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Abstract.
In this article a class of symmetric functions is defined and

used in some special representation of holomorphic functions.
This representation plays an important role in transitions from
concrete problems of projective description to equivalent prob-
lems of inductive description and finds multiple applications in
questions connected with spectral synthesis of differential opera-
tors.

Key words: spectral synthesis, projective description, inductive
description, differential operators, symmetric functions, holomor-
phic functions

2010 Mathematical Subject Classification: 32A10

1. Introduction. Suppose n, q ∈ N; G is an open set in Cn;
π : G→ Cq is a holomorphic mapping. A set g ⊆ G is called π-symmetric,
if there exists a set V in Cq such that g = π−1(V ). A function ϕ : g → Cq,
where g is a π-symmetric set, is called π-symmetric on g, if ϕ = ϕ̂ ◦ π,
where ϕ̂ is some holomorphic on π(g) function. A set of all π-symmetric
on g functions Oπ(g) is a ring. This ring is a subring of the ring of all
holomorphic on g functions O(g).

The class of π-symmetric functions is needed to consider some rep-
resentations of holomorphic on complex domain functions. For example,
consider the case of one variable. Suppose n = q = 1; π is a polynomial;
G is an open π-symmetric set in C. Note the following theorem: Any
u ∈ O(G) has the unique representation of the form u(z) =

∑q−1
p=1 z

pup(z),
where up ∈ Oπ(G) [1]. Such presentation is called a symmetric represen-
tation of the analytic function [2]. The case π := (π1, . . . ,πq) : C → Cq,
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where π1, . . . ,πq are polynomials, was considered in [2]. The case where
G is an open set in C, (G, π, π(G)) – analytic covering, was studied in [3].

In this paper we consider a more general case. We obtain symmetric
representations of some multivariate functions.

Note that the concept of symmetric representation of an analytic func-
tion plays a key role in some questions of complex analysis. For example
it is used in spectral synthesis (see [3–6]).

2. Analyticity of the difference relation.
2.1. Alphabetized list of independent variables. Denote by λ̃ any
product set

{
z

(1)
1 , . . . ,z

(1)
p(1)

}
×. . .×

{
z

(n)
1 , . . . ,z

(n)
p(n)

}
, where

{
z

(i)
1 , . . . ,z

(i)
p(i)

}
,

i = 1, . . . , n are ordered sets of independent variables.
The set λ̃ = {zj : j = 1, . . . , p} has p = p(1) × · · · × p(n) different

elements. Any finite sequence z1, . . . , zp ∈ λ̃ is called an alphabetized list
of the set λ̃, if j < k ⇔ ∃ m ∈ [1, n) such that j1 = k1, . . . , jm = km,
jm+1 < km+1 holds for any

zj =
{
z

(1)
j1
, . . . , z

(n)
jn

}
, zk =

{
z

(1)
k1
, . . . , z

(n)
kn

}
.

Let z1, . . . , zp be an alphabetized list of the set λ̃. Consider a matrix

Z =


z

(1)
1 . . . z

(n)
1

z
(1)
2 . . . z

(n)
2

. . . . . . . . .

z
(1)
p(1) . . . z

(n)
p(n)

 ,

such that each j-th row equals to zj . Choose any partition of the matrix
Z Z1, . . . ,Zp(1) where any submatrix Zi consists of p(2) · · · p(n) rows of
the matrix Z. Partition of all Zk in the same way gives us submatrices
Zk,1, . . . ,Zk,p(2), which consist of p(3) · · · p(n) rows of Z, etc. We have:

Z =

 Z1

...
Zp(1)

 , Zk =

 Zk,1
...

Zk,p(2)

 , Zk,t =

 Zk,t,1
...

Zk,t,p(3)

 , . . . .

Any submatrix of rank m has the form:

Zk, . . . ,j︸ ︷︷ ︸
m

=

 z
(1)
k . . . z

(m)
j z

(m+1)
1 . . . z

(n)
1

· · · · · · · · · · · · · · · · · ·
z

(1)
k . . . z

(m)
j z

(m+1)
p(m+1) . . . z

(n)
p(n)

 ,
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thus, columns 1, . . . ,m are equal.
Any two neighboring submatrices of rankm are called adjacent if these

submatrices are in the same submatrix of rank m − 1 (note that Z has
rank 0). We have:

i) any two adjacent submatrices have the same columns except exactly
one called marked ;

ii) any marked column consists of equal elements.

More precisely, m-th columns of matrices Zk,...,j−1 and Zk,...,j of rank
m are marked. The elements of m-th columns are equal to z(m)

j−1 and z(m)
j ,

respectively.
2.2. The main procedure. Let us consider the procedure used in the
proof of theorem 1. Add the marked column of the upper adjacent subma-
trix to each submatrix Z2, . . . , Zp(1) of rank 1 from the right to obtain the
non-rectangular matrix Z ′. Each submatrix Zk,...,j of rank m of matrix Z
determines the submatrix Z ′k,...,j of rank m of matrix Z ′ uniquely. Note
that i) and ii) hold for adjacent pairs of submatrices of matrix Z ′. The pair
Z ′1 = Z1, Z ′2 is the only exception. The marked columns of the adjacent
matrix pair Z ′k−1 and Z ′k, k = 3, . . . ,p(1), are the last column of Z ′k−1 and
the first column of Z ′k. Elements of these columns are equal to elements
of z(1)

k−2 and z(1)
k , respectively. Add the marked column of upper adjacent

submatrix to each submatrix Z ′3, . . . , Z ′p(1) of rank 1 from the right. We
obtain a new matrix Z ′′ and new submatrices Z ′′k,...,j . Properties i) and
ii) hold for Z ′′k,...,j . The pair Z ′′1 = Z ′1 = Z1, Z ′′2 = Z ′2 and Z ′′2 = Z ′2, Z ′′3
are exceptions. The marked columns of the adjacent matrix pair Z ′′k−1

and Z ′′k , k = 4, . . . , p(1), are the last column of Z ′′k−1 and the first column
of Z ′′k . Elements of these columns are equal to elements of z(1)

k−3 and z(1)
k ,

respectively. Then add columns to Z ′′4 , . . . , Z ′′p(1), etc. Finely, p(1)− 1-th
step gives us the matrix 1Z. We have:

1Zk :=

 z
(1)
k−1 · · · z

(1)
1

Zk · · · · · · · · ·
z

(1)
k−1 · · · z

(1)
1

, 1Z1 = Z1.

In the same way we deal with submatrices 1Zk (rank = 1) of matrix
1Z. Let us consider the first step. Properties i) and ii) are satisfied for
adjacent submatrix pairs of matrix 1Z, if the submatrices have rank > 1.
Then add the marked column of the upper adjacent submatrix to each
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submatrix 1Zk,2, . . . ,1Zk,p(2), k ∈ 1, . . . , p(1) from the right to obtain a
new matrix 1Z

′ and new submatrices 1Z
′
k,...,j . Properties i) and ii) are

satisfied for submatrices of rank > 2. The marked columns of the adjacent
matrix pair 1Z

′
k,j−1, 1Z

′
k,j , k = 1, . . . , p(1), j = 3, . . . , p(2), are the last

column of 1Z
′
k,j−1 and the second column of 1Z

′
k,j . Elements of these

columns are equal to elements of z(2)
j−2, z

(2)
j respectively. Then add columns

to 1Z
′
k,3, . . . ,1Z

′
k,p(2), etc. Finally, p(2)−1-th step gives us the matrix 2Z.

We obtain:

2Zk,j =

 z
(1)
k−1 · · · z

(1)
1 z

(2)
j−1 · · · z

(2)
1

Zk,j · · · · · · · · · · · · · · · · · ·
z

(1)
k−1 · · · z

(1)
1 z

(2)
j−1 · · · z

(2)
1

, 2Z1,1 = Z1,1,

2Z1,j=

 z
(2)
j−1 · · · z

(2)
1

Z1,j · · · · · · · · ·
z

(2)
j−1 · · · z

(2)
1

, 2Zk,1 =

 z
(1)
k−1 · · · z

(1)
1

Zk,1 · · · · · · · · ·
z

(1)
k−1 · · · z

(1)
1

 .

Then we change in the same way submatrices of 2Z of rank 2, etc. We
have:

nZk,...,j = (Zk,...,j |z(1)
k−1 . . . z

(1)
1 | . . . |z

(n)
j−1...z

(n)
1 )

(if i ∈ k, . . . ,j and i = 1, then there is no i-th submatrix in the matrix
nZk,...,j ). Now we stop because submatrices of nZ are rows of nZ if these
submatrices have rank n.
2.3. An analytic continuation of the difference relation. Choose
any m ×m invertible matrix A = (ak,j) and l × l nondegenerate matrix
B. The matrix

A×B =

a11B . . . a1mB
...

. . .
...

am1B . . . ammB

 .

is called the Kronecker product.
It is clear that the determinant |A × B| of the matrix A × B equals

|A|l|B|m.
Suppose that a1, . . . , am ∈ C. Consider the square matrix

D(a1, . . . , am) =

1 a1 . . . am−1
1

...
...

. . .
...

1 am . . . am−1
m

 .
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Determinant of the matrix D(a1, . . . , am) is called the Vandermonde de-
terminant. We have:

∆(a1, . . . , am) =
∏

16k6j6m

(aj − ak).

Let
{
z

(i)
1 , . . . , z

(i)
p(i)

}
, i = 1, . . . , n, be a collection of finite ordered

number sets, z1, . . . , zp, p = p(1) × · · · × p(n) is an alphabetized list of
product set of sets

{
z

(i)
1 , . . . , z

(i)
p(i)

}
, i = 1, . . . , n. Consider the matrix

D = D
(
z

(1)
1 , . . . , z

(1)
p(1)

)
× . . .×D

(
z

(n)
1 , . . . , z

(n)
p(n)

)
; ∆ = det(D).

It is clear that

∆ = ∆p1
1 ∆p2

2 · · ·∆pn
n =

n∏
i=1

∏
16k6j6m

(
z

(i)
j − z

(i)
k

)pi
,

where pi =
p

p(i)
, ∆i = ∆

(
z

(i)
1 , . . . , z

(i)
p(i)

)
. We have:

∆ = ∆(z1, . . . , zp) =

∣∣∣∣∣∣∣
zα1

1 . . . z
αp
1

...
. . .

...
zα1
p . . . z

αp
p

∣∣∣∣∣∣∣ ,
where α1, . . . ,αp is an alphabetized list of the set

{0, . . . , p(1)− 1} × . . .× {0, . . . , p(n)− 1};

αk = (α
(1)
k , . . . , α

(n)
k ); zαkj = (z

(1)
j )α

(1)
k × . . .× (z

(n)
j )α

(n)
k .

Let g(1), . . . , g(n) be a collection of open sets in C. Take the set

ϕ1

(
z(1), . . . , z(n)

)
, . . . , ϕp

(
z(1), . . . , z(n)

)
of functions that are holomorphic at the product set g(1)× . . .× g(n). Let{

z
(1)
1 , . . . , z

(1)
p(1)

}
, . . . ,

{
z

(n)
1 , . . . , z

(n)
p(n)

}
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be sets of independent variables where zji ∈ g(j) . Consider the relation

F =
|Φ|
∆
,

where |Φ| = det Φ,

Φ =

 ϕ1(z1) . . . ϕp(z1)
...

. . .
...

ϕ1(zp) . . . ϕp(zp)

 ,

z1, . . . , zp is an alphabetized list of the product set{
z

(1)
1 , . . . , z

(1)
p(1)

}
× . . .×

{
z

(n)
1 , . . . ,z

(n)
p(n)

}
.

Determinants |Φ| and ∆ are holomorphic functions on g(i). From Har-
togs’s theorem it follows that |Φ| and ∆ are holomorphic at the product
set

g = g(1) × . . .× g(1)︸ ︷︷ ︸
p(1)

× . . .× g(n) × . . .× g(n)︸ ︷︷ ︸
p(n)

.

Then F is a holomorphic function at g̃ \ Z(∆), where Z(∆) is a set of
points of g̃ and x ∈ Z(∆)⇒ ∆(x) = 0..

Theorem 1. The function F has the unique holomorphic on G analy-
tical continuation.

Proof. It follows from continuity of F that the analytical continuation is
unique. It remains to check that it exists. Denote Φ by Φ(Z). Consider
the partition of the matrix Φ(Z):

Φ(Zk,1), . . . ,Φ(Zk,p(2)).

We have:

Φ(Z) =

 Φ(Z1)
...

Φ(Zp(1))

 , Φ(Zk) =

 Φ(Zk,1)
...

Φ(Zk,p(2))

 , . . . .

If we replace Φ(Zk), k = 2, . . . , p(1) by

Φ(Z ′) =
Φ(Zk)− Φ(Zk−1)

z
(1)
k − z

(1)
k−1

,
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we obtain the matrix Φ(Z ′). Elements of Φ(Z ′) are holomorphic functions
at g. We have:

|Φ(Z)| =
(
z

(1)
p(1) − z

(1)
p(1)−1

)p1
× . . .×

(
z

(1)
2 − z(1)

1

)p1
|Φ(Z ′)| .

If we replace Φ(Z ′k), k = 3, . . . , p(1) by

Φ(Z ′′k ) =
Φ(Z ′k)− Φ(Z ′k−1)

z
(1)
k − z

(1)
k−1

,

we get the matrix Φ(Z ′′). Elements of Φ(Z ′′) are holomorphic functions
at g. We have:

|Φ(Z ′)| =
(
z

(1)
p(1) − z

(1)
p(1)−2

)p1
× . . .×

(
z

(1)
3 − z(1)

1

)p1
|Φ(Z ′′)| .

If we replace Φ(Z ′′k ), k = 4, . . . , p(1), etc, we get the matrix Φ(1Z). Ele-
ments of Φ(Z ′′) are holomorphic functions at g. We have

|Φ(Z)| = ∆p1
1 |Φ(1Z)| . (1)

Then we replace Φ(1Zk,j), j = 2, . . . , p(2) by

Φ
(

1Z
′
k,j

)
=

Φ (1Zk,j)− Φ (1Zk,j−1)

z
(2)
j − z

(2)
j−1

in Φ(1Zk) for all k ∈ 1, . . . , p(1) to obtain the matrix Φ(1Z
′). Its elements

are holomorphic functions at g. We have:

|Φ(1Z)| =
(
z

(2)
p(2) − z

(2)
p(2)−1

)p2
× . . .×

(
z

(2)
2 − z(2)

1

)p2
|Φ(1Z

′)| .

If we replace Φ(1Z
′
k,j), j = 3, . . . , p(2), etc, we get the matrix Φ(2Z). Its

elements are holomorphic functions at g. We have:

|Φ(1Z)| = ∆p2
2 |Φ(2Z)|. (2)

Then we get the matrix Φ(nZ). Its elements are holomorphic functions
at g. We have

|Φ(n−1Z)| = ∆pn
n |Φ(nZ)| . (3)

It follows from (1), (2), (3) that

|Φ(Z)| = ∆ |Φ(nZ)| .
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Finally, we obtain F = |Φ(nZ)|. This completes the proof. �

3. The symmetric representation of an analytic function.
3.1. Analytic cover. Let Λ be an image of π : G→ Cq. The mapping
π is called an analytic cover of Λ if the following conditions hold:

1) mapping π is proper (hence, Λ is an n-dimensional analytic set in
Cq [4, Remmert-Stein theorem]);

2) there exists an analytic subset σ ⊂ Λ, dimσ < n such that Λ∗ = Λ\σ
is an n-dimensional complex manifold in Cq;

3) the set π−1(σ) is nowhere dense in G;

4) the restriction of π to G∗ = G\π−1(σ) is a local biholomorphic p-
sheeted covering on Λ∗.

The set σ is called critical. The preimage π−1(σ) is an n-dimensional
subset of G. Metric dimension of π−1(σ) is less than or equal to 2n − 2.
Hence, π−1(σ) is removable. Then any bounded over π−1(σ) holomorphic
on G∗ function has the unique holomorphic on G extension. Sets π−1(λ),
λ ∈ Λ are compact analytic subsets of the set G and are called π-layers.
Hence, the sets are finite [7]. Points λ ∈ Λ∗ are called ordinary, and
respective π-layers are called simple. Simple π-layers consist of p different
points. A single-valued mapping {1, . . . , p} → π−1(λ) is called ordering of
a layer π−1(λ). Ordering of a simple π-layer can be represented in the form
z1, . . . , zp. Elements of the sequence z1, . . . ,zp depend on λ = π(zk) ∈ Λ∗.
Mappings

zk = (z
(1)
k (λ), . . . , z

(n)
k (λ)), k = 1, . . . , p,

are holomorphic on some neighborhood of any ordinary point.
The concept of analytic cover develops the concept of local biholo-

morphic k-sheeted covering. Analytical coverings appear in the Weier-
strass preparation theorem. It follows from the theorem that any pure
k-dimensional analytical set has some analytical cover on Ck as a local
representation.
3.2. Special analytic cover. Let G(1), . . . , G(n) be open sets in
C; π(i) : C → Cq(i), q(i) ∈ N, i = 1, . . . ,n, be holomorphic functions;
Λ(i) = π(i)(C). The mappings π(i) are analytic covers, as:

1) the mapping π(i) : C→ Cq(i) is proper (hence, Λ(i) is 1-dimentional
analytic set in Cq(i));
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2) there exists the close discrete set σ(i) ⊂ Λ(i) such that Λ
(i)
∗ =

Λ(i)\σ(i) is a 1-dimentional complex manyfold in Cq(i);

3) the restriction of π(i) to C
(i)
∗ = C\(π(i))−1(σ(i)) is a local biholo-

morphic p(i)-sheeted covering on Λ
(i)
∗ .

It is clear that the product set π̃ : Cn → Cq, q = q(1) + . . .+ q(n) of
mappings π(i), i = 1, . . . ,n, is an analytic covering. The image π̃(G̃) = Λ̃
equals to product set Λ(1)× . . .×Λ(n) hence the image is an n-dimensional
analytic set in Cq [7]. The mapping π̃ : G̃ → Λ̃ is proper. Indeed,
let K be a compact set in Λ̃, let K(i) be a projection of K on Λ(i),

K̃ = K(1)× . . .×K(n). It is clear that
(
π(i)
)−1 (

K(i)
)
is a compact set in

G(i).

π̃−1(K̃) =
(
π(1)

)−1 (
K(1)

)
× . . .×

(
π(n)

)−1 (
K(n)

)
π̃−1(K̃) is a compact set in G̃. π̃−1(K) ⊆ π̃−1(K̃) and π̃−1(K) are closed
then π̃−1(K) is a compact set in G̃. This proves condition 1). Further,
critical set σ̃ equals to the set

Λ̃\
(

Λ
(1)
∗ × . . .× Λ

(n)
∗

)
=

n⋃
i=1

Σ(i),

where

Σ(i) = Λ(1) × . . .× Λ(i−1) × σ(i) × Λ(i+1) × . . .× Λ(n)

are (n − 1)-dimensional analytic subsets in Λ̃. Indeed, σ̃ is an (n − 1)-
dimensional analytic subset of Λ̃ and

Λ̃∗ = Λ̃\σ̃ = Λ
(1)
∗ × . . .× Λ

(n)
∗

in an n−dimensional complex manifold in Cq. We have proved that con-

dition 2) holds. Set π̃−1(σ̃) has the representation
n⋃
i=1

π̃−1
(
Σ(i)

)
, where

π̃−1
(
Σ(i)

)
equals to

G(1) × . . .×G(i−1) ×
(
π(i)
)−1 (

σ(i)
)
×G(i+1) × . . .×G(n).

Since
(
π(i)
)−1 (

σ(i)
)
is a closed discrete set, it follows that π̃−1

(
Σ(i)

)
and

π̃−1(σ̃) are (n−1)-dimensional analytic sets. It now follows that π̃−1(σ̃) is
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a nowhere dense set in G [7]. Condition 3) holds. It is clear that condition
4) is satisfied. Note that p = p(1) . . . , p(n).

Λ̃ := Λ(1) × . . . × Λ(n) is a topological subspace of Cq. Let Λ be an
open subset of Λ̃, G = π−1(Λ). A restriction π : G → Λ of the covering
map π̃ : Cn → Cq to the π-symmetric set G is an analytic covering. We
say that π is special. Note that any π-symmetric set is π̃-symmetric. In
particular, any π-layer equals to the respective π̃-layer.
3.3. Some representation of an analytic function. Let mapping
π : G→ Λ be a special analytic covering; letO(Λ) be a ring of holomorphic
on Λ functions; let O(Λ∗) be a ring of locally holomorphic on Λ∗ functions;
let O∗(Λ) be a subring of the ring O(Λ∗) that consists of bounded on Λ
functions. The mapping

O(Λ∗)→ Oπ(G∗) | ϕ̂→ ϕ̂ ◦ π

is a ring isomorphism. Since the mapping π is proper and the set π−1(σ)
is removable, the restriction of the mapping π to O∗(Λ) is a ring isomor-
phism. It takes O∗(Λ) on Oπ(G∗) ∩O(G).

Let π be a special analytic covering, z ∈ G∗ and

π(z) = λ = (λ(1), . . . ,λ(n)) ∈ Λ∗, λ
(i) ∈ Λ

(i)
∗ .

Denote by λ̃ the π-layer π−1(λ) . It is clear that λ̃ = λ̃(1) × . . . × λ̃(n),
where λ(i) are simple π(i)-layers, i = 1, . . . , n. Since the π-layer λ̃ con-
tains z =

(
z(1), . . . , z(n)

)
, then a π(i)-layer λ̃(i) contains the i−th coordi-

nate z. Let z(i)
1 , . . . , z

(i)
p(i), z

(i)
1 = z(i), be an arbitrary ordering of a simple

π(i)-layer λ̃(i); let z1, . . . , zp be an alphabetized list of the layer λ̃. Consider
a relation

F =
|Φ|
∆
,

where |Φ| = |Φ|(z1, . . . , zp), ∆ = ∆(z1, . . . , zp), ϕ1, . . . , ϕp ∈ O(G), define
functions f : G∗ → C, f̂ : Λ∗ → C, with respect to the conditions

f(z) = F (z1, . . . , zp), f̂(λ) = F (z1(λ), . . . , zp(λ)).

Since the restriction of F to G\Z(∆) is a symmetric function of vari-
ables {z(1)

1 , . . . , z
(1)
p(1)}, . . . , {z

(n)
1 , . . . , z

(n)
p(n)} and (z1, . . . , zp) ∈ G\Z(∆) for

any z ∈ G∗, then the functions f, f̂ are well defined. Indeed, the or-
der of the set {z1, . . . , zp} changes but F doesn not as one changes the



134 A.B. Shishkin

order in a set {z(i)
1 , . . . , z

(i)
p(i)}, i ∈ 1, . . . , n. On the other hand, map-

pings z1(λ), . . . , zp(λ) are holomorphic on sufficently small neighborhoods
of the ordinary points. Then f̂ ∈ O(Λ∗). It follows from theorem 1 that
f̂ ∈ O∗(Λ). Indeed, suppose λ = (λ(1), . . . , λ(n)) ∈ σ and let k(i) ⊂ Λ(i)

be a compact neighborhood of λ(i), let d(i) ⊂ Λ(i) be an open neighbor-
hood of compact k(i), g(i) = (π(i))−1(d(i)). Choose neighborhoods k(i),
d(i) such that λ(i) ∈ int

(
k(i)
)
6= ∅, λ ∈ d(1) × . . . × d(n) ⊆ Λ, λ̃ ⊂

⊂ g(1)× . . .×g(n) ⊆ G. Since the map π(i) is proper, K(i) = (π(i))−1(k(i))
is a compact set in g(i). It follows from theorem 1 that the function F
is analytic on a set G = (g(1))p(1) × . . .× (g(n))p(n), hence, F is bounded
on (K(1))p(1) × . . . × (K(n))p(n). Then the function f̂ is bounded on
k(1) × . . .× k(n). Finally f̂ is locally bounded on Λ.

We have
f(z) = f̂(λ) = (f̂ ◦ π)(z),

where z ∈ G∗ and λ = π(z).

Now note that the function f ∈ Oπ(G∗) is locally bounded on π−1(σ).
The set π−1(σ) is removable. Then f has an extension that is holomorphic
on G. We have

f ∈ Oπ(G∗) ∩O(G).

Now we can prove the following theorem.

Theorem 2. For any function f ∈ O(G) the unique representation

f =

p∑
k=1

zαkf (k), f (k) ∈ Oπ(G∗) ∩O(G). (4)

is true. The restriction of f (k) to G∗ equals to ∆k(f)/∆, where ∆k(f) is
the determinant obtained by replacement of k-th column by the column
from f(z1), . . . , f(zp) in determinant ∆ and z1, . . . , zp is a alphabetized
list of the simple π-layer λ̃ that contains z.

Proof. It is clear that for any z ∈ G∗ we have

f̃∆ =

p∑
k=1

z̃αk∆k(f),
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where f̃ = (f(z1), . . . , f(zp)), z̃αk = (zαk1 , . . . , zαkp ). The determinant ∆
is not equal to zero for any z ∈ G∗. Then for any z ∈ G∗ we have

f̃ =

p∑
k=1

z̃αkf (k), (5)

where f (k) = ∆k(f)/∆ ∈ Oπ(G∗). The functions f (k) have the only
extension that is in O(G). Now we have

f (k) ∈ Oπ(G∗) ∩O(G),k = 1, . . . , p.

It is easy to see that (2) ⇔ (5). Uniqueness of (2) follows from the fact
that we obtain f (k) from (5), using Cramer’s rule. Indeed,

f(z1) = zα1
1 f (1)(z1) + . . .+ z

αp
1 f (p)(z1)

· · · · · · · · · · · · · · ·
f(zp) = zα1

p f (1)(zp) + ...+ z
αp
p f (p)(zp)

The theorem is proved. �
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