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BELTRAMI EQUATIONS REVISITED: MARCINKIEWICZ
EXPONENTS AND PAINLEVE -TYPE THEOREM

Abstract. We deal with some new results on some types of Bel-
trami equations. There is a new approach involving the new
metric characteristics: the Marcinkiewicz exponents. Another
vision is applying the Cauchy—type integral representation to
such equations. One more idea is to obtain analogs of some clas-
sical theorems for such equations.
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1. Introduction. The Beltrami equation

09 = pdg, |u(z)| <1, (1)

is one of the most natural and important generalizations of the Cauchy-
Riemann equation (see [2]). Here, as usual,
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Theory of these equations has numerous applications in mechanics and
physics [10]. Here we write about the jump problem for S-analytic func-

tions, i.e. the problem of function ¢(z) which vanishes in infinity, is
continuously differentiable in C \ T', satisfies the equation

Ql

99(2) = fZ09(2), z€C\T,
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and has continuous limit values ¢*(¢) in points t € I' from domains D*
bounded by condition

where f is a given function. It is a particular case of the Riemann bound-
ary value problem with G = 1.

A lot of complex-variable boundary value problems use curvilinear in-
tegration over the boundary and such integrals as one of the basic methods
of solution. For example, in the Riemann boundary value problem (see [4]
and many others) a closed Jordan curve I' divides the complex plane to
the finite domain DT and the infinite one D~ and we seek for holomor-
phic in C\T" functions that have boundary limits ®*(¢) from domains D*
correspondingly at any point ¢ € I', and these limits satisfy the condition

() = GH)2 (1) +9(1) (2)

In [4] the solutions of this problem are obtained in terms of the Cauchy-

type integrals
1
8 = 5 [ 02, Ler, (3)

27 t—z
r
and this is the classical result. However, such approach generates a new
problem: the curvilinear integral [ -dz is defined only for rectifiable paths

r
I, but the boundary value problem (2) itself can be set for any Jordan
curve, including non-rectifiable (fractal and whatever) boundaries. This
challenges us to extend the concept of curvilinear integration on non-
rectifiable paths.

2. Integrations over non-rectifiable curves. We need some defi-
nitions first. As above, let I" be a closed Jordan curve of null plane measure
on the complex plane C dividing it to domains D and D~ > co. If a func-
tion Y(z) is continuously differentiable in C \ T' and integrable together
with its first partial derivatives near I" then we consider the mapping

Cgo((C)BwH—//ag—;dsz, (4)
c

which is clearly a distribution.
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If the curve T is rectifiable, and function YT(z) has limit values YT (#)
and T~ (t) at any point ¢ € T" from D¥ and D~ correspondingly, then by
means of Green’s formula

- 4 [ 252 dzaz= [ - T @

r
This last equality allows us to extend the concept of curvilinear integral
on non-rectifiable curves.

Definition 1. Let Y(z) be continuously differentiable in C \ T' and
integrable together with its first partial derivatives in a neighborhood of

I'. Then we call distribution (4) an integration of AY dz over I' and denote
it [wAY dz.

r
Analogously, the distribution

C2(C) BwH/wATd?:z // 8;: dz dz, (5)
T C

is an integration of AY dz over T.

Let us note that we do not require existence of the boundary values
Y*(t) at every point of T

It is clear that if functions T; and Y5 coincide in an arbitrary small
neighborhood of I' then they determine the same integration. Analo-

gously, if w; and ws coincide in an arbitrary small neighborhood of T,
then [wiATdz = [wAT dz and [wiATdz = [w AT dz.
r r r r

Such definition of the integration immediately generates the problem
of uniqueness which is discussed further.

We also need the definition of the Hausdorff dimension (see, for in-
stance [3]). Let A C C be a bounded set. Its A—dimensional Hausdorff
r—content equals to

n

HNA) = inf{Zr,ﬁ‘ A C U B(xg,rk),xp € A,0 <71 < r} ,

k=1 k=1

the A—dimensional Hausdorff measure is

HANA) = lim H ) (A),

rl0
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and
dmp(A) = inf{\ > 0:HA) =0}

is the Hausdorff dimension of A.

The Hausdorff dimension of any plane set does not exceed two. It
equals one for any rectifiable curve. One can find Hausdorff dimensions
of a number of fractal curves in Wikipedia.

In what follows we use the local version of the Hausdorff dimension.
We call the function h(t) the local Hausdorff dimension of T', if any point
t € T has a neighborhood v C T such that dmgy < b(t).

Furthermore, we introduce the local Holder condition. We say that a
function f(t) satisfies the Holder condition with exponent v € (0,1] on a
set A C C and write f € H,(A) if

[f(t2) = f(t2)|

hl/(f7A) = Sup{ |t1 _t2|1/

: t1)2 €At 7é tg} < 00.

Let us fix a finite family E = {t1,t2,...,t,} of points of I and a function
v:I\E — (0,1]. We refer a function U(z), z € C\ T, to the class
H,(T'\ E) if any point ¢ € T'\ F has a neighborhood N = N(t) in C such

that N E =0, and U € H,) (N D*).
Now we are ready to formulate the uniqueness theorem for integrations.

Theorem 1. Let functions Y1 o € H,(I'\ E) satisfy assumptions of De-
finition 1. If
v(t)>p(t) -1, tel\E, (6)

then the equality
T(t) - Ti(t)=T5(t)-To(t), tel\E,

means identity of integrations

/ATl dZ:/ATQdZ, /ATl dE:/ATQ dz.
r r r r

This theorem is proved for E = ) in paper [5]. Its proof for finite set
of discontinuities E is absolutely analogous.

3. Marcinkiewicz exponents and local conditions. Now let us
define the Marcinkiewicz exponents. Let I" be a closed Jordan curve on the
complex plane dividing it to two domains DT and D=, 0€ DT, 00 € D~.
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When r > 0, t € I, p > 0 we use notation B(t;r) := {z : |z —t| < r},
BE(t;r) := B(t;r) N D*,

// dx dy
t 7)
distP(x + 1y, )

B*(t;r)

The inner and outer Marcinkiewicz exponents of the curve I in it’s point
t is defined by

m*(I;t) := sup{p : lim Ipi(t;r) < oo}
r—0
We call the value
m*([;¢) := max{m™ ([;¢),m™(I;t)}

the Marcinkiewicz exponent of the curve I' in the point ¢. Here in-
tegrals I jE(t r) increase with growth of the radius, thus the condition
hm IE(t; r) < 00 is tantamount to condition 3r > 0 : IF(t;7) < oco.

From [6] we know that those values are not less than 2 — dmI' and
not greater than 1, where dm stands for the Minkowski dimension. In
particular, the Marcinkiewicz exponents of a rectifiable curve are equal to
1. In all further text we assume that the curve I' has null flat measure.
Then dmI' < 2 and m*(T';¢) > 0 in any point of the curve.

The Marcinkiewicz exponents are bound to the local properties of the
contour. To use this fact properly, let us introduce the local version of
the Holder condition. We assume that there is a real function v(¢) on I
such that 0 < v < v(t) < 1,¢ € T'. We say that a function f(¢) defined on
[ belongs to the class H!°¢(T) if for any point ¢ € I’ we can find a radius
r = r(t) > 0 such that the restriction of f to the set I' N B(¢;r) satisfies
the Holder condition with exponent v(t).

As shown in [5] and some other papers, the Marcinkiewicz exponents
are of great use in the solution of the Riemann boundary value problem.
Let us see how they apply to the Beltrami equation.

4. Marcinkiewicz exponents approach. The following approach
was initially presented in [8]. We shall prove one rather technical lemma
first. Before we prove it, let us prove an additional lemma that will help
us further. First of all, let us prove

Lemma. If f € H!°°(T), and exponent p > 1 satisfies the condition
m(L;¢)

<
P10

tel, (7)
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then the problem (9) has a solution, partial derivatives of which are inte-
grable in power p in any finite part of the plane.

Proof. Fix the value 0 < m(t) < m(I';¢). From the definition of Marcinkie-
wicz exponents and the class H°¢(T") it follows that for each point t € T’
there exists such radius » = r(¢) > 0 that at one time at least one of
two conditions I:L(t)(t;r(t)) <00, I (t;r(t)) < oo and the condition
flenBakr@)) € Huw (I N B(t;kr(t))) hold, where k > 1 is a constant.
Circles B(t,r(t)) form the cover of I', and we can choose a finite subcover
from it. Let us denote it by B; = B(t;,r(t;)), circles B} = B(t;, kr(t;)),
j =1,2,...,n, also cover I". Let us build the partition of unity corre-
sponding to the last cover. This partition consists of functions s; € C§°

o n
such that supps; C B’ and 21 s;(t) =1 when t € I.
j=

Now let us define the function f; on the union of the set I'; :=1"N ?;
and the circumference C; that bounds the circle B7; It is equal to s; f on
I'; and to zero on Cj. It is clear that f; € H,(t;)(C; UT;), and we can
apply the Whitney extension operator to this function (see [11]). Due to
well-known properties of this operator we get the function f’(z) defined
on the whole complex plane with the following properties:

e it equals f; on C; UTy;
o it satisfies the Holder condition with exponent v(¢;) on the whole
complex plane;

e it has continuous partial derivatives in C\ T;

and
c

w {——
Vi) < dist'=v(t) (2,T)’

where c is a positive constant.
Moreover, f;°(z) outside Bj is identical zero, i.e. this extension coin-

cides with s, f not only on I';, but on all the contour T, and Z @) =
j=1
f(t) when t € T.

Let there be a point ¢; where the condition I;;(tb)(tj;r(tj)) < oo is
satisfied. Define 1;(2) := f}’(2)x*(2), where x*(2) is the characteristic
function of the domain D. It is evident that

Ui () =5 (t) = f()s;(t), teT,
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and V1; is integrable in power p = 1— ( ) ny finite part of the plane.

If I,y (t;7(t)) < oo, then we put 1/1]( z) == f’(2)(x*(2) — 1), and this
function has have the same propertles

Sum of the functions ¢;, ¢ := Z 1; satisfies (9). As the value m(t)
can be chosen arbitrarily close to m(I‘ t), the lemma is proved. O

As the Beltrami equation (1) is a particular case of the Riemann
boundary value problem with G = 1, the following theorem is valid:

Theorem 2. If f € H?¢(T') and
1
v(t) >1-— §m(F;t), tel, (8)

then the jump problem for S-analytic functions can be solved.

Proof. We study the more general case

Y)Y (t) = f(t), teT, (9)
The integral operator
¢) d¢ d77
T8 . > Tﬁga = —
// — 2| g’
where )
0= 175 C=ttin

can be found in [12] by A.B. Tungatarov. If the function ¢ in continuous
in C\ T, it’s support is compact, and this function is integrable in power
g > 2 in C, then this operator has the following features:

1) function T?¢ is continuous in C, vanishes at infinity and satisfies
the condition

B (10)

TP p(2) — TP(Q)] < cz]2|® = ¢|¢|®

where HB +1= ﬁ < 1, and c is a positive constant, independent from
z and C ;
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2) operator T” is the right inverse operator to the differential operator
3 = 0 — Bi& ie. 55Tﬁcp = ¢; when ¢ € L' this equation should
be understogd in the sense of S. L. Sobolev, though in points of
continuity of ¢ it is right for usual derivatives, too.

Let us study the function
do(z) :==(z2) — Tﬂgﬁw(z),

where 1 is the solution built in the proof of the lemma above. Thus, ¢q
is a solution of the jump problem for S-analytic functions if first partial
derivatives are integrable in power more than two. Due to the lemma, it
is so under assumption of the theorem. [J

The condition of the theorem above are in some cases less bounding
than the mentioned above results of Abreu-Blaya R., Bory-Reyes J., and
Pena-Pena D. The example of a closed curve where in at least one point

m(L;¢) > 2 — dml
is built in paper [9].
From this result we can easily get

Corollary. If f € H,(I') and
1
v > 1—§m(F;t), tel, (11)

then the jump problem for S-analytic functions can be solved.

There is also a theorem on uniqueness of the solution in paper [9].

5. Another approach. Analogs of the classical theorems. This
approach was widely developed in and was further developed in [7]. Let
us study the Beltrami equation

—

= I
0¢ = =09, (12)

rr

In paper [7] it was shown that if a function ¢ is continuous in closure of
a domain D and has there partial derivatives integrable in power greater
than 2, then it can be represented as

L[ voro
27i(1 — j3) LOf) = £(2) ‘J;(é))

¥(2)
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B f@p@)f'(t)at
4+ — o (13)
2mi(1 = h) / T ) - )| 42
We used the construction
= 79(0 z) = f(z 2)]°¢

to prove this fact in this paper.
The two analogs of the classical theorems (Liouville and Painleve) are
valid.

Theorem 3. Let f be a polynomial of degree s, f(z) be analytic in C
and function ¢(z) satisfy the Beltrami equation (12) and the condition

1iRrginfR*kmax{m(g)| ¢l =R} =0. (15)

in all complex plane. Then the function v(z) can be represented as

where P(z) is a polynomial of degree not greater than m, m is the greatest
of integers such that ms(1 + 2a) < k and g(2) = f(2)|f(2)]**.

Proof. The theorem is proved immediately after we substitute the equa-
tion (13) into the analogous result from [1] instead of Tungatarov’s for-
mula. [J

One more analog of the classical theorems is the analog of the Painleve
theorem. Painleve obtained the following result: if a function F(z) is
continuous in a domain G and is holomorphic in G \ T', where I" is a
rectifiable Jordan curve in G then this function is holomorphic in G.

We have obtained the analog of the solution of the Beltrami equation
(12) in our recent works. There is no restriction on f to be holomorphic in
all complex plane and we do not assume that f is necessarily a polynomial.
This result is presented and proved in [7].
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