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SOBOLEV-ORTHONORMAL SYSTEM OF FUNCTIONS
GENERATED BY THE SYSTEM OF LAGUERRE

FUNCTIONS

Abstract. We consider the system of functions λαr,n(x) (r ∈ N,
n = 0, 1, 2, . . .), orthonormal with respect to the Sobolev-type in-
ner product 〈f, g〉 =

∑r−1
ν=0 f

(ν)(0)g(ν)(0)+
∫∞
0 f (r)(x)g(r)(x)dx and

generated by the orthonormal Laguerre functions. The Fourier se-
ries in the system {λαr,n(x)}∞k=0 is shown to uniformly converge
to the function f ∈ W r

Lp for 4
3 < p < 4, α > 0, x ∈ [0, A],

0 6 A < ∞. Recurrence relations are obtained for the system
of functions λαr,n(x). Moreover, we study the asymptotic properties
of the functions λα1,n(x) as n → ∞ for 0 6 x 6 ω, where ω is a
fixed positive real number.
Key words: Laguerre polynomials, Laguerre functions, inner prod-
uct of Sobolev type, Sobolev-orthonormal functions, recurrence re-
lations, Fourier series, asymptotic formula
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1. Introduction.
Let Lp be the space of measurable functions f defined on the semiaxis

[0,∞), such that

‖f‖Lp =

 ∞∫
0

|f(x)|pdx

 1
p

<∞, 1 6 p <∞,

W r
Lp be the space of r−1 times continuously differentiable functions f for

which f (r−1) is absolutely continuous on an arbitrary segment
[a, b] ⊂ [0,∞) and f (r) ∈ Lp. By λαn(x) (n = 0, 1, . . .) we denote the
Laguerre function defined by the formula

λαn(x) =
√
ρ(x)lαn(x), (1)
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where ρ(x) = e−xxα, lαn(x) is the orthonormal Laguerre polynomial (13).
It is well known that for α > −1 the system of functions {λαn(x)}∞n=0 is
orthonormal with respect to the inner product

〈λαm, λαn〉 =

∞∫
0

λαm(x)λαn(x)dx.

The system of Laguerre functions {λαn(x)}∞n=0 generates on [0,∞) a system
of functions λαr,n(x) (r ∈ N, n = 0, 1, . . .) orthonormal for α > −1 with
respect to the Sobolev type inner product

〈f, g〉 =
r−1∑
ν=0

f (ν)(0)g(ν)(0) +

∞∫
0

f (r)(x)g(r)(x)dx. (2)

The functions λαr,n(x) are defined by means of equalities (15) and (16).
In this paper, we show that the Fourier series in the system {λαr,n(x)}∞k=0

converges uniformly to the function f ∈ W r
Lp for α > 0, 4

3
< p < 4,

x ∈ [0, A], 0 6 A < ∞. Recurrence relations are obtained for the system
of functions λαr,n(x) and can be used for calculating the values of λαr,n(x)
for any x and n. Moreover, we study the asymptotic properties of the
functions λα1,n(x) as n→∞ for 0 6 x 6 ω, where ω is a fixed positive real
number. Using these asymptotic properties, we obtained estimates for the
functions λα1,n(x) on the interval [0, ω].

2. Some information on the Laguerre polynomials and La-
guerre functions.

To study Sobolev-orthonormal functions generated by Laguerre func-
tions, we need some properties of the Laguerre polynomials and Laguerre
functions that are given in this section.

Let α be an arbitrary real number. Then for the Laguerre polynomials
we have [12]:
• The Rodrigues formula

Lαn(x) =
1

n!
x−αex

{
xn+αe−x

}(n)
.

• The orthogonality relations
∞∫
0

Lαn(x)Lαm(x)ρ(x)dx = δn,mh
α
n (α > −1), (3)
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where ρ(x) = e−xxα, δn,m is the Kronecker symbol, hαn =
(
n+α
n

)
Γ(α + 1).

• The equalities
d

dx
Lαn(x) = −Lα+1

n−1(x). (4)

L−kn (x) =
(−x)k

n[k]
Lkn−k(x),

where k is a positive integer number and 1 6 k 6 n, n[0] = 1,
n[k] = n(n− 1) · · · (n− k + 1).

xLα+1
n (x) = (n+ α + 1)Lαn(x)− (n+ 1)Lαn+1(x); (5)

• The recurrence formula

Lα0 (x) = 1, Lα1 (x) = −x+ α + 1,

nLαn(x)=(−x+2n+α−1)Lαn−1(x)−(n+α−1)Lαn−2(x), n = 2, 3, . . .
(6)

• Theorem. [12, p.199, Theorem 8.22.4] For α > −1, we have

e−
x
2x

α
2Lαn(x) = N−

α
2

Γ(n+ α + 1)

n!
Jα

(
2(Nx)

1
2

)
+O

(
n
α
2
− 3

4

)
, (7)

N = n+
α + 1

2
, x > 0,

the bound holding uniformly in 0 < x 6 ω (ω is a fixed positive
number). More precisely, the following bounds are valid:

x
5
4O
(
n
α
2
− 3

4

)
,
c

n
6 x 6 ω,

x
α
2
+2O (nα) , 0 < x 6

c

n

 . (8)

In (7), Jα(x) is the Bessel function of the first kind; for it the following
asymptotic formula holds [12, p.15, formula 1.71.7]:

Jα(x) =

(
2

πx

) 1
2

cos
(
x− απ

2
− π

4

)
+O

(
x−

3
2

)
, x→ +∞; (9)

• The weight estimate [1, 4]

e−
x
2 |Lαn(x)| 6 c(α)Aαn(x), α > −1. (10)
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Here and henceforth, c and c(α) are positive real numbers depending only
on the indicated parameters,

Aαn(x) =



θαn , 0 6 x 6 1
θn
,

θ
α
2
− 1

4
n x−

α
2
− 1

4 , 1
θn
< x 6 θn

2
,[

θn

(
θ

1
3
n + |x− θn|

)]− 1
4

, θn
2
< x 6 3θn

2
,

e−
x
4 , 3θn

2
< x,

(11)

where θn = θn(α) = 4n+ 2α + 2.

• The differentiation formula [2, p.191, formula 27]

[xαLαn(x)](m) = (n−m+ α + 1)mx
α−mLα−mn (x), (12)

where (n)0 = 1, (n)m = n(n+ 1) · · · (n+m− 1), m > 1.
It follows from (3) that the corresponding orthonormal system of the

Laguerre polynomials has the form:

lαn(x) = (hαn)−
1
2Lαn(x), n = 0, 1, . . . , (13)

so
∞∫
0

lαn(x)lαm(x)ρ(x)dx = δn,m (α > −1).

From (6) and (13), we immediately obtain a recurrence formula for lαn(x):

lα0 (x) =
1√

Γ(α + 1)
, lα1 (x) =

−x+ α + 1√
Γ(α + 2)

,

lαn(x) = (an − bnx)lαn−1(x)− cnlαn−2(x), n = 2, 3, . . .

 ,

where

an = an(α) =
2n+ α− 1

[n(n+ α)]
1
2

, bn = bn(α) =
1

[n(n+ α)]
1
2

,

cn = cn(α) =
[(n− 1)(n+ α− 1)

n(n+ α)

] 1
2
.
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A similar recurrence formula holds for the functions λαn(x):

λα0 (x) =

√
ρ(x)√

Γ(α + 1)
, λα1 (x) =

√
ρ(x)(−x+ α + 1)√

Γ(α + 2)
,

λαn(x) = (an − bnx)λαn−1(x)− cnλαn−2(x), n = 2, 3, . . .

 . (14)

In the sequel, we need the following property of the functions λαn(x).
Theorem A. [1, Theorem 1] Let f ∈ Lp, 4

3
< p < 4, α > 0. Define

an =
∞∫
0

λαn(x)f(x)dx and set Sn(x) =
n∑
k=0

akλ
α
k (x). Then ‖Sn − f‖Lp → 0

as n→∞.
3. On the Sobolev orthonormal functions generated by the

Laguerre functions.

Definition 1. For a given r ∈ N, define the functions λαr, n(x),
n = 0, 1, . . . , by

λαr, r+n(x) =
1

(r − 1)!

x∫
0

(x− t)r−1λαn(t)dt, n = 0, 1, . . . . (15)

λαr, n(x) =
xn

n!
, n = 0, 1, . . . , r − 1. (16)

Consider the problem of computing the functions λαr, r+n(x) for any n

and x. Note that λα0, n(x) = λαn(x), λα1, 0(x) = 1, λα1, 1(x) =
x∫
0

λα0 (t)dt by

definition.

Theorem 1. Let α > −1. Then the following recurrence relations hold:

λαr, n(x) =
x

n
λαr, n−1(x), 1 6 n 6 r − 1; (17)

rλαr+1, r+1(x) = (x− 2r − α)λαr, r(x) + 2xλαr−1, r−1(x), r > 1; (18)

√
(n+ 1)(n+ α + 1)λα1, n+2(x) = 2xλαn(x)− λα1, n+1(x)+

+
√
n(n+ α)λα1, n(x), n > 1; (19)

rλαr+1, r+n(x) =
√
n(n+ α)λαr, r+n(x) + (x− 2n− α + 1)λαr, r+n−1(x)+

+
√

(n− 1)(n+ α− 1)λαr,r+n−2(x), r > 1, n = 2, 3, . . . (20)
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Proof. The equality (17) is obvious. Let us prove the relation (18). From
the definition of the functions λαr,r+n(x) and integrating by parts, we have:

λαr,r(x) =
1

(r − 1)!

x∫
0

(x− t)r−1λα0 (t)dt =

=
1√

Γ(α + 1)

1

(r − 1)!

x∫
0

(x− t)r−1e−
t
2 t

α
2 dt =

=
2

(α + 2)
√

Γ(α + 1)

1

(r − 1)!

x∫
0

(x− t)r−1e−
t
2d(t

α
2
+1) =

= − 2

α + 2

1

(r − 2)!

x∫
0

(x− t)r−2(x− t− x)λα0 (t)dt−

− 1

α + 2

1

(r − 1)!

x∫
0

(x− t)r−1(x− t− x)λα0 (t)dt =

= −2(r − 1)

α + 2
λαr,r(x) +

2

α + 2
xλαr−1,r−1(x)− r

α + 2
λαr+1,r+1(x)+

+
1

α + 2
xλαr,r(x).

Hence, we obtain (18). We now establish the equality (19):

λα1,n+1(x) =

x∫
0

λαn(t)dt =
2

α + 2

x∫
0

e−
t
2 lαn(t)d(t

α
2
+1) =

2

α + 2
xλαn(x)+

+
1

α + 2

x∫
0

e−
t
2 t

α
2
+1lαn(t)dt− 2

α + 2

x∫
0

e−
t
2 t

α
2
+1(lαn(t))′dt. (21)

Consider separately the second and the third terms of the right-hand side
of the last equality. From (14) we have:

x∫
0

e−
t
2 t

α
2
+1lαn(t)dt =

x∫
0

tλαn(t)dt =

x∫
0

[
−
√

(n+ 1)(n+ α + 1)λαn+1(t)+

+ (2n+ α + 1)λαn(t)−
√
n(n+ α)λαn−1(t)

]
dt =
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=−
√

(n+1)(n+α+1)λα1,n+2(x)+(2n+α+1)λα1,n+1(x)−
√
n(n+α)λα1,n(x).

(22)

Further, from the equalities (4), (5), and (13) it follows that

(lαn(t))′ = −
√
nlα+1
n−1(t),

tlα+1
n−1(t) =

√
n+ αlαn−1(t)−

√
nlαn(t).

Then

x∫
0

e−
t
2 t

α
2
+1(lαn(t))′dt = −

√
n

x∫
0

e−
t
2 t

α
2 tlα+1

n−1(t)dt =

= −
√
n

x∫
0

e−
t
2 t

α
2

[√
n+ αlαn−1(t)−

√
nlαn(t)

]
dt =

= −
√
n(n+ α)λα1,n(x) + nλα1,n+1(x). (23)

From (22), (23) and (21) we obtain (19).
Let us proceed to the proof of (20). By definition,

λαr,r+n(x) =
1

(r − 1)!

x∫
0

(x− t)r−1λαn(t)dt.

Replace the function λαn(t) by the right-hand side of the equality (14):

λαr,r+n(x) =
1

(r − 1)!

x∫
0

(x− t)r−1
[
(an − bnt)λαn−1(t)− cnλαn−2(t)

]
dt =

= anλ
α
r,r+n−1(x)− bn

(r − 1)!

x∫
0

(x− t)r−1tλαn−1(t)dt− cnλαr,r+n−2(x) =

= anλ
α
r,r+n−1(x)+

bn
(r − 1)!

x∫
0

(x−t)r−1(x−t−x)λαn−1(t)dt−cnλαr,r+n−2(x) =

= anλ
α
r,r+n−1(x) + bnrλ

α
r+1,r+n(x)− bnxλαr,r+n−1(x)− cnλαr,r+n−2(x). (24)

Now divide both sides of (24) by bn and obtain the relation (20). �
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Remark 1. Formula (19) is also valid for n = 0.

Note that the systems defined by means of formulae (15), (16) in the
general case, when an arbitrary orthonormal system ϕk(x) (k = 0, 1, . . .)
is used as the generating system, were considered in the works [5–10]. In
particular, in the paper [5] the following theorem was proved.

Theorem B. Assume that the functions ϕk(x) (k = 0, 1, . . .) form a com-
plete in L2

ρ(a, b) orthonormal system with respect to the weight ρ(x) on the
interval [a, b]. Then the system {ϕr,k(x)}∞k=0, generated by the {ϕk(x)}∞k=0

by means of

ϕr,r+k(x) =
1

(r − 1)!

x∫
a

(x− t)r−1ϕk(t)dt, k = 0, 1, . . . .

ϕr,k(x) =
(x− a)k

k!
, k = 0, 1, . . . , r − 1,

is complete in W r
L2
ρ(a,b)

and orthonormal with respect to the inner product

〈f, g〉 =
r−1∑
ν=0

f (ν)(a)g(ν)(a) +

b∫
a

f (r)(t)g(r)(t)ρ(t)dt.

Note that Theorem B holds for infinite intervals too. The following
statement is immediately deduced from Theorem B.

Corollary 1. If α > −1, then the system of functions λαr,n(x), generated
by the Laguerre functions λαn(x) by means of equalities (15) and (16), is
complete in W r

L2 and orthonormal with respect to the inner product (2).

Further, from (15), (16), and the integrand differentiation formula [3,
sec. 509, p. 667] for almost all x ∈ [0,∞) we have

(λαr, k(x))(ν) =


λαr−ν, k−ν(x), 0 6 ν 6 r − 1, r 6 k,

λαk−r(x), ν = r 6 k,

λαr−ν, k−ν(x), ν 6 k < r,

0, k < ν 6 r,

(25)

where λα0,n(x) = λαn(x) by convention.
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It is easily seen from (2), (15) – (25) that the Fourier series of the
function f ∈ W r

L2 in the system {λαr,k(x)}∞k=0

f(x) ∼
∞∑
k=0

cαr,k(f)λαr,k(x)

has the following form:

f(x) ∼
r−1∑
k=0

f (k)(0)
xk

k!
+
∞∑
k=r

cαr,k(f)λαr,k(x), (26)

where

cαr,k(f) =

∞∫
0

f (r)(t)λαk−r(t)dt, k = r, r + 1, . . . (27)

Note that the Fourier series (26) can be defined for any function f ∈ W r
Lp ,

p > 1. To this end, we show the existence of the coefficients cαr,k(f) defined
by the equality (27). Using the Hölder inequality, we have

|cαr,k(f)| 6
( ∞∫

0

|f (r)(t)|pdt
) 1
p
( ∞∫

0

|λαk−r(t)|qdt
) 1
q
6

6M‖f (r)‖Lp , k = r, r + 1, . . . ,

where M is a positive real number and 1/p + 1/q = 1. Consider the
problem of uniform convergence of the Fourier series (26) to the function
f ∈ W r

Lp . To prove the following theorem, we use the same technique as
in [11].

Theorem 2. Let α > 0, 0 6 A < ∞, 4
3
< p < 4, f ∈ W r

Lp . Then the
series (26) converges uniformly on [0, A] to the function f .

Proof. Since f ∈ W r
Lp , then, first, f (r) ∈ Lp, and, therefore, in the metric

of the space Lp we have (see Theorem A)

f (r)(x) =
∞∑
k=0

cαr,k(f
(r))λαk (x), (28)

cαr,k(f
(r)) =

∞∫
0

f (r)(t)λαk (t)dt, k = 0, 1, . . .
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Second, we can write the Taylor formula for the function f , with the
remainder in the integral form:

f(x) =
r−1∑
k=0

f (k)(0)
xk

k!
+

1

(r − 1)!

x∫
0

(x− t)r−1f (r)(t)dt.

Further, denote by Sαr,n(f, x) and Sαn (f (r), x) the partial sums of the series
(26) and (28), respectively:

Sαr,n(f, x) =
r−1∑
k=0

f (k)(0)
xk

k!
+

n∑
k=r

cαr,k(f)λαr,k(x),

Sαn (f (r), x) =
n∑
k=0

cαr,k(f
(r))λαk (x).

Then
|f(x)− Sαr,n+r(f, x)| =

=
∣∣∣ 1

(r − 1)!

x∫
0

(x− t)r−1f (r)(t)dt−
n+r∑
k=r

cαr,k(f)λαr,k(x)
∣∣∣ =

=
1

(r − 1)!

∣∣∣ x∫
0

(x− t)r−1f (r)(t)dt−
n+r∑
k=r

cαr,k(f)

x∫
0

(x− t)r−1λαk−r(t)dt
∣∣∣ =

=
∣∣∣ 1

(r − 1)!

x∫
0

(x− t)r−1(f (r)(t)− Sαn (f (r),t))dt
∣∣∣ 6

6
1

(r − 1)!

x∫
0

(x− t)r−1|f (r)(t)− Sαn (f (r),t)|dt 6

6
1

(r − 1)!

( x∫
0

(x− t)q(r−1)dt
)1/q( x∫

0

|f (r)(t)− Sαn (f (r), t)|pdt
)1/p
6

6
1

(r − 1)!

(
Aq(r−1)+1

q(r − 1) + 1

)1/q

‖ f (r) − Sαn (f (r)) ‖Lp . (29)
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From equality (28) it follows that ‖ f (r) − Sαn (f (r)) ‖Lp→ 0 as n → ∞.
From this relation and (29) uniform convergence of the series (26) on [0, A]
to the function f follows. �

4. Asymptotic properties of the functions λα1,1+n(x).
Let us study the behavior of the functions λα1,1+n(x) on the segment

[0, ω], where ω is a fixed positive real number.

Theorem 3. Suppose α > −1 and x ∈ [0, ω]. Then the following
asymptotic formula holds:

λα1,1+n(x) =

√
Γ(n+ 1)

Γ(n+ α + 1)

xα/2+1e−
x
2

n+ α + 1
×

×
(
Lα+1
n (x) +

x+ α

2(n+ α + 2)
Lα+2
n (x)

)
+Rα

n(x), (30)

where the remainder

Rα
n(x) =

√
Γ(n+ 1)

Γ(n+ α + 1)

1

4(n+ α + 1)(n+ α + 2)
×

×
x∫

0

tα/2(t2 + 2αt+ α2 + 2α)e−
t
2Lα+2

n (t)dt

satisfies the estimate:

|Rα
n(x)| = O

(
1

n

)
.

In the case α = 0, the last estimate becomes

|R0
n(x)| =


O

(
1

n3

)
, 0 6 x 6

1

n
,

O

(
1

n7/4

)
,

1

n
6 x 6 ω.

Proof. From (15), (1) and (13) it follows that

λα1,1+n(x) =

x∫
0

λαn(t)dt =

x∫
0

tα/2e−
t
2 lαn(t)dt =
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=

√
Γ(n+ 1)

Γ(n+ α + 1)

x∫
0

tα/2e−
t
2Lαn(t)dt.

Further, integrating by parts and using the equality (12), we obtain:

λα1,1+n(x) =

∣∣∣∣∣∣∣∣
u =

e−
t
2

tα/2
, du = −e

− t
2 (t+ α)

2tα/2+1

dυ = tαLαn(t)dt, υ =
1

n+ α + 1
tα+1Lα+1

n (t)

∣∣∣∣∣∣∣∣ =

=

√
Γ(n+ 1)

Γ(n+ α + 1)

(xα/2+1e−
x
2

n+ α + 1
Lα+1
n (x)+

+
1

2(n+ α + 1)

x∫
0

tα/2(t+ α)e−
t
2Lα+1

n (t)dt
)

=

=

∣∣∣∣∣∣∣∣
u =

e−
t
2 (t+ α)

tα/2+1
, du = −e

− t
2 (t2 + 2αt+ α2 + 2α)

2tα/2+2

dυ = tα+1Lα+1
n (t)dt, υ =

1

n+ α + 2
tα+2Lα+2

n (t)

∣∣∣∣∣∣∣∣ =

=

√
Γ(n+ 1)

Γ(n+ α + 1)

xα/2+1e−
x
2

n+ α + 1

(
Lα+1
n (x) +

x+ α

2(n+ α + 2)
Lα+2
n (x)

)
+Rα

n(x).

Therefore, (30) holds.
Let us proceed to the estimate of the remainder Rα

n(x) for 0 6 x 6 ω.
To this end, consider the following two cases:

1) Let 0 6 x 6 1
n
; then, from estimates (10) and (11), it follows that

|Rα
n(x)| 6 c(α)

nα/2+2

x∫
0

tα/2(t2 + 2|α|t+ α2 + 2|α|)e−
t
2 |Lα+2

n (t)|dt 6

6 c(α)nα/2
(

1

α/2+3
xα/2+3+

2|α|
α/2+2

xα/2+2+
α2 + 2|α|
α/2+1

xα/2+1

)
=O

(
1

n

)
.

If α = 0, |R0
n(x)| = O

(
1
n3

)
.
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2) Let 1
n
6 x 6 ω; then, from the formulas (7)–(9), we have:

|Rα
n(x)| = O

( 1

nα/2+2

)∣∣∣ 1/n∫
0

tα/2(t2 + 2αt+ α2 + 2α)e−
t
2Lα+2

n (t)dt+

+

x∫
1/n

tα/2(t2 + 2αt+ α2 + 2α)e−
t
2Lα+2

n (t)dt
∣∣∣ = O

( 1

n

)
+

+O
( 1

n
α
2
+2

)∣∣∣∣
x∫

1/n

t2 + 2αt+ α2 + 2α

t
N−

α
2
−1Γ(n+ α + 3)

n!
Jα+2(2

√
Nt)dt

∣∣∣∣+
+O
( 1

nα/2+2

)∣∣∣∣
x∫

1/n

t2 + 2αt+ α2 + 2α

t
t5/4O(nα/2+1/4)dt

∣∣∣∣ 6
6 O

( 1

n

)
+O

( 1

n7/4

)
+O

( 1

n

)∣∣∣∣
x∫

1/n

t2 + 2αt+ α2 + 2α

t
Jα+2(2

√
Nt)dt

∣∣∣∣ =

= O
( 1

n

)
+O

( 1

n

)∣∣∣∣
x∫

1/n

t2 + 2αt+ α2 + 2α

t
×

×
[√

1

π
√
Nt

cos
(

2
√
Nt− (2α + 5)π

4

)
+O

( 1

(Nt)3/4

)]
dt

∣∣∣∣ 6 O
( 1

n

)
+

+O
( 1

n5/4

)∣∣∣∣
x∫

1/n

t2 + 2αt+ α2 + 2α

t5/4
cos
(

2
√
Nt− (2α + 5)π

4

)
dt

∣∣∣∣ 6

6 O
( 1

n

)
+O

( 1

n5/4

) √
Nx∫

√
N/n

∣∣∣y4 + 2αNy2 + (α2 + 2α)N2

N7/4y3/2

∣∣∣dy = O
( 1

n

)
.

If α = 0, then |R0
n(x)| = O

(
1

n7/4

)
. �

Further, from Theorem 3 and estimates (10), (11), the following asser-
tion is immediately deduced:
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Corollary 1. The following estimates hold:

|λα1,n(x)| 6 c

{
1
n
, 0 6 x 6 1

θn
,

1
n3/4 ,

1
θn
< x 6 ω.
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