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FAMILIES OF ELLIPTIC FUNCTIONS AND
UNIFORMIZATION OF COMPLEX TORI WITH

A UNIQUE POINT OVER INFINITY

Abstract. We investigate the problem of describing a one-para-
metric family of elliptic functions which uniformizes a given family
of ramified coverings of the Riemann sphere with maximal possible
ramification over infinity. We find a PDE for the family of functions
and use it to deduce a system of ODEs for their critical points.
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1. Introduction. Let S be an n-sheeted compact Riemann surface
over the Riemann sphere C with a unique point over infinity of multiplicity
n − 1. We will mainly consider the case when the genus ρ of S equals 1,
i. e., S is a complex torus; however, in Section 2, following [12], we also
shortly describe the simply-connected case (ρ = 0).

If ρ = 0, then, by the well-known Koebe-Poincare uniformization theo-
rem, there exists a polynomial f which maps C onto S conformally. In the
case ρ = 1 the surface S can be uniformized by an elliptic function, i. e.,
there exists a two-periodic meromorphic function f with periods ω1 and ω2

such that the factor-mapping f̃ : C/Ω → S is a conformal isomorphism.
Here Ω is the lattice generated by ω1 and ω2.

Denote the critical points of f by aj, 1 6 j 6 N . Since S is given, we
know the critical values Aj = f(aj), 1 6 j 6 N , and their multiplicities
mj. The problem of uniformization of S is reduced, in essence, to finding
the values aj, 1 6 j 6 N .

The system
f(aj) = Aj, 1 6 j 6 N, (1)

is a system of non-linear equations with respect to aj, with certain difficul-
ties in solving. Hurwitz [3] first noted that, critical values are not defined
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uniquely by given Aj and multiplicities mj. He posed the problem of the
number of non-equivalent coverings with the same branch data.

The Hurwitz problem. Let ρ ∈ Z+, naturals numbers n
(k)
j ,

j = 1, . . . , hk, k = 0, . . . ,m, satisfy
hk∑
j=1

n
(k)
j = n, k = 0, . . . ,m,

m∑
k=0

hk∑
j=1

(n
(k)
j − 1) = (2− 2ρ)n− 2,

and a finite set T = {T0, T1, . . . , Tm} ⊂ C be given. Find how many non-
equivalent compact Riemann surfaces over C of fixed genus ρ exist, such
that their branch points lie over T and for every k there exist exactly hk
points of multiplicities n

(k)
1 − 1, . . . , n

(k)
hk
− 1, lying over Tk, k = 0, . . . ,m.

The Hurwitz problem and its generalizations were investigated, in par-
ticular, in [3–10,14]. The obtained results show that (1) can have multiple
solutions, and distinct solutions can correspond to non-equivalent cover-
ings of the Riemann sphere. Therefore, even if we solve system (??) and
find several solutions, we have to choose the one that matches the given
surface S.

In the paper we propose an approximate method of finding aj. Its
essence is in the following. Consider the space Σ of all n-sheeted Riemann
surfaces of genus ρ, which are ramified covering of C, with the same branch
data as S. The topology on Σ is induced by the Caratheodory kernel con-
vergence (see, e. g., [10]). Let us include S into a smooth one-parametric
family S(t), 0 6 t 6 1, such that S(1) = S, and the uniformizing function
f(z, t) for S(t) is known for t = 0; therefore, we know its critical points a0j .
Smoothness of the family means that projections Aj(t) of branch points
depend smoothly on t.

We describe the movement of aj(t) with the help of a system of ODEs
(Theorem 7). Solving the Cauchy problem for the system with the initial
data (a0j) we obtain dependences aj(t), 0 6 t 6 1, and the final values
(t = 1) give the desired critical values aj for S. Note that in the case ρ = 1
we need to determine, additionally, the parameter ω2/ω1 that depends on
t, called the module of the complex torus S.

To obtain the system of ODEs mentioned above, we deduce the PDE

∂f(z, t)

∂t
= h(z, t)

∂f(z, t)

∂z
(2)
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which the family f(z, t) satisfies to (Theorem 6). The idea of using one-
parametric families of analytic functions and equations of such type be-
longs to Loewner who offered his famous parametric method in the theory
of univalent functions; a more general equation of the form (2) was sug-
gested by Kufarev (see, e. g., [2]).

Note that in [13] we investigated one-parametric families of elliptic
functions with simple critical points. Here we study the case of arbitrary
multiplicities.

2. The simply-connected case. The case ρ = 0 is described in [11].
In [12] a more general case is investigated: when f(z, t) is a family of
rational functions. Here we formulate the main results from [12] specifying
them for the case of polynomials.

Consider a smooth one-parametric family of polynomials

P (z, t) =

z∫
a1

N−1∏
j=1

(ζ − aj)mj−1dζ =
zn

n
−

N−1∑
j=1

mjaj
zn−1

n− 1
+ . . . , (3)

0 6 t 6 1, where aj = aj(t) are pairwise distinct points of the complex
plane, N > 3, mj − 1 ∈ N,

∑N−1
j=1 (mj − 1) = n− 1.

We will also assume that

N−1∑
j=1

mjaj = 0.

This condition can be fulfilled by a shift of the z-plane.
Denote

Hl(z) =
1

N−1∏
j=1, j 6=l

(z − aj)mj

.

Let Pj,mj−1(z, t) be the Taylor’s polynomial of Hl(z) of degree (mj − 1)
at the point aj and Aj(t) = f(aj(t), t), 1 6 j 6 N − 1. From (3) it follows
that A1(t) ≡ 0. This does not restrict generality because the condition
can be provided by a shift in the plane.

Theorem 1. The family P (z, t) satisfies the PDE

Ṗ (z, t) = h(z, t)P ′(z, t), z ∈ C, 0 6 t 6 1,
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where

h(z, t) =
N−1∑
j=2

Pj,mj−1(z, t)

(z − aj(t))mj
Ȧj(t).

Here and further the dot above a letter denotes differentiation with
respect to t (the partial derivative if function depends on z and t, and the
ordinary one for function of the only variable t), and the prime means the
derivative by z.

Theorem 2. The critical points aj(t) satisfy the system of ODEs

ȧl =
H

(ml−1)
l (al)

(ml − 1)!
Ȧl +

N−2∑
k=2, k 6=l

G
(mk−2)
kl (ak)

(mk − 2)!
Ȧk, 1 6 l 6 N − 1, (4)

where Gkl(z) = Hk(x)/(z − al) .

Note that (4) allows to find the critical points of the polynomial, uni-
formizing a given simply-connected Riemann surface, quickly and with a
good accuracy. While solving (4), we obtain the whole family of polyno-
mials uniformizing a definite family of surfaces. If we know a solution for
a set of Aj with fixed branch data, then we can obtain other solutions
moving Aj along various closed curves.

We can also consider (4) as variational formulae for polynomials, ex-
pressing variations of critical points through variations of critical values.
The formulae can be useful for solving some extremal problems of geomet-
ric function theory connected with polynomials.

3. Preliminary results on elliptic functions. Now we will in-
vestigate smooth one-parametric families of n-sheeted complex tori. We
assume that for every torus there exists a unique point lying over infin-
ity and connecting all its sheets. The case when all other branch points
are simple was studied in [13]; here we investigate the case of arbitrary
multiplicities.

First we recall some classical results of the theory of elliptic functions
(see, e. g., [1]).

A non-constant meromorphic in C function is called elliptic, if it has
two periods ω1 and ω2, linearly independent over R and generating the
lattice Ω of all its periods. Without loss of generality we assume that

Im
ω2

ω1

> 0.
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The period parallelogram is a parallelogram with vertex at some point
generated by vectors ω1 and ω2

In every period parallelogram a non-constant elliptic function takes ev-
ery value the same number of times (the Liouville’s theorem); the number
is called the order of the elliptic function.

Let a1, . . . ,an be zeroes of a non-constant elliptic function and b1, . . . ,bn
be its poles lying in a period parallelogram (we take every zero or pole
their multiplicity times). Then

a1 + . . .+ an ≡ b1 + . . .+ bn (modΩ).

Further, we will denote by ω an arbitrary element of the lattice Ω.
One of the main elliptic functions is the Weierstrass P-function

P(z) =
1

z2
+
∑′

[
1

(z − ω)2
− 1

ω2

]
=

1

z2
+
g2
20
z2 +

g3
28
z4 + . . . ,

where g2 and g3 are so-called Weierstrass invariants, defined by the equal-
ities

g2
60

=
∑′ 1

ω4
,

g3
140

=
∑′ 1

ω6
;

the summation
∑′ is over all non-zero elements of Ω.

The Weierstrass ζ-function

ζ(z) =
1

z
+
∑′

[
1

z − ω
+

1

ω
+

z

ω2

]
=

1

z
− g2

60
z3 − g3

140
z5 + . . .

has the properties ζ ′(z) = −P(z),

ζ(z + ωk) = ζ(z) + ηk, k = 1, 2, (5)

where ηk = 2ζ(ωk/2). In every period parallelogram the function has a
unique pole with residue 1.

The following relation is valid

ω2η1 − ω1η1 = 2πi. (6)

At last, we need the Weierstrass σ-function

σ(z) = z
∏′

{(
1− z

ω

)
exp

(
z

ω
+

z2

2ω2

)}
= z − g2

240
z5 − g3

840
z7 + . . .
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It is an odd entire function satisfying

σ′(z)

σ(z)
= ζ(z), σ(z + ω) = εσ(z)eη(z+ω/2),

where η = mη1 + nη2, if ω = mω1 + nω2; ε = 1 if ω/2 is a period and
ε = −1 otherwise.

Let us write the expansion of a function, connected with the Weier-
strass ζ-elliptic functions, at the origin:

ζ̃(z) := ζ(z)− 1

z
= − g2

60
z3 − g3

140
z5 + . . . (7)

We will also need the following theorem by Weierstrass. It allows us
to recover elliptic function by its zeroes and poles up to a multiplicative
constant.

Theorem 3. Every elliptic function f can be represented in the form

f(z) = C
σ(z − a1) . . . σ(z − ar)
σ(z − b1) . . . σ(z − br)

,

where C ≡ const, a1, . . . , ar is a full system of its zeroes, and b1, . . . , br is
a full system of its poles, satisfying a1 + . . .+ ar = b1 + . . .+ br.

The following theorem gives explicit expressions of partial derivatives
of the function log σ(z;ω1, ω2) with respect to ω1 and ω2.

Theorem 4. [13] We have

∂ log σ(z;ω1, ω2)

∂ω1

=
1

2πi

[
1

2
ω2(P(z)−(ζ(z))2) + η2(zζ(z)−1) + ω2

g2
24
z2
]
,

∂ log σ(z;ω1, ω2)

∂ω2

=− 1

2πi

[
1

2
ω1(P(z)−(ζ(z))2) + η1(zζ(z)−1)− ω1

g2
24
z2
]
.

4. The differential equation for a one-parametric family of el-
liptic functions. Consider a one-parametric family f(z, t) of
order n > 2 with periods ω1(t) and ω2(t), depending smoothly on a real
parameter t. Assume that f(z, t) has a unique (up to the period lattice)
pole at z = 0 for every fixed t. Then f ′(z, t) is an elliptic function with
the same periods ω1(t) and ω2(t). According to Theorem 3, we have

f ′(z, t) =

c
N∏
j=0

σmj(z − aj)

σn+1(z)
(8)
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where c = c(t) 6= 0, aj = aj(t) are pairwise non-equivalent (with respect to
the period lattice Ω) points, and the multiplicities mj satisfy the equality∑N

j=0mj = n+ 1.
Differentiating by z and t the periodicity conditions

f(z + ωk(t), t) = f(z, t), k = 1, 2,

we obtain (in more detail, see [13])

Theorem 5. The function

h(z, t) :=
ḟ(z, t)

f ′(z, t)

satisfies
h(z + ωk(t), t)− h(z, t) = −ω̇k(t), k = 1, 2. (9)

Now we will recover the meromorphic function h(z, t) by its singulari-
ties for a fixed t. For the sake of simplicity, we assume that ω1 ≡ 1; this
does not restrict generality because the periods ωk are defined up to a
complex non-zero multiplier.

Theorem 6. Under the assumptions above, the family of functions
f(z, t) satisfies the equation

ḟ(z, t)

f ′(z, t)
=

1

c

N∑
k=1

Ȧk
(mk − 1)!

∂mk−1G̃k(ξ) [ζ(ξ)− ζ(ξ − z)− η1z]

∂ξmk−1

∣∣∣∣∣
ξ=ak

(10)

where ak = ak(t), Ak = Ak(t), η1 = η1(t) is defined by (5), and

G̃k(z) := Gk(z)

(
z − ak

σ(z − ak)

)mk

.

Proof. Let us write the Taylor expansion of f(z, t) at ak:

f(z, t) = Ak +Bk(z − ak)mk+1 + . . . (11)

where

Bk =
f (mk+1)(ak, t)

(mk + 1)!
. (12)

We have
f ′(z, t) =

c

Gk(z)
((z − ak)mk + . . .)
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where
Gk(z) =

σn+1(z)
N∏

j=0, j 6=k
σmj(z − aj)

,

therefore,
Bk =

c

(mk + 1)Gk(ak)
. (13)

From (11) it follows that

f ′(z, t) = (mk + 1)Bk(z − ak)mk + . . . , (14)

ḟ(z, t) = Ȧk − (mk + 1)ȧkBk(z − ak)mk + . . . , (15)

and this implies

ḟ(z, t)

f ′(z, t)
=
Ȧk − (mk + 1)ȧkBk(z − ak)mk + . . .

c((z − ak)mk + . . .)
Gk(z) =

=
Ȧk
c

Pk,mk−1(z)

(z − ak)mk
+O(1), z → ak(t), (16)

where Pk,mk−1(z) is the Taylor polynomial for G̃k(z) of degree (mk − 1)
at the point ak.

From (16) we have

h(z, t) =
N∑
k=1

Ȧk
c

mk−1∑
s=0

G̃
(s)
k (ak)

s!(z − ak)mk−s
+O(1), z → ak. (17)

Now we rewrite (17) in the form

h(z, t) =
N∑
k=1

Ȧk
c

mk−1∑
s=0

(−1)mk−s−1×

× G̃
(s)
k (ak) ((z − ak)−1)(mk−s−1)

s!(mk − s− 1)!
+O(1), z → ak. (18)

The function ḟ(z, t) has a pole of order at most n at the point z = 0,
and the order of the pole f ′(z, t) is equal to (n + 1). Therefore, h(z, t)
vanishes at z = 0.

The function
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G(z, t) := h(z, t)− 1

c

N∑
k=1

Ȧk

mk−1∑
s=0

(−1)mk−s−1×

× G̃
(s)
k (ak)ζ

(mk−s−1)(z − ak)
s!(mk − s− 1)!

has only removable singularities at all points of the lattice Ω, and it is
holomorphic at others points of the complex plane. Consequently, it can
be extended, as a holomorphic function, to the whole plane C.

By (5) and (9), taking into account doubly-periodicity of the Weier-
strass ζ-function, we have

G(z + ωk, t)−G(z, t) = −ω̇k −
ηk
c

N∑
k=1

Ȧk
G̃

(mk−1)
k (ak)

(mk − 1)!
. (19)

From (19) we see that at infinity G grows not faster than a linear function;
therefore,

G(z, t) = αz + β.

Thus,

h(z, t) =
1

c

N∑
k=1

Ȧk

mk−1∑
s=0

(−1)mk−s−1×

× G̃
(s)
k (ak)ζ

(mk−s−1)(z − ak)
s!(mk − s− 1)!

+ αz + β. (20)

From h(0, t) = 0 we find

β = −1

c

N∑
k=1

Ȧk

mk−1∑
s=0

(−1)mk−s−1 G̃
(s)
k (ak)ζ

(mk−s−1)(−ak)
s!(mk − s− 1)!

=

=
1

c

N∑
k=1

Ȧk

mk−1∑
s=0

G̃
(s)
k (ak)ζ

(mk−s−1)(ak)

s!(mk − s− 1)!
=

=
1

c

N∑
k=1

Ȧk
(G̃k(z)ζ(z))(mk−1)

(mk − 1)!

∣∣∣∣∣
z=ak

. (21)

From (19) it follows that

αωk = −ω̇k −
ηk
c

N∑
j=1

Ȧj
G̃

(mj−1)
j (aj)

(mj − 1)!
, k = 1, 2. (22)
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Since ω1 = ω1(t) ≡ 1, we obtain from (22)

α = −η1
c

N∑
k=1

Ȧk
G̃

(mk−1)
k (ak)

(mk − 1)!
. (23)

Finally, from (20), (21), and (23) we deduce (10). �

5. System of equations for the parameters. Now we will find a
system of ODEs for the parameters ak = ak(t), ω2 = ω2(t), and c = c(t).

Theorem 7. Let f(z, t) be a smooth one-parametric family of elliptic
functions with periods ω1 = ω1(t) ≡ 1 and ω2 = ω2(t) and let their
derivatives have the form (8). Then the critical points aj = aj(t) of
f(z, t), the period ω2(t), and the multiplier c(t) in (8) satisfy

ȧk =
1

c

[
Ȧk

(
G̃

(mk)
k (ak)

mk!
− ∂mk−1G̃k(ξ)[ζ(ξ)− ζ̃(ξ − ak)− η1ak]

(mk − 1)! ∂ξmk−1

∣∣∣∣∣
ξ=ak

)
−

−
N∑

j=1, j 6=k

Ȧj
(mj − 1)!

∂mj−1

∂ξmj−1
G̃j(ξ) [ζ(ξ)− ζ(ξ − ak)− η1ak]

∣∣∣∣
ξ=aj

]
, (24)

ω̇2 =
2πi

c

N∑
k=1

Ȧk
G̃

(mk−1)
k (ak)

(mk − 1)!
, (25)

ċ = −c
N∑
j=0

mj

[
ζ(aj)ȧj + ω̇2

∂ log σ(aj)

∂ω2

]
+

+ n
N∑
k=1

Ȧk
(mk − 1)!

∂mk−1G̃k(ξ) (P(ξ) + η1)

∂ξmk−1

∣∣∣∣∣
ξ=ak

; (26)

the partial derivative ∂ log σ/∂ω2 in (26) can be found with the help of
Theorem 4.

Proof. From (22) and (23) we find

ω̇2 =
ω2η1 − η2

c

N∑
k=1

Ȧk
G̃

(mk−1)
k (ak)

(mk − 1)!
,

and, with the help of the equality (6), we obtain (25).
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From (8), (15), and (10) we deduce

(mk + 1)ȧkBk(z − ak)mk + . . . = Ȧk − h(z,t)f ′(z, t) =

= Ȧk

[
1− (z − ak)mk ∂mk−1G̃k(ξ) [ζ(ξ)− ζ(ξ − z)− η1z ]

G̃k(z) (mk − 1)! ∂ξmk−1

∣∣∣∣∣
ξ=ak

]
−

−

N∏
j=0

σmj(z − aj)

σn+1(z)

N∑
j=1, j 6=k

Ȧj ∂
mj−1G̃j(ξ) [ζ(ξ)−ζ(ξ − z)− η1z]

(mj − 1)! ∂ξmj−1

∣∣∣∣∣
ξ=aj

. (27)

Now we will find the coefficient of (z − ak)
mk in the last expression,

which is the difference of two expressions, E1 and E2. For the second
expression E2 we have

N∏
j=0

σmj(z − aj)

σn+1(z)

N∑
j=1, j 6=k

Ȧj ∂
mj−1G̃j(ξ) [ζ(ξ)− ζ(ξ − z)− η1z]

(mj − 1)! ∂ξmj−1

∣∣∣∣∣
ξ=aj

=

=
N∑

j=1, j 6=k

Ȧj(t)

(mj − 1)!

Ȧj ∂
mj−1G̃j(ξ) [ζ(ξ)− ζ(ξ − ak)− η1ak]

(mj − 1)! ∂ξmj−1

∣∣∣∣∣
ξ=aj

×

×

N∏
j=0, j 6=k

σmj(ak − aj)

σn+1(ak)
(z − ak)mk + o((z − ak)mk) , z → ak.

Now we need an auxiliary result from [12].

Lemma 1. Let f be n times differentiable at a point a, f(a) 6= 0 and
Pj be the Taylor polynomial for f of degree j at a. Then

Pn(x) =
(x− a)n+1

n!

∂ n

∂ξn

(
f(ξ)

x− ξ

)∣∣∣∣
ξ=a

,

Pn−1(x)

f(x)
= 1− 1

n!

f (n)(a)

f(a)
(x− a)n + o((x− a)n), x→ a.

For the first expression E1 we have

1− (z − ak)mk

G̃k(z)(mk − 1)!

∂mk−1

∂ξmk−1
G̃k(ξ)[ζ(ξ)− ζ(ξ − z)− η1z]

∣∣∣∣
ξ=ak

=
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= 1− (z − ak)mk

G̃k(z)(mk − 1)!

∂mk−1

∂ξmk−1
G̃k(ξ)(z − ξ)−1

∣∣∣∣
ξ=ak

−

− (z − ak)mk

G̃k(ak)(mk − 1)!

∂mk−1

∂ξmk−1
G̃k(ξ)[ζ(ξ)−ζ̃(ξ − ak)−η1ak]

∣∣∣∣
ξ=ak

+o((z−ak)mk),

therefore, with the help of Lemma 1, the term with (z − ak)
mk can be

written as

(z − ak)mk

G̃k(ak)

[
G̃

(mk)
k (ak)

mk!
− ∂mk−1G̃k(ξ)[ζ(ξ)− ζ̃(ξ − ak)− η1ak]

(mk − 1)! ∂ξmk−1

∣∣∣∣∣
ξ=ak

]
,

as z → ak, where ζ̃(z) = ζ(z)− 1/z. Thus, from (27) we deduce (24).
Finally, we will find a differential equation for c. From (8) and (10) we

obtain the following expansion at z = 0:

ḟ(z, t) = (−1)n
N∑
k=1

Ȧk
(mk − 1)!

∂mk−1

∂ξmk−1
G̃k(ξ) [P(ξ) + η1]

∣∣∣
ξ=ak
×

×
N∏
j=0

σmj(aj)
1

zn
+O

(
1

zn−1

)
.

Thus,

ḟ ′(z, t) ∼ (−1)n+1n
N∑
k=1

Ȧk
(mk − 1)!

∂mk−1

∂ξmk−1
G̃k(ξ) [P(ξ) + η1]

∣∣∣
ξ=ak
×

×
N∏
j=0

σmj(aj)
1

zn+1
, z → 0. (28)

On the other hand,

f ′(z, t) = (−1)n+1c

N∏
k=0

σmk(ak)
1

zn+1
+O

(
1

zn

)
,

and, therefore,

ḟ ′(z, t) ∼ (−1)n+1

N∏
k=0

σmk(ak)×
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×

{
ċ+ c

N∑
j=0

mj

[
ζ(aj)ȧj + ω̇2

∂ log σ(aj)

∂ω2

]} 1

zn+1
, z → 0. (29)

Now, from (28) and (29) we obtain (26). �
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