g2
∂z2

,

∂g2
∂z1

= −∂g1
∂z2

,

∂h1
∂z1

+
∂g1
∂w1

=
∂h2
∂z2

+
∂g2
∂w2

,

∂h2
∂z1

+
∂g2
∂w1

= −∂h1
∂z2
− ∂g1
∂w2

.

(2)

Clearly, the properties and progresses of the theory of left regular func-
tions are equivalent to that of right regular functions. For the sake of
the convenience we consider left regular functions, which are called just
regular.

Let U be a compact oriented C∞-manifold with boundary ∂U con-
tained in a domain Ω of H2. For r (0 ≤ r ≤ 3), let

dx̂r := dx0 ∧ · · · ∧ dxr−1 ∧ dxr+1 ∧ · · · ∧ dx3 ∧ dy0 ∧ dy1 ∧ dy2 ∧ dy3,

dŷr := dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dy0 ∧ · · · ∧ dyr−1 ∧ dyr+1 ∧ · · · ∧ dy3
and

dσ = dσ(p1, p2) := dσ1 + εdσ2,

where

dσ1 := dx̂0 − idx̂1 + jdx̂2 − kdx̂3
and

σ2 := dŷ0 − idŷ1 + jdŷ2 − kdŷ3.

Hence, for F = F (p1, p2) = g(z, w) + εh(z, w) in C∞(Ω,Dq), where

g(z, w) = u0 + u1i+ u2j + u3k

and

h(z, w) = v0 + v1i+ v2j + v3k

with

(z, w) = (x0, x1, x2, x3, y0, y1, y2, y3),
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the corresponding dual quaternion-valued 7-form is

ω := dσ(p1, p2)F (p1, p2) = (dσ1 + εdσ2)(g(z, w) + εh(z, w)) =

= dσ1g(z, w) + εdσ1h(z, w) + εdσ2g(z, w)

and the exterior derivative is

dω :=
∂F

∂x0
dx0 ∧ dx̂0 − i

∂F

∂x1
dx1 ∧ dx̂1 + j

∂F

∂x2
dx2 ∧ dx̂2 −

−k ∂F
∂x3

dx3 ∧ dx̂3 + ε
( ∂g
∂y0

dy0 ∧ dŷ0 − i
∂g

∂y1
dy1 ∧ dŷ1 +

+j
∂g

∂y2
dy2 ∧ dŷ2 − k

∂g

∂y3
dy3 ∧ dŷ3

)
=

= (D∗F )dV (p1, p2),

where dV (p1, p2) = dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dy0 ∧ dy1 ∧ dy2 ∧ dy3.

Remark 2. For each Z ∈ ∂U , let n = n(p1, p2) = N + εM , where
N = n0 +n1i+n2j+n3k and M = m0 +m1i+m2j+m3k be the outward
unit normal to ∂U at Z. Then we have

dσ(p1, p2) = n(p1, p2)dS(p1, p2)

and

ω = n(p1, p2)F (p1, p2)dS(p1, p2) = Ng(z, w) + ε(Nh(z, w) +Mg(z, w)),

where dS(p1, p2) is the scalar element of a surface area on ∂U .

Following [13], let

Φ(Z −W ) =
Z∗ −W ∗

ν|Z −W |8
,

where

Z∗ = ζ0 − ζ1i− ζ2j − ζ3k and W ∗ = η0 − η1i− η2j − η3k

with ζr = xr+εyr and ηr = λr+εµr (r = 0, 1, 2, 3 and xr, yr, λr, µr ∈ R),
and ν is the surface area of the unit sphere in H2, it is called the Cauchy
kernel on Dq.
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Remark 3. For Z = ζ0 + ζ1i+ ζ2j + ζ3k, the norm of Z is

ZZ∗ = Z∗Z =

3∑
r=0

ζ2r .

Remark 4. Let Φ(Z −W ) = Z∗−W∗

ν|Z−W |8 , where ν is the surface of the

unit sphere in R4, is so-called the Cauchy kernel on Dq. The function
Φ(Z −W ) is left and right regular in Ω. Indeed,

D∗Φ(Z −W ) = D∗
( Z∗ −W ∗

ν|Z −W |8
)

=

=
( ∂

∂ζ0
+ i

∂

∂ζ1
+ j

∂

∂ζ2
+ k

∂

∂ζ3

)
×

×
( (ζ0 − η0)− (ζ1 − η1)i− (ζ2 − η2)j − (ζ3 − η3)k

ν(
∑3
r=0(ζr − ηr)2)4

)
=

=
( Z∗ −W ∗

ν|Z −W |8
)
D∗ = 0,

where
∂

∂ζr
=

∂

∂xr
+ ε

∂

∂yr

and
∂

∂ζr
ζr = 1, (r = 0, 1, 2, 3).

Lemma 1. [6] Let Ω be a bounded open set in Dq. Let u and v be smooth
scalar-valued functions on Ω. Then for all r and t (0 ≤ r, t ≤ 3),∫

U

(
u
∂v

∂xr
+

∂u

∂xr
v
)
dV =

∫
∂U

uv nrdS

and ∫
U

( ∂v
∂yt

+
∂u

∂yt
v
)
dV =

∫
∂U

uv mtdS,

where nr and mt are defined in Remark 2.

Lemma 2. [13] Let Ω be a bounded open set in Dq. Let F and ψ be
smooth dual quaternion-valued functions on Ω, where F = g(z, w) +
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+εh(z, w) and ψ = φ(z, w)+εϕ(z, w) with φ(z, w) = α0 +α1i+α2j+α3k
and ϕ(z, w) = β0 + β1i + β2j + β3k, where αr and βr (r = 0, 1, 2, 3) are
real-valued functions. Then we have∫

U

{F (D∗ψ) + (FD∗)ψ}dV =

∫
∂U

F (nψ)dS,

where n is defined in Remark 2.

Theorem 1. Let Ω be a bounded open set in Dq and U be a subset of
Ω. For Z ∈ Ω, if D∗F = 0 and W ∈ int(U), then we have

F (Z) =

∫
∂U

Φ(Z −W ){dσ(p1, p2)F (p1, p2)},

where int(U) is the interior of U and Φ(Z − W ) is a regular function
expressed in Remark 4. Also, if D∗F = 0 and W ∈ Ω \U , then the above
integral is zero.

Proof. For W ∈ int(U) and given ε > 0, let UB be U except the open ball
of radius ε centered at W . Then from Remark 4, the function Φ(Z −W )
is regular in UB and from Lemma 2, we have∫

UB

{Φ(Z −W )(D∗F ) + (Φ(Z −W )D∗)F}dV =

=

∫
UB

{Φ(Z −W )(D∗F )dV =

∫
UB

Φ(Z −W )(n F )dS =

=

∫
∂U

Φ(Z −W )(n F )dS −
∫
Bε

Φ(Z −W )(n F )dS,

where Bε is the sphere of radius ε centered at W . Since

Φ(Z −W )(n F ) =
Z∗ −W ∗

ν|Z −W |8
Z −W
ν|Z −W |

=
F

ν|Z −W |7
,

we have ∫
Bε

Φ(Z −W )(n F )dS =

∫
UB

F

ν|Z −W |7
dS.
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Since W ∈ int(U) and the integral is taken over Bε, as ε→ 0, we get:∣∣∣∫
Bε

F

ν|Z −W |7
dS − F

∣∣∣ < ε.

Also, for W ∈ Ω \ U , we have∫
UB

Φ(Z −W )(n F )dS = 0.

Therefore, we obtain∫
UB

Φ(Z −W )(D∗F )dV =

∫
UB

Φ(Z −W )(n F )dS =

=

∫
∂U

Φ(Z −W )(n F )dS −
∫
Bε

Φ(Z −W )(n F )dS =

=

∫
∂U

Φ(Z −W )dσ(p1, p2)F (p1, p2)− F (p1, p2).

From the hypothesis D∗F = 0, we obtain

0 =

∫
∂U

Φ(Z −W )dσ(p1, p2)F (p1, p2)−F (p1, p2). �
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