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Abstract. The well known heat integral identity in an unbounded
strip is extended to a class of unbounded functions both at x near
infinity and t near zero. Continuity of derivatives are relaxed to
differentiability in the L1

loc-Sobolev sense.
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1. Introduction. Let L denote the standard heat operator in Eu-
clidean space R×Rn, i. e., Lu = ut−∆u. Under some restrictions there is
the well-known integral representation identity that express the function
u through Lu and the initial conditions u0 = u(0, x). In particular, the
classical result states that for u(t, x) ∈ C([0,T )×Rn) ∩C1,2((0, T )×Rn)
if both u and Lu are bounded in the strip (0,T ) × Rn, then there the
integral identity (see [2])

u(t, x) =

∫
Rn

K(t, x− ξ)u0(ξ) dξ +

t∫
0

∫
Rn

K(t− τ, x− ξ)Lu(τ, ξ) dξdτ (1)

holds. Here K stands for the fundamental solution to the heat operator
(the heat kernel) and is given by

K(t,x) =


1(

2
√
πt
)n exp

(
− |x|

2

4t

)
, t > 0,

0, t 6 0.
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Among many applications, integral identity (1) is useful for analysis of
solutions for various parabolic type equations, e. g., the Burgers equation
ut − uxx = −uux, the Navier-Stokes equation

Lu = −(u · ∇)u−∇p,

and others. Unfortunately, the conditions above are too restrictive to cover
many practical situations. For example, we are not allowed, formally,
to consider the case of unbounded initial conditions. Moreover, for the
Burgers, Navier-Stokes and similar equations, the case when the initial
conditions are merely in L∞ can not be studied directly using (1), since the
right-hand side contains the x-derivative of the function u, and, therefore,
is unbounded near t = 0.

In this paper we extend identity (1) to a much wider set of functions.
In particular, the cases described above will be covered [1].

2. Notations and the main result. Let T be a positive number
fixed throughout the paper. Let L(Ω) denote a set of measurable functions
f : Ω→ R and let

M2
T (Rn) =

{
f ∈ L(Rn) : sup

x∈Rn

|f(x)| exp
(
− |x|

2

4T

)
<∞

}
.

We denote the space of finite sums of the derivatives (in the sense of
distributions) of these functions by D′T :

D′T (Rn) =
{
F ∈ D′(Rn) : F =

m∑
k=1

∂|αk|fk
∂xαk

, fk ∈M2
T (Rn)

}
.

Here we have used the multi-index notation. Taking into account that the
derivative of zeroth order is the function itself, we have a natural inclusion

M2
T (Rn) ⊂ D′T (Rn).

We note that for any F ∈ D′T , for any τ ∈ (0, T ), and for any ξ ∈ Rn a
function gτ,ξ(x) = K(τ, x− ξ) can be considered as a test function, since
the value (the action) of F on gτ,ξ is well-defined as follows

〈F, gτ,ξ〉 =

∫
Rn

m∑
k=1

(−1)|αk| ∂
|αk|gτ,ξ
∂xαk

fkdx.
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When it is does not lead to ambiguity, we allow the integral notation to
denote the value of a distribution F on a test function g:∫

Rn

F (x)g(x)dx = 〈F, g〉.

Now we are ready to list the assumptions for the main result.
Let u : (0, T )×Rn → R be a continuous function, such that there exist

partial derivatives ut, uxi
, uxixj

∈ L1
loc((0, T )× Rn) in the Sobolev sense.

Let the functions u and Lu satisfy the following "moderate" growth
conditions: for all (t, x) ∈ (0, T )× Rn, we have

|u(t, x)| 6 c1(t) · exp

(
|x|2

4T

)
, |Lu(t, x)| 6 c2(t) · exp

(
|x|2

4T

)
,

where c1(t), c2(t) satisfy the following condition for any ε ∈ (0, T ):

T∫
ε

c1(t)dt < +∞,
T∫
ε

c2(t)dt < +∞.

Assume also, that there exists an initial condition u0 ∈ D′T , taken at
t = 0 in the following weak sense

lim
t→0+

∫
Rn

K(τ − t, ξ − x)u(t, x)dx = 〈u0,gτ,ξ〉,

for each τ ∈ (0, T ), ξ ∈ Rn.

Theorem 1. Under the assumptions listed above the integral iden-
tity (1) holds true provided that the last integral in the right-hand side
of (1) is understood as the improper Lebesgue integral near τ = 0:

u(t, x) =

∫
Rn

K(t, x− ξ)u0(ξ) dξ + lim
ε→+0

t∫
ε

∫
Rn

K(t− τ, x− ξ)Lu(τ, ξ) dξdτ.

If
T∫
0

c2(t)dt <∞, then the last integral in the right-hand side of (1) exists

as the Lebesgue integral.
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3. Proof of Theorem 1. Define the following functions

Kτ,ξ(t, x) = K(t− τ, x− ξ), K∗τ,ξ(t, x) = K(τ − t, ξ − x)

and the following differential operators

Lu = ut −∆u, L∗u = −ut −∆u.

In {t ∈ R, x ∈ Rn}\{(τ, ξ)}, both functionsKτ,ξ andK∗τ,ξ are C
∞-smooth;

so we have
L(Kτ,ξ) = 0 and L∗(K∗τ,ξ) = 0.

In what follows, we fix a point (τ, ξ) ∈ R× Rn, such that τ ∈ (0,T ).
Let ζN (x) be a C∞ smooth function of the variable x ∈ Rn. Since the

function u and its derivatives ut, uxi
, and uxixi

are assumed to be in L1
loc,

the following identity holds in the L1
loc

(
(0,T )× Rn \ {(τ, ξ)}

)
sense:

K∗τ,ξζNLu = (K∗τ,ξζNu)t +K∗τ,ξu∆ζN+

+ 2K∗τ,ξ∇ζN · ∇u+

n∑
i=1

(
ζNu(K∗τ,ξ)xi

− (ζNu)xi
K∗τ,ξ

)
xi
. (2)

Indeed, for the smooth function u this is a point-wise identity. The general
case follows by approximation. We also note that if ζN (x) is compactly
supported, then (2) makes sense in L1

(
(ε,τ −ε)×Rn

)
for any ε ∈ (0,τ/2).

We choose smooth functions ζN (x) to satisfy ζN (x) = 1 for |x| 6 N ,
ζN (x) = 0 for |x| > N + 1, and the condition that ζN , ∇ζN , ∆ζN are
uniformly bounded by N and x.

In a neighborhood of [ε, τ−ε]×{|x| 6 N+2} the functions ζN andK∗τ,ξ
are infinitely smooth. Since all terms in (2) belong to L1([ε, τ−ε]×{|x| 6
6 N+2}) and vanish for |x| > N+1, we can integrate (2) over [ε, τ−ε]×Rn
and apply the Fubini theorem.

Omitting the standard mollification argument, we apply the divergence
theorem for the last term in (2), as follows

τ−ε∫
ε

∫
Rn

n∑
i=1

(
ζNu(K∗τ,ξ)xi

− (ζNu)xi
K∗τ,ξ

)
xi
dxdt =

=

τ−ε∫
ε

∫
|x|<N+2

n∑
i=1

(
ζNu(K∗τ,ξ)xi − (ζNu)xiK

∗
τ,ξ

)
xi
dxdt =



On the heat integral identity 7

=

τ−ε∫
ε

∫
∂{|x|<N+2}

n∑
i=1

(
ζNu(K∗τ,ξ)xi

− (ζNu)xi
K∗τ,ξ

)
pi dσdt = 0.

Here (p1, . . . , pn) is the outward pointing unit normal field of the sphere
{|x| = N + 2}. Thus, the integral of the last term in (2) vanishes.

Integrating by parts the third term in the right-hand side of (2), as
follows:∫

Rn

K∗τ,ξ∇ζN · ∇u dx = −
∫
Rn

K∗τ,ξ∆ζN u+∇K∗τ,ξ · ∇ζN u dx

and applying the fundamental theorem of calculus in t variable for the
first term in the right-hand side of (2), we finally arrive at

τ−ε∫
ε

∫
Rn

K∗τ,ξζNLu dxdt =

∫
Rn

K∗τ,ξ(τ − ε, x)ζN (x)u(τ − ε, x) dx−

∫
Rn

K∗τ,ξ(ε, x)ζN (x)u(ε, x) dx−
τ−ε∫
ε

∫
Rn

(K∗τ,ξu∆ζN +2∇K∗τ,ξ ·∇ζNu) dxdt.

(3)

First we will take the limit of (3) as N → +∞, and then as ε → +0.
The following lemmas are needed to pass to the limit in (3) as N → +∞.

Lemma 1. For each (τ, ξ) ∈ (0, T ) × Rn there is a number γ1(T, τ, ξ)
such that for any t ∈ (0, τ) we have∫

Rn

K∗τ,ξ(t, x) exp

(
|x|2

4T

)
dx 6 γ1(T, τ, ξ).

Proof. An elementary calculation shows:∫
Rn

K∗τ,ξ(t,x) exp

(
|x|2

4T

)
dx =

=
(
4π(τ − t)

)−n
2

∫
Rn

exp

(
|x|2

4T
− |x− ξ|

2

4(τ − t)

)
dx.
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Note that for any a, b ∈ Rn and for any λ > 0 we have the inequality:

|a+ b|2 6 (1 + λ)|a|2 +

(
1 +

1

λ

)
|b|2.

Therefore, for any λ > 0 we have

|x|2 = |(x− ξ) + ξ|2 6 (1 + λ)|x− ξ|2 +

(
1 +

1

λ

)
|ξ|2.

Taking λ = T−τ
2τ , we obtain

|x|2

4T
− |x− ξ|

2

4(τ − t)
6

T+τ
2τ (τ − t)− T

4T (τ − t)
|x− ξ|2 +

T + τ

4T (T − τ)
|ξ|2 6

6 − T − τ
8T (τ − t)

|x− ξ|2 +
1

2(T − τ)
|ξ|2.

We have used the inequalities τ − t < τ and T + τ < 2T for the last step.
We obtain∫

Rn

K∗τ,ξ(t,x) exp

(
|x|2

4T

)
dx 6

6
(
4π(τ − t)

)−n
2

∫
Rn

exp

(
− T − τ

8T (τ − t)
|x− ξ|2 +

1

2(T − τ)
|ξ|2
)
dx.

Now the identity ∫
Rn

exp(−c|x− ξ|2)dx =
(π
c

)n/2

completes the proof with γ1(T, τ, ξ) =
(

2T
T−τ

)n/2
exp

(
|ξ|2

2(T−τ)

)
. �

Lemma 2. For each (τ, ξ) ∈ (0, T ) × Rn there is a number γ2(T, τ, ξ)
such that for any t ∈ (0, τ) we have∫

Rn

|∇K∗τ,ξ(t, x)| exp

(
|x|2

4T

)
dx 6 γ2(τ, ξ) · 1√

τ − t
.
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Proof. Using the identity |∇K∗τ,ξ(t, x)| = |x−ξ|
2(τ−t)K

∗
τ,ξ(t, x) and arguing as

in the proof of Lemma 1, we obtain∫
Rn

|∇K∗τ,ξ(t,x)| exp

(
|x|2

4T

)
dx 6

6
(
4π(τ − t)

)−n
2

∫
Rn

|y|
2(τ − t)

exp

(
− T − τ

8T (τ − t)
|y|2 +

|ξ|2

2(T − τ)

)
dy,

where y = x− ξ. Now the identity∫
Rn

|y| exp(−c|y|2)dy =
πn/2Γ(n+1

2 )

c
n+1
2 Γ(n2 )

,

where Γ(s) =
∫∞

0
ts−1e−tdt is the Euler gamma function, completes the

proof with γ2(T, τ, ξ) =
(

2T
T−τ

)n+1
2 Γ( n+1

2 )

Γ( n
2 ) exp

(
|ξ|2

2(T−τ)

)
. �

Since |u(t, x)| 6 c1(t) exp
( |x|2

4T

)
, Lemma 1 implies

τ−ε∫
ε

∫
Rn

|K∗τ,ξu∆ζN |dxdt 6 γ1(T, τ,ξ) sup |∆ζN |
τ−ε∫
ε

c1(t)dt <∞.

Using that 1√
τ−t 6

1√
ε
for t ∈ [ε, τ − ε], we conclude, by Lemma 2, that

τ−ε∫
ε

∫
Rn

|∇K∗τ,ξ · ∇ζNu|dxdt 6 γ2(T, τ, ξ) sup |∇ζN |
τ−ε∫
ε

c1(t)√
τ − t

dt <∞.

For any fixed (t, x) ∈ [ε, τ − ε]× Rn we have

lim
N→∞

K∗τ,ξu∆ζN = 0 and lim
N→∞

∇K∗τ,ξ · ∇ζNu = 0,

because ∆ζN (x) = 0 and ∇ζN (x) = 0 for N > |x|. Therefore, we can
apply the Lebesgue dominated convergence theorem and conclude that

lim
N→∞

τ−ε∫
ε

∫
Rn

(
K∗τ,ξu∆ζN + 2∇K∗τ,ξ · ∇ζNu

)
dxdt = 0.
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Hence, the limit of (3) as N →∞ gives us the following:

τ−ε∫
ε

∫
Rn

K∗τ,xiLu dxdt =

=

∫
Rn

K∗τ,ξ(τ − ε, x)u(τ − ε, x) dx−
∫
Rn

K∗τ,ξ(ε, x)u(ε, x) dx.

Replacing the domain of integration [ε, τ − ε]×Rn with [ε1, τ − ε2]×Rn
and repeating the arguments, we obtain

τ−ε2∫
ε1

∫
Rn

K∗τ,ξLu dxdt =

=

∫
Rn

K∗τ,ξ(τ − ε2, x)u(τ − ε2, x) dx−
∫
Rn

K∗τ,ξ(ε1, x)u(ε1, x) dx. (4)

The continuity and boundedness assumptions on u allow to conclude, that

lim
ε2→0

∫
Rn

K∗τ,ξ(τ − ε2, x)u(τ − ε2, x) dx = u(τ, ξ).

Taking the limit of (4) and using Lemma 1, we conclude that

u(τ, ξ) =

∫
Rn

K∗τ,ξ(ε1, x)u(ε1, x) dx+

τ∫
ε1

∫
Rn

K∗τ,ξLu dxdt,

where all integrals are understood in the Lebesgue sense. The assumptions
of Theorem 1 allow to take limit as ε1 → 0 and this completes the proof.
In the case

∫ T
0
c2(t)dt < ∞ Lemma 1 implies that the last term in the

right-hand side of (1) exists as the Lebesgue integral.
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