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Abstract.
A problem of distribution of singular points for sums of se-

ries of exponential monomials on the boundary of its conver-
gence domain is studied. The influence of a multiple sequence
Λ = {λk, nk}∞k=1 of the series in the presence of singular points
on the arc of the boundary, the ends of which are located at a cer-
tain distance R from each other, is investigated. In this regard,
the condensation indices of the sequence and the relative multi-
plicity of its points are considered. It is proved that the finiteness
of the condensation index and the zero relative multiplicity are
necessary for the existence of singular points of the series sum on
the R-arc. It is also proved that for one of the sequence classes
Λ, these conditions give a criterion. Special cases of this result
are the well-known results for the singular points of the sums
of the Taylor and Dirichlet series, obtained by J. Hadamard, E.
Fabry, G. Pólya, W.H.J. Fuchs, P. Malliavin, V. Bernstein and
A. F. Leont’ev, etc.
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Let Λ = {λk, nk}∞k=1 be a sequence of different complex numbers λk
and its multiplicities nk, |λk+1| > |λk| and |λk| → ∞. We denote by
n(r,Λ) the number of points λk (taking into account their multiplicities)
located in the disk B(0, r). The upper density and maximal density of Λ
are the quantities

n̄(Λ) = lim sup
r→∞

n(r,Λ)

r
, n0(Λ) = lim

δ→0
lim sup
r→∞

n(r,Λ)− n((1− δ)r,Λ)

δr
.
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We consider the series of exponential monomials

∞,nk−1∑
k=1,n=0

ak,nz
neλkz. (1)

Let a = {ak,n} and D(Λ, a) be an open kernel of the set of all points
z ∈ C where the series (1) converges and its sum is an analytical function.
We denote the sum of the series (1) by gΛ,a and the set of all sequences
of coefficients a = {ak,n} for which D(Λ, a) 6= ∅ by U(Λ). In this article
we observe the problem of distribution of singular points for the function
gΛ,a on a boundary ∂D(Λ,a).

Let Θ(Λ) be the set of all partial limits of the sequence {λ̄k/|λk|}∞k=1.
We assume

m(Λ) = lim sup
k→∞

nk/|λk|.

In [6] we showed that in the general case the set D(Λ,a) may not
be convex and is not even connected. But if m(Λ) = 0 and n̄(Λ) < ∞
then the Cauchy-Hadamard theorem for series of exponential monomials
(see [6], Theorem 4.1) shows that D(Λ, a) is a convex domain:

D(Λ, a) = {z : Re(ze−iΘ) < h(Θ, a,Λ),eiΘ ∈ Θ(Λ)}, (2)

h(ϕ, a,Λ) = inf

(
lim inf
j→∞

min
06n6nk(j)−1

ln(1/|ak(j),n|)
|λk(j)|

)
, (3)

where the infimum is taken with respect to all subsequences {λk(j)} such
that λk(j)/|λk(j)| → e−iϕ. Meanwhile, the series (1) diverges at every
point of exterior of D(Λ,a) (except for the origin). Moreover, under the
same conditions, by the Abel theorem (see [6], Theorem 3.1) for the series
of the kind, the expansion (1) converges absolutely and uniformly on every
compact subset of D(Λ,a).

The problem of describing the set of singular points for gΛ,a on the
boundary ∂D(Λ,a) counts a long history. It originates in the investigation
(started as early as the 19th century) of domains of existence for func-
tions representable by power series. In this regard, we note the works
of J. Hadamard [4] and E. Fabry [2]. In the works of G. Pólya [17], W.
Fuchs [3] and P. Malliavin [16] the following result was obtained. The
necessary and sufficient condition of existence for each sum of the Taylor
series, converging in the unit disk, of a singular point on any arc of the
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boundary of this disk of length 2πτ is τ = n0(Λ) (Λ is a sequence indexes
of Taylor series with nonzero coefficients). G. Pólya (see [18], [19]), Carl-
son and Landau (see [18], Chapter II, § 5.2) and V. Bernstein [1] extended
this result to the case of Dirichlet series. In work [7] the result is obtained
for these series whose special cases are all specified results for Taylor and
Dirichlet series. It was proved that each sum of the Dirichlet series has a
singular point on the segment of length 2πτ lying on the convergence line,
then and only then, when τ = n0(Λ) and SΛ = 0 (we will define the index
of condensation SΛ below). The singular points for the general series (1)
and the series of exponents are studied in [8], [15].

This paper studies singular points for the sum of series (1) on arcs
of the boundary ∂D(Λ,a) of the following form. Let γ be the arc of the
boundary connecting points z1 and z2. The arc γ will be called an R-arc
if |z2 − z1| = R.

Let Λ be a regular sequence, i.e., it is a part of a regularly distributed
set (see [15], Chapter II). It follows from Theorem 4.1 [8] that in this
case, under certain restrictions on D(Λ,a), each gΛ,a has a singular point
on any R-arc if and only if SΛ = 0. Λ is regular if and only if the
maximal density n0(Λ,ψ,ϕ) (in the angle bounded by the rays reiψ, reiϕ)
does not exceed the length of the corresponding arc of the boundary of a
convex compact set (see [13], Theorem 1). Thus, sufficient conditions for
existence of singular points for gΛ,a on R-arcs are the special boundedness
of maximal density n0(Λ,ψ,ϕ) and the equality SΛ = 0. In this research
it is shown that in the general case these conditions are also necessary
for the existence of singular points for gΛ,a on R-arcs. Moreover, for one
class of the sequences Λ (which are concentrated along some ray reiϕ) it is
proved that these conditions give a criterion for the existence of singular
points for gΛ,a on R-arcs. All the results on Taylor and Dirichlet series,
which are marked above, and the previously mentioned result from [7] are
particular cases of this statement.

First of all, we study the influence of some characteristics of Λ on the
presence of singular points for gΛ,a on R-arcs. We assume (see [9], [11])

S0
Λ = lim inf

δ→0

SΛ(δ)

δ
. SΛ = lim

δ→0
SΛ(δ), SΛ(δ) = lim inf

k→∞

ln |qkΛ(λk,δ)|
|λk|

,

qkΛ(z,δ) =
∏

λm∈B(λk,δ|λk|),m 6=k

(
z − λm
3δ|λm|

)nm
.
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Let nΛ(z,δ) be the number of points λk ∈ B(z,δ|z|) with their multiplici-
ties nk taken into account.

Theorem 1. Let Λ = {λk,nk}, m(Λ) = 0 and S0
Λ = −∞. Then for

each R > 0 there exists a sequence a ∈ U(Λ) such that function gΛ,a has
no singular points on some R-arc of boundary ∂D(Λ,a).

Proof. R > 0 and number δ0 ∈ (0, 1/15) satisfies the condition
ψ ∈ (0, π/4) if ψ ∈ (0, π/2) and |eiψ−1| 6 2δ0(1−δ0)−1. Since S0

Λ = −∞,
according to the definition of S0

Λ we find δ ∈ (0, δ0) and the sequence
{λk(p)} such that

ln |qk(p)
Λ (λk(p),δ)| 6 −β|λk(p)|, p > 1, β = 12Rδ. (4)

Passing to the subsequence, we can assume that

λk(p)/|λk(p)| → e−iϕ, p→∞, |λk(p+1)| > 2|λk(p)|, p > 1. (5)

The function gΛ,a is found as the sum of the series

g(z) =

∞∑
p=1

cpgp(z). (6)

To do this, we construct an auxiliary sequence Λ2 ⊂ Λ, Λ2 = ∪p>1Λ2,p.
Let Bp(α) = B(λk(p), αδ|λk(p)|). By (5) and inequality δ0 < 1/15, disks
Bp(1), p > 1, do not intersect in pairs. We fix p > 1. The set Λ2,p is
formed from multiple points λk ∈ Bp(1). If

nΛ(λk(p),δ)− nk(p) < β|λk(p)|+ 1, (7)

then, Λ2,p pair λk(p),1 is taken as and all pairs λk, nk such that k 6= k(p)
and λk ∈ Bp. In this case we assume mp = nΛ(λk(p),δ) − nk(p) + 1. Let
now

nΛ(λk(p),δ)− nk(p) > β|λk(p)|+ 1. (8)

Then we reduce the multiplicity λk(p) to 1 and from the disk Bp(1) we
withdraw as many points λk without taking λk(p), or we reduce their
multiplicities nk (without changing their designations) that inequalities

β|λk(p)| 6 mp − 1 < β|λk(p)|+ 1, (9)

are satisfied, where mp is the number of remaining points λk with taking
into account their multiplicities. In this case, as Λ2,p all the remaining
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pairs λk,nk are taken. Thus the sequence Λ2 ⊂ Λ is constructed. We
will show that n̄(Λ2) < ∞. Let r > 0 and p(r) be the maximal num-
ber of disk Bp(1) having a non-empty intersection with B(0, r). Then
r > > |λk(p)|(1− δ) and by (7), (9) we obtain:

n(r,Λ)

r
6
n(|λk(p(r))|(1 + δ),Λ)

|λk(p(r))|(1− δ)
6

p(r)∑
p=1

mp

|λk(p(r))|(1− δ)
6

6 2

p(r)∑
p=1

β|λk(p)|+ 1 + 1

|λk(p(r))|
6 2

p(r)∑
p=1

|λk(p)|
|λk(p(r))|

(
β +

2

|λk(p)|

)
.

Using inequality (5), we get:

n(r,Λ)

r
6 C

p(r)∑
p=1

|λk(p)|
|λk(p(r))|

6 C
p(r)∑
p=1

1

2p(r)−p
6 2C.

It follows that n̄(Λ2) <∞. We show now that inequalities (4) are not vi-
olated if Λ is replaced by Λ2. If inequality (7) is true then by construction

q
k(p)
Λ (λk(p), δ) = q

k(p)
Λ2

(λk(p), δ).

Suppose now that inequality (8) is true. Then inequality (9) is true, and
according to the definition of qkΛ2

, we have:

ln |qk(p)
Λ2

(λk(p),δ)| =
∑

λm∈Bp(1),m6=k

nm ln
|λk(p) − λm|

3δ|λm|
6

6
∑

λm∈Bp(1),m6=k

nm ln
|λk(p)|
3|λm|

6

6 − ln(3(1− δ))(mp − 1) 6 mp − 1 6 −β|λk(p)|, p > 1.

Thus,
ln |qk(p)

Λ2
(λk(p),δ)| 6 −β|λk(p)|. (10)

Let us now define the function gp, p > 1, by the formula

gp(z) =
1

2πi

∫
∂Bp(5)

eλzdλ

τp(λ− λk(p))q
k(p)
Λ2

(λ,δ)
,
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where we define numbers τp > 1 below. We get estimates from above on
gp. We have:

|λ− λk|
3δ|λk|

> 1, λ /∈ Bp(5), λk ∈ Bp(1).

Since τp > 1, we obtain:

|gp(z)| 6 sup
λ∈∂Bp(5)

|eλz| 6 exp(Re(λk(p)z) + 5δ|λk(p)||z|), z ∈ C. (11)

Let us now define the coefficients of cp. Let

cp = exp(−β|λk(p)|), p > 1. (12)

We will show that series (6) converges on compact setsK in the domain
D = B(0, 2R) ∩ {z : Re(ze−iϕ) < 2Rδ} uniformly. We take ε > 0 such
that

Re(ze−iϕ) < Rδ − 2ε, z ∈ K.
By (5) there is a number p0 such that

Re(λk(p)z) < (Re(ze−iϕ) + ε)|λk(p)|, z ∈ K, p > p0.

Then, we get for z ∈ K by (11) and (12):
∞∑
p=p0

|cpgp(z)| 6
∞∑
p=p0

cp exp
(
(Rδ − ε+ 5δR)|λk(p)|

)
6
∞∑
p=p0

e−ε|λk(p)|.

Since n̄(Λ2) < ∞ then the last series converges. Thus, the function g is
analytical in the domain D for any τp > 1.

Since δ ∈ (0, 1/15) and the points λk ∈ Λ2 belong to the disks Bp(1),
then by (5) there is ψ ∈ (0, π/2) such that |eiψ − 1| 6 2δ(1 − δ)−1 and
Θ(Λ2) ⊂ {eiθ, θ ∈ (ϕ − ψ,ϕ + ψ)} holds true. We will show that for
any τp > 1 the function g is represented by series (5) which converges
uniformly on compact sets in the angle

Γ =
{
z : Re(ze−i(ϕ+ψ)) < 0

}
∩
{
z : Re(ze−i(ϕ−ψ)) < 0

}
.

Using the residue calculus and the definition of the function q
k(p)
Λ2

, for
every p > 1 we have

gp(z) =
bk(p),0

τp
eλk(p)z +

∑
λk,nk∈Λ2,p,k 6=k(p)

nk−1∑
n=0

bk,n
τp

zneλkz,
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where bk(p),0 =
(
q
k(p)
Λ2

(λk(p), δ)
)−1

. Let bk(p),n = 0, n = 1,nk(p) − 1. We
define the coefficients {ak,n} :

ak,n = 0, λk, nk /∈ Λ2, ak,n =
cpbk,n
τp

, λk, nk ∈ Λ2,p, p > 1.

Since the disks Bp(1), p > 1 do not intersect in pairs, the definition is
well-defined. Let us find the numbers τp, p > 1. By (10) and (12) we
have:

max
λk,nk∈Λ2,p

ln |cpbk,n| > ln |cpbk(p),0| > ln cp + β|λk(p)| = 0.

We choose the numbers τp > 1 such that

max
λk,nk∈Λ2,p

ln |ak,n| = max
λk,nk∈Λ2,p

ln |cpbk,n| − ln ap = 0. (13)

We find the convergence domain of series (1) with the coefficients ak,n
defined above. Since n̄(Λ2) < ∞, m(Λ) = m(Λ2) = 0 then the Cauchy–
Hadamard and Abel theorems (see [6]) show that series (1) converges
uniformly on compact sets in the convex domain D(Λ,a), defined by for-
mulas (2) and (3), and diverges at each point of its exterior (except for
the origin of coordinates). By (13) and (3)

h(θ, a,Λ) > lim inf
k→∞

min
06n6nk−1

ln(1/|ak,n|)
|λk|

=

= lim sup
p→∞

max
λk,nk∈Λ2,p

ln |ak,n|
|λk|

= 0

for all eiθ ∈ Θ(Λ2). In addition, there are numbers s(p), n(p) such that
the pair λs(p), ns(p) is an element of the sequence Λ2 and

ln |as(p),n(p)| = 0, p > 1. (14)

We assume that λs(p)/|λs(p)| → e−iρ, p→∞. Then eiρ ∈ Θ(Λ2). And we
can assume ρ = ϕ+ α, where α ∈ (−ψ,ψ). By (14) we have:

h(ϕ+ α, a,Λ) 6 lim inf
p→∞

ln(1/|as(p),n(p)|)
|λs(p)|

= 0.
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Thus, series (1) diverges at each point of Π = {z : Re(ze−i(ϕ+α)) > 0}. In
addition, it converges uniformly on compact sets in the angle Γ ⊂ D0(a,Λ),
along with series (6). Therefore, the function gΛ,a = g is analytical in the
domain G = D ∪ Γ.

Let α > 0 and w ∈ ∂B(0, 2R) ∩ (L0 = {z : Re(ze−iϕ) = 0}),
Im(we−iϕ) > 0 (the case α < 0 is similar). Straight lines that are perpen-
dicular L3 = {z : Re(ze−i(ϕ+ψ)) = 0} and pass through the points 0 and
w, are denoted by L1 and L2. Since ψ ∈ (0, π/4), the distance between
these lines is strictly greater than R. Let Ω be the area bounded by the
lines L0, L1, L2. It lies in the domain G. Also, some neighborhood V of
the interval (0,w) ⊂ L0 ∩ ∂Ω lies in the domain G. Thus, the function
gΛ,a is analytical in the domain Ω ∪ V .

Since ψ ∈ (0, π/4) then the half-string which is limited by lines L1,
L2, L3 lies in the angle Γ ⊂ D(Λ,a). Series (1) diverges in Π. Therefore,
there exists an R-arc which lies in the intersection of the domain D ∪ V
and the half-plane {z : Re(ze−i(ϕ+α)) 6 0}. By construction, gΛ,a has no
singular points on this arc. �

Example 1. Let Λ = {λk, nk}, nk = 1 and λ2k = k, λ2k−1 = k − e−εk,
k > 1, where ε > 0. Then m(Λ) = 0. If δ ∈ (0, 1/3), then

|q2k
Λ (λ2k,δ)| 6

∣∣∣∣(λ2k − λ2k−1

3δ|λ2k−1|

)∣∣∣∣ 6 e−εk

3δ(k − e−εk)
.

Therefore,

SΛ = lim
δ→0

lim inf
k→∞

ln |qlΛ(λl,δ)|
|λl|

6 lim
δ→0

lim inf
k→∞

k−1 ln

(
e−εk

(3δ(k − e−εk)

)
= −ε.

By the last inequality it follows that S0
Λ = −∞. We also note that the

work [20], Chapter II, § 4, has a nontrivial example of a sequence Λ for
which SΛ = 0 and S0

Λ = −∞.

Theorem 2. Let Λ = {λk, nk} and m(Λ) 6= 0. Then for every R > 0
there exists a sequence a ∈ U(Λ) such that the function gΛ,a has no
singular points on any R-arc of the boundary ∂D(Λ,a).

Proof. Let R > 0, σ ∈ (0,1] and

Dσ = {z : Rez < σ}∩{z : |Imz| < σR}, Tσ = {z : Rez = σ, |Imz| 6 σR}.
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The segment Tσ lies on the boundary of the half-string Dσ. We choose
σ ∈ (0,1) such that (1− σ)2 + σR2 < 1 and σ < (2

√
3R)−1. Then Tσ lies

in disk B(1,1), the domain G1 = Dσ \ {z : Rez < −2−1} lies in the disk
B(0,1), and Dσ \G1 lies in the truncated angle

Γ = {Re(zeiπ/6) < 0} ∩ {Re(ze−iπ/6) < 0} ∩ {z : Rez < −2−1}.

Since Tσ is a compact set, then there exists an ε ∈ (0, 1) such that the
rectangle Tσ(ε) =Dσ ∩ {z : Rez > σ − ε} lies in the disk B(1, r0) for any
r0 ∈ (e−1, 1).

According to the condition m(Λ) 6= 0 there exists a sequence {λk(p)}
such that λk(p)/|λk(p)| → e−iϕ and σnk(p)/|λk(p)| > τ > 0. We suppose
µp = eiϕσ−1λk(p). Then µp/|µp| → 1 and nk(p)/|µp| > τ , p > 1. We
assume that |µp+1| > 2|µp|, p > 1. Let 0 < γ 6 min{4−1ε, 2−1τ, 8−1}.
We can also assume that

γ|µp| 6 m(p) 6 min{4−1ε|µp|,nk(p)}, p > 1, (15)

where m(p) are some positive natural numbers. By construction

Re(µpz) 6 |µp|(Rez − 2−1γ ln r0), z ∈ B(0, t), p > pt. (16)

We suppose cp = exp(−(σ + 4−1γ ln r0)|µp|), p > 1 and consider the
series

gσ(z) =

∞∑
p=1

cp(z − 1)m(p)eµpz, (17)

We show that it converges uniformly on compact sets in the domain Dσ.
Considering the embedding T (ε) ⊂ B(1,r0), by (15) and (16) we have:

|cp(z − 1)m(p)eµpz| 6 exp(γ|µp| ln r0 − (σ − Rez + 4−13γ ln r0)|µp|)) 6

6 exp(4−1γ ln r0|µp|), z ∈ T (ε), p > p1. (18)

Since G1 ⊂ B(0,1), r0 > e−1 then by (15), (16) and the definition of T (ε)
we have:

|cp(z − 1)m(p)eµpz| 6 exp(m(p) ln 2−

(σ − Rez + 4−13γ ln r0)|µp|)) 6 exp((−ε/2 + 3γ/4)|µp|) 6

6 exp(−5ε/16|µp|), z ∈ G1 \ T (ε), p > p1. (19)
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Considering the embedding Dσ \G1 ⊂ Γ, we get:

|cp(z−1)m(p)eµpz| 6 exp(m(p) ln(1+ |z|)−(σ−Rez+4−13γ ln r0)|µp|)) 6

6 exp(|µp||z|/4 + (Rez+ 3/32)|µp|)) 6 exp((|Rez|/2 +Rez+ 3/32)|µp|) 6

6 exp(−5/32|µp|), z ∈ (Dσ \G1) ∩B(0,t), p > pt.

By the last inequality and (18), (19) it follows that series (17) converges
uniformly on the compact sets of the domain Dσ. Therefore, gσ ∈ H(Dσ).
Opening brackets in (17), we obtain:

gσ(z) =

∞,m(p)∑
p=1,n=0

bp,nz
neµpz =

∞,nk−1∑
k=1,n=0

ak,nw
neλkw, (20)

where z = σe−iϕw, ak,n = 0, if k 6= k(p) or k = k(p) and n > m(p). Since
r0 < 1 then G0 = {z : Rez > σ+ (γ ln r0)/8} ∩Dσ 6= ∅. Similarly to (16),
we obtain:

Re(µpz) > |µp|(Rez + (γ ln r0)/8), z ∈ G0, p > p0.

It is easy to notice that |bp,0| = cp. Therefore, taking into account the
definition of cp we have:

|bp,0||eµpz| > 1, z ∈ G0, p > p0.

Thus, the first series in (20) diverges at every point z ∈ G0. Let

Γ0 = {Re(zeiπ/6) < 0} ∩ {Re(ze−iπ/6) < 0} ∩ {z : Rez < −3},

and z ∈ Γ0. Coefficients bp,n are estimated above by 2m(p). Therefore,
taking into account (15), (16) and definitions cp, r0, ε, γ we have:

|bp,nzneµpz| 6 exp(m(p) +m(p) ln(1 + |z|) + (Rez − 4−13γ ln r0)|µp|) 6

6 exp((ε/4+ε/4|z|+3γ/4+Rez)|µp|) 6 exp((1/2+Rez/2)|µp|) 6 e−|µp|.

It means that the first series in (20) converges uniformly on Γ0.
It follows from the above that on a certain σR-arc, lying in the string

{z : |Imz| < σR} and on the boundary of the convergence domain of this
series, its sum gσ has no singular points. Then the sequence of coefficients
of the second series in (20) is the required one. �
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Example 2. Let Λ = {λk, nk}, λk = 2k and nk = 2k−1, k > 1. Then
n̄(Λ) 6 1 and m(Λ) = 1/2.

By theorems 1,2 conditions S0
Λ > −∞, m(Λ) = 0 are necessary for

the existence of singular points for all functions gΛ,a, a ∈ U(Λ), on every
R-arc of boundaries of the convergence domains corresponding to series
(1). We show that these conditions are sufficient for one of the classes of
sequences as well.

Lemma 1. Let Λ = {λk, nk} such that m(Λ) = 0, S0
Λ > −∞, and

λk/|λk| → e−iϕ, k →∞. Then n0(Λ) <∞.

Proof. Let δ ∈ (0,1). As in Theorem 1, we obtain:

ln |qkΛ(λk,δ)| 6 − ln(3(1− δ))(nΛ(λk,δ)− 1).

Therefore, taking into account equality m(Λ) = 0 we obtain:

S0
Λ = lim inf

δ→0
lim inf
k→∞

ln |qkΛ(λk,δ)|
δ|λk|

6

6 lim inf
δ→0

lim inf
k→∞

− ln(3(1− δ))nΛ(λk,δ)

δ|λk|
=

= − lim sup
δ→0

ln(3(1− δ)) lim sup
k→∞

nΛ(λk,δ)

δ|λk|
=

= − lim sup
δ→0

lim sup
k→∞

nΛ(λk,δ)

δ|λk|
. (21)

Let n0(Λ) > 0. We choose a sequence rp,δ, p > 1 such that

lim sup
r→∞

n(r,Λ)− n((1− δ)r,Λ)

δr
=

= lim
p→∞

n(rp,δ,Λ)− n((1− δ)rp,δ,Λ)

δrp,δ
> 0, (22)

δ ∈ (0,δ0). We assume that any ring B(0, rp,δ) \B(0, (1− δ)rp,δ) contains
at least one λk. Let Up,δ be the group of all points λk, belonging to it and
λk(p,δ) ∈ Up,δ. According to the condition Up,δ ⊂ B(λk(p,δ),4δ|λk(p,δ)|),
p > p(δ). Therefore, taking into account (22) and (21) we obtain:

n0(Λ) 6 lim sup
δ→0

lim sup
p→∞

nΛ(λk(p,δ),4δ)

δrp(δ)
6 lim sup

δ→0
lim sup
p→∞

nΛ(λk(p,δ),4δ)

δ|λk(p,δ)|
=
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= 4 lim sup
δ→0

lim sup
p→∞

nΛ(λk(p,δ),δ)

δ|λk(p,δ)|
6 4 lim sup

δ→0
lim sup
k→∞

nΛ(λk,δ)

δ|λk|
6 −4S0

Λ.

�

Let Λ = {λk, nk}, D be a convex domain, W (Λ,D) be a closure in
H(D) (in the topology of uniform convergence on compact sets) of linear
span E(Λ) = {zneλkz}. We need the criterion of fundamental principle
from [11], Theorem 3.2. Let us express it in the particular case. We
assume

L(ϕ,D) = ∂D ∩ {w : Re(we−iϕ) = HD(ϕ)}, HD(ψ) = sup
z∈D

Re(ze−iψ)

is a supported function of the domain D, τ(ϕ,D) is the length of L(ϕ,D)
(possibly equal to zero).

Lemma 2. Let Λ = {λk, nk} such that λk/|λk| → e−iϕ, and D be a
bounded convex domain. If W (Λ, D) is non-trivial (i. e., the system E(Λ)
is not complete in H(D)), then the following statements are equivalent:

1) E(Λ) is a basis in W (Λ, D);
2) SΛ = 0 and n0(Λ) 6 τ(ϕ,D)/2π.

We note that the system E(Λ) is not complete in H(D) when and only
when there exists an entire function f of the exponential type, the shift
of the conjugate diagram (see [15], Chapter I, § 5) of which lies in D.

Theorem 3. Let Λ = {λk, nk} such that λk/|λk| → e−iϕ, and R > 0;
the following statements are equivalent:

1) Each function gΛ,a on every R-arc γ ⊂ ∂D(Λ, a) has a singular point.
2) SΛ = 0 and n0(Λ) 6 R/2π.

Proof. Let us assume that statement 2) holds true and a ∈ U(Λ). It is
easy to notice that from inequality n0(Λ) < ∞ relations m(Λ) = 0 and
n̄(Λ) < ∞ follow. Then, as in Theorem 1, domain D(Λ, a) is defined by
formula (2). According to condition Θ(Λ) = {eiϕ}. Hence, D(Λ, a) =
= {z : Re(ze−iϕ) < c}, and any R-arc of the boundary ∂D(Λ, a) is a
segment [z1, z2] ⊂ {z : Re(ze−iϕ) = c} of length R. Let’s assume that
gΛ,a has no singular points on [z1, z2].

Then there exists δ > 0 such that the function gΛ,a is analytical in
the domain Ω = K + B(0,3δ), where K is a square with the side [z1, z2],
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lying in the closure D(Λ, a). By Lemma 2.1 from work [12] Λ is a part
of the sequence Λ1 = {µp,mp} having density n(Λ1) = n0(Λ). It can be
assumed that µp/|µp| → e−iϕ (arguments µp do not affect the density
Λ1). We get

f(z) =
∏
p>1

(
1− z2

(µp)2

)mp
.

The function f is entire and has the exponential type, its conjugate di-
agram coincides with the segment [−α, α], where α = πn0(Λ)ei(ϕ+π/2)

(see [13], Chapter 2, §1, Theorem 2). The shift of this segment lies in the
domain G = K + B(0,δ) − δeiϕ ⊂ D(Λ, a). Hence, E(Λ) is not complete
in H(G).

Since gΛ,a is represented by the series (1) in the domain D(Λ, a)
then gΛ,a ∈ W (Λ, G). In addition, gΛ,a is analytical in the domain
G + B(0,δ) ⊂ Ω. Thus, the conditions of Theorem 12.1 from [5] on the
continuation of the spectral synthesis are fulfilled. Therefore, according
to it, gΛ,a ∈ W (Λ, G+B(0,δ)).

As we have shown above, E(Λ) is not complete in H(G+B(0, δ)). Ac-
cording to statement 2) and taking into account the construction we have:
SΛ = 0 and n0(Λ) 6 R/2π 6 τ(ϕ,G + B(0, δ))/2π. Then, by Lemma 2,
the function gΛ,a is represented by the series (1) in the domain G+B(0,δ).
Thus, we have two representations of the function gΛ,a by the series (1)
in the domain G ⊂ D(Λ,a) ∩ (G+B(0,δ)). Since E(Λ) is not complete in
H(G), then (see [15], Chapter 2, § 6, Theorem 6.2) these representations
are the same. According to the definition of D(Λ, a) it means that there
exists an embedding G + B(0, δ) ⊂ D(Λ, a). By construction, however,
this embedding is incorrect. We have a contradiction. Hence, gΛ,a has at
least one singular point on the segment [z1, z2].

Let us assume that statement 1) holds true. Then by Theorem 1 in-
equality S0

Λ > −∞ holds true. Referring to the definition of the quantities
S0

Λ and SΛ we get SΛ = 0. Theorem 2 implies that the equality m(Λ) = 0
is also true. Then, by Lemma 1 we get n0(Λ) < ∞. It remains to prove
that n0(Λ) 6 R/2π. Let us assume the opposite: ρ = n0(Λ) > R/2π. We
choose ε > 0 such that ρ− ε > R/2π.

We suppose L1 = {z ∈ C : Re z = 1}, L2 = {z ∈ C : Re z = −1}.
Let L3 (L4) be a straight line passing through the points with coordinates
(0, iπρ) and (1, iπ(ρ − ε)) ((0,−iπρ) and (1,−iπ(ρ − ε))). We suppose
D = eiϕD0, where D0 is the domain bounded by straight lines L1, L2,
L3, L4. It is an isosceles trapezoid. One of its bases of length 2π(ρ − ε)
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lies on the line L1 and the other base of length > 2πρ lies on the line L2.
The vertical segment with length 2πρ lies in D0 by construction.

Therefore, the domain D contains a shift of a conjugate diagram of the
function f . It means that E(Λ) is not complete in H(D). We consider
the subspace W (Λ, D). We have n0(Λ) = ρ > ρ− ε = τ(ϕ,D)/2π. Then
there exists a function g ∈W (Λ,D) by Lemma 2 which is not represented
by the series (1) uniformly convergent on a compact set in the domain D.

Let us consider the domain D1 = eiϕD0,1, where D0,1 = D0 ∩ {z ∈
C : Rez < 0}. It is an isosceles trapezoid, one of its bases coincides with
the corresponding base of the trapezoid D, and the other base coincides
with the segment eiϕ [−iπρ, iπρ]. The domain D1 contains a shift of a
conjugate diagram of the function f by construction. Therefore, E(Λ) is
not complete in H(D1). We have SΛ = 0 and n0(Λ) = ρ = τ(ϕ,D1)/2π.
Then the function g is represented by the series (1) in the domain D1 by
Lemma 2.

Since n0(Λ) <∞, this series converges in some half-plane {z : Re(ze−iϕ)
< c} (c > 0) and diverges at each point of its exterior, as in the begin-
ning of the proof. The inequality c < 1 holds true. Indeed, otherwise the
function g may be represented by the series (1) which converges in the
domain D, which is impossible owing to choosing g.

By construction the function g is analytical in the domain D which
crosses the line {z : Re(ze−iϕ) = c} at intervals of length strictly greater
than 2π(ρ − ε). Thus, given the choice of the number ε > 0 we have
the sum of the series (1), which has no singular points on a certain R-arc
(a segment with length R) of the boundary of its convergence domain.
We come to a contradiction with 1). Therefore, the assumption that
n0(Λ) > R/2π is incorrect. �

Example 3. Let Λ = {λk, nk}, λk = kh and nk = 1, k > 1. Then SΛ = 0
(see [12], § 2) and n0(Λ) = h.

The particular cases of Theorem 3 are all the above mentioned results
for Dirichlet and Taylor series.
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