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Abstract. We consider a value range {g(i, T )} of solutions to the
chordal Loewner equation with the restriction |λ(t)| 6 c on the
driving function. We use reachable set methods and the Pontryagin
maximum principle.
Key words: Value range, Loewner equation, Hamilton function,
Pontryagin maximum principle
2010 Mathematical Subject Classification: 30C55

1. Introduction. Problems of finding value ranges {f(z0)} are
typical for the geometric function theory. Here functions f are taken from
some class of analytic functions and z0 is a fixed point in the domain of
functions from that class.

A number of problems of this kind have been solved for classes of ana-
lytic functions defined in the unit disk D = {z : |z| < 1}. Rogosinski [9]
gave a description of the value range {f(z0)} for the class of all analytic
functions mapping the unit diskD into itself, f(0) = 0, f ′(0) > 0. Grunsky
[2] described the value range {log(f(z0)/z0) : f ∈ S}, z0 ∈ D within
the class S of univalent analytic functions f in D, f(0) = 0, f ′(0) = 1.
Goryainov and Gutlyanski [1] extended this result by describing the set
{log(f(z0)/z0) : f ∈ SM} for the subclass SM = {f ∈ S : |f | 6 M} of
bounded functions.

Roth and Schleissinger [10] described the value range {f(z0)} for all
analytic univalent functions f : D→ D, f(0) = 0, f ′(0) > 0, that is, they
obtained an analogue of Rogosinski’s result for univalent functions. In the
same article, they found a description of the set {g(z0)} within the class of
all univalent analytic functions g : H→ H, mapping the upper half-plane
H = {z : Im z > 0} into itself and normalized g(z) = z + cz−1 +O(|z|−2),

c©Petrozavodsk State University, 2019

http://creativecommons.org/licenses/by/4.0/


Value range of solutions to the chordal Loewner equation 93

z → ∞. Value ranges for some classes of analytic univalent functions
defined in D were described in [4, 5].

Denote by H(T ), T > 0 the class of all analytic univalent functions
g : H\K → H, normalized near infinity as

g(z) = z +
2T

z
+O(|z|−2).

Here K ⊂ H is a so-called hull, which means that K = H∩K and H\K is
simply connected. Solutions of the chordal Loewner differential equation

dg(z, t)

dt
=

2

g(z, t)− λ(t)
, g(z, 0) = z, t > 0, (1)

where λ(t) is a real-valued continuous function, form a dense subclass of
H(T ). We call λ(t) the driving function of the chordal Loewner equation
(1). Thus, the problem of finding the value range {g(z0) : g ∈ H(T )},
z0 ∈ H, is equivalent to describing the set {g(z0, T )} of attainability of
the equation (1). Without loss of generality we can put z0 = i. The set

D(T ) = {g(i, T ) : g solution (1)}

has been described by Prokhorov and Samsonova in [8] using the Pontrya-
gin maximum principle. They proved the following theorems.

Theorem 1. [8] The domain D(T ), 0 < T 6 1
4
, is bounded by two

curves l1 and l2 connecting the points i and i
√

1− 4T . The curve l1 in
the complex (x, y)-plane is parameterized by the equations

x(T ) =
C2

0(ϕ, T )(4T − 1) + (1− sinϕ)2

2C0(ϕ, T ) cosϕ
, y(T ) =

1− sinϕ

C0(ϕ, T )
, − π

2
< ϕ <

π

2
,

where C0(ϕ, T ) is the unique root of the equation

2 cos2 ϕ log(1− sinϕ) + (1− sinϕ)2 = 2 cos2 ϕ logC + C2(1− 4T ).

The curve l2 is symmetric to l1 with respect to the imaginary axis.

Theorem 2. [8] The domain D(T ), T > 1
4
, is bounded by two curves

l1 = l11∪ l12 and l2, which is symmetric to l1 with respect to the imaginary
axis; l1 and l2 have the common endpoint i. The curve l11 in the complex
(x, y)-plane is parameterized by the equations

x(T ) =
C2

0(ϕ, T )(4T − 1) + (1− sinϕ)2

2C0(ϕ, T ) cosϕ
, y(T ) =

1− sinϕ

C0(ϕ, T )
,
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where ϕ0(T ) < ϕ < π
2
. The curve l12 is parameterized by the equations

x(T ) =
C2

00(ϕ, T )(4T − 1) + (1− sinϕ)2

2C00(ϕ, T ) cosϕ
, y(T ) =

1− sinϕ

C00(ϕ, T )
,

ϕ0(T ) < ϕ < π
2
. Here C0(ϕ, T ) > 0 and C00(ϕ, T ) > 0 are the minimal

and maximal roots of the equation

2 cos2 ϕ log(1− sinϕ) + (1− sinϕ)2 = 2 cos2 ϕ logC + C2(1− 4T ),

respectively, ϕ0(T ) ∈ (−π
2
, π
2
) is the unique solution of the equation

log
1− sinϕ

1 + sinϕ
+

1− sinϕ

1 + sinϕ
+ 1 = − log(4T − 1).

Continuing this research, we consider a problem of describing the value
range

Dc(T ) = {g(i, T ) : g solution (1), |λ(t)| 6 c};

that is, we added the restriction |λ(t)| 6 c on the driving function, which
is piecewise continuous on R. We use the Pontryagin maximum principle
as the main tool of the research. See [6, 7] for reachable set methods
developed for the radial Loewner differential equation.

2. Preliminary Statements. Due to a well-known property of
the Loewner equation (1) (see, for example, [3]) and symmetry of the
restriction |λ(t)| 6 c, the domain Dc(T ) is symmetric with respect to the
imaginary axis. Therefore, we can consider only the right half (x > 0) of
the domain.

Putting z = i in the Loewner differential equation (1) and splitting the
resulted equation into the real and imaginary parts, we obtain the system
of ordinary differential equations

dx

dt
=

2(x− λ)

(x− λ)2 + y2
, x(0) = 0,

dy

dt
= − 2y

(x− λ)2 + y2
, y(0) = 1.

(2)

Following the Pontryagin maximum principle formalism, we introduce an
adjoint vector Ψ(t) = (Ψ1(t),Ψ2(t)) 6= 0 and the Hamilton function

H(x, y,Ψ1,Ψ2, λ) =
2(x− λ)Ψ1 − 2yΨ2

(x− λ)2 + y2
. (3)



Value range of solutions to the chordal Loewner equation 95

The adjoint vector satisfies the system

dΨ1

dt
= −∂H

∂x
=

2

((x−λ)2+y2)2
[((x−λ)2−y2)Ψ1− 2(x−λ)yΨ2],

dΨ2

dt
= −∂H

∂y
=

2

((x−λ)2+y2)2
[(2(x−λ)yΨ1+((x−λ)2−y2)Ψ2].

(4)

The domain Dc(T ) is a set of attainability for the phase system (2) at
t = T . The boundary point A = xA(T ) + iyA(T ) of Dc(T ) is delivered
by the solution (xA(t), yA(t)) of the Hamiltonian system (2)-(4) with the
driving function λA(t) satisfying the Pontryagin maximum principle

max
λ∈[−c, c]

H(xA(t), yA(t),ΨA
1 (t),ΨA

2 (t), λ) =

= H(xA(t), yA(t),ΨA
1 (t),ΨA

2 (t),λA(t))

at continuity points of λA(t). Note that

lim
λ→∞

H(x, y,Ψ1,Ψ2, λ) = lim
λ→−∞

H(x, y,Ψ1,Ψ2, λ) = 0

for any fixed values of x, y,Ψ1,Ψ2. Therefore, the maximum of H is at-
tained at zeros of the derivative of H with respect to λ

∂H(x, y,Ψ1,Ψ2, λ)

∂λ
= 2

((x− λ)2 − y2)Ψ1 − 2(x− λ)yΨ2

(x− λ)2 + y2
.

It is not difficult to show that H has only one local maximum on R for
any fixed values of x, y,Ψ1,Ψ2 at

λ0 = x− yΨ1√
Ψ2

1 + Ψ2
2 −Ψ2

. (5)

Therefore, H attains its maximum on the interval [−c, c] either at λ0 if
λ0 ∈ [−c, c], or at one of the endpoints of the interval, otherwise.

We formulate the following lemma providing differential equations for
the phase trajectory (x(t), y(t)) in the case when λ0 ∈ [−c, c].
Lemma 1. Let λ(t) maximize the Hamilton function (3) on R for t ∈
[t1, t2] ⊂ [0, T ]; that is,

max
λ∈R

H(x(t), y(t),Ψ1(t),Ψ2(t), λ) = H(x(t), y(t),Ψ1(t),Ψ2(t),λ(t)),

where (x(t), y(t)) is a solution of the phase system (2) and (Ψ1(t),Ψ2(t))
is a solution of the adjoint system (4). Then
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(a)
Ψ1y√

Ψ2
1 + Ψ2

2 −Ψ2

≡ const = p, t ∈ [t1, t2],

(b) λ(t) = x(t)− p, t ∈ [t1, t2],

(c) the phase trajectory (x(t), y(t)) satisfies the following differential
equations

dy

dt
= − 2y

p2 + y2
, (6)

dx

dy
= −p

y
. (7)

Proof. Since λ(t) maximizes H on R, it satisfies (5) for t ∈ [t1, t2]. Sub-
stituting (5) into (2)–(4), we obtain

dx

dt
=

Ψ1

y
√

Ψ2
1 + Ψ2

2

, (8)

dy

dt
= −

√
Ψ2

1 + Ψ2
2 −Ψ2

y
√

Ψ2
1 + Ψ2

2

. (9)

dΨ1

dt
= 0,

dΨ2

dt
=

√
Ψ2

1 + Ψ2
2 −Ψ2

y2
. (10)

H(x, y,Ψ1,Ψ2, λ0) =

√
Ψ2

1 + Ψ2
2 −Ψ2

y
.

In view of (10), we have

Ψ1(t) ≡ const = c1, t ∈ [t1, t2].

Due to a well-known property of the Hamilton function, we have

H(x, y,Ψ1,Ψ2, λ) =

√
Ψ2

1 + Ψ2
2 −Ψ2

y
≡ const = c2, t ∈ [t1, t2]. (11)

We put p =
c1
c2
. Thus, we have proved statements (a) and (b). Using (11),

we can rewrite (9) as (6). Dividing (8) by (9), we obtain the differential
equation (7). �

Note that equations of the Hamiltonian system (2)-(4) are invariant
under change of the sign of Ψ1(t), x(t) and λ(t) to the opposite. Thus,
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(a) T=0.245 (b) T=0.3

Figure 1: Value ranges D(T ).

flipping the sign of Ψ1(t) (and, due to statement (a) of Lemma 1, equally
of p) has the effect of reflecting the phase trajectory (x(t), y(t)) in the
imaginary axis. Therefore, we can restrict ourselves to the case of p > 0.
We will see that this choice will lead us to the right half of the boundary
of Dc(T ).

In the case of no restrictions on the driving function λ(t), we have
c = ∞ and the condition λ0 ∈ [−c, c] always holds. This allows us
to deduce from Lemma 1 a description of the boundary of D(T ) in the
Cartesian coordinates (X, Y ).

Theorem 3. The boundary of the domain D(T ), T > 0 is given by the
equation

2X2 = log Y (1− 4T − Y 2). (12)

Proof. Since conditions of Lemma 1 are satisfied on the whole interval
[0, T ], we can integrate equations (6) and (7) over this interval with the
conditions x(0) = 0, y(0) = 1, x(T ) = X, y(T ) = Y . We obtain

2p2 log Y + Y 2 = 1− 4T, X = −p log Y. (13)

Finally, multiplying the first of these equations by log Y and using the
second, we obtain (12). �

It is easy to see that there are two essentially different cases. In the
case of T 6 1

4
, the set D(T ) is a bounded domain with its boundary

crossing the imaginary axis at y =
√

1− 4T , y = 1. This case corresponds
to Theorem 1. If T > 1

4
, the set D(T ) is unbounded and its boundary
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includes the real axis; this case corresponds to Theorem 2. Starting at
this point, we only consider the case of T 6 1

4
.

Note that the boundary point (0,
√

1− 4T ) of D(T ) is delivered by
the driving function λ(t) ≡ 0. Therefore, it also belongs to the boundary
of Dc(T ). It is a reasonable assumption that all points of some arc on
∂D(T ) near (0,

√
1− 4T ) are delivered by driving functions with ranges

within the interval [−c, c], and since this arc belongs to ∂Dc(T ). A precise
statement is given by the following lemma.

Lemma 2. A segment of the boundary ∂Dc(T ) is given by (12), Y ∈
[1− 4T, Y0], Y0 is the unique solution of one of the equations

2c2 log Y + Y 2 = 1− 4T, c2 > T − 1− e−4

4
, (14)

2c2 log Y

(1 + log Y )2
+ Y 2 = 1− 4T, c2 6 T − 1− e−4

4
. (15)

Note that if c2 = T − 1−e−4

4
, both equations (14), (15) have the same

root Y0 = e−2.

Proof. Consider a point on the boundary ∂D(T ). Let λ0(t) denote the
driving function delivering this point. By Lemma 1, we have λ0(t) =
= x(t) − p. Since p > 0, we see from (8) that x(t) and, hence, λ0(t) are
increasing functions.

A boundary point of D(T ) belongs to the boundary of Dc(T ) if it is
delivered by a driving function with the range within [−c, c]. Since λ0(t)
is increasing, this condition is equivalent to inequalities

λ0(0) > −c, λ0(T ) 6 c. (16)

Note that λ0(0) = −p, λ0(T ) = X− p. Equations (13) allow us to express
X and p through Y . Substituting into (16) and squaring the result, we
obtain

1− 4T − y2

2 log y
6 c2,

1− 4T − y2

2 log y
(1 + log y)2 6 c2.

We need to find the greatest value Y0 of Y satisfying both conditions.
Define the following functions of Y for Y ∈ [

√
1− 4T , 1]

f1(Y ) =
1− 4T − Y 2

2 log Y
, f2(Y ) =

1− 4T − Y 2

2 log Y
(1 + log Y )2.
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It is easy to see that f1(Y ) > f2(Y ) for Y ∈ [e−2, 1], in particular, it
is always true if

√
1− 4T > e−2 or, which is the same, T − 1−e−4

4
6 0.

Therefore, in this case Y0 is the solution of f1(Y ) = c2, which is equivalent
to (14); it remains to prove the case

√
1− 4T < e−2.

We have f1(Y ) 6 f2(Y ), and the equality sign holds only at Y = e−2.
Hence, we need to check if f2 attains the value c2 within the interval
[
√

1− 4T , e−2]. The derivative

f ′2(Y ) =
1 + log Y

2(log Y )2

(
−2Y (1 + log Y ) log Y +

log Y − 1

Y
(1− 4T − Y 2)

)
vanishes at Y = e−1 and at roots of the equation

2
log Y + 1

log Y − 1
=

1− 4T

Y 2
− 1.

The left-hand side of the equation is an increasing function of Y on
[
√

1− 4T , e−2] and takes the value −4
3
at Y = e−2, while the right-hand

side is decreasing on [
√

1− 4T , e−2] and takes the value 1−4T
e−4 − 1 > −1

at Y = e−2. Therefore, the derivative f ′2 does not vanish on the interval
[
√

1− 4T , e−2]. Since f ′2(
√

1− 4T ) > 0, f2 increases on [
√

1− 4T , e−2].
Therefore, f2 attains its maximum at Y = e−2. Hence, Y0 is the solution
of f2(Y ) = c2 if the inequality f2(e

−2) > c2 holds. Note that the last
inequality gives c2 > T − 1−e−4

4
to complete the proof. �

If λ(t) ≡ ±c, the phase system (2) can be integrated directly. We need
the following properties of its solutions stated by the remark below.

Remark 1. If trajectory (x(t), y(t)) satisfies

dx

dt
=

2(x− a)

(x− a)2 + y2
,
dy

dt
= − 2y

(x− a)2 + y2
,

where a is a real number, then the following quantities are constant:

(x− a)y, (x− a)2 − y2 − 4t.

Proof. The statement can be proved by direct integration of the system.�

3. The main Theorem. Now we are ready to prove the following
theorem describing the value range Dc(T ) in the case of c2 > T − 1−e−4

4
.

Theorem 4. Let c2 > T − 1−e−4

4
, T 6 1

4
and let curves l1 − l4 be defined

as follows.
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1. The curve l1 is a segment of the boundary ∂D(T ) given by (12),
Y ∈ [1− 4T, Y0], Y0 is the unique solution of (14).

2. The curve l2 is given by solutions (X, Y ), X + iY = z, µ ∈ [0, 1] of
the equation

z2 + 1−2c(2µ−1)(z− i) + 8µc2(µ−1) ln
z + c(2µ− 1)

i+ c(2µ− 1)
= 4T. (17)

3. The curve l3 is given by solutions (X, Y ) of the system
2p2 log

Y p

c
+ Y 2 − p2 = 1− 4T − c2,

X = −c+ p

(
1− log

Y p

c

)
,

(18)

where p ∈ [c, p0] and

p0 =

√
1

2

(√
(4T + c2 − 1)2 + 4c2 + (4T + c2 − 1)

)
. (19)

The curve l4 is symmetric to l3 with respect to the imaginary axis.
If the following equation

− 4pc+
c2

p2
exp

(
−4c

p

)
− p2 = 1− 4T − c2 (20)

has two solutions p1 < p2 in the interval (c, p0), we also define curves
l5 − l10.

4. The curve l5 is given by solutions (X, Y ) of the system (18), p∈ [c, p1].
The curve l6 is symmetric to l5 with respect to the imaginary axis.

5. The curve l7 is given by solutions (X, Y ) of the system
4cp+ (X − c)2 − Y 2 − 4T = c2 − 1,

− p log
(X − c)Y

c
= 2c,

(21)

where p ∈ [p1, p2]. The curve l8 is symmetric to l7 with respect to
the imaginary axis.

6. The curve l9 is given by solutions (X, Y ) of (18), p ∈ [p2, p0]. The
curve l10 is symmetric to l9 with respect to the imaginary axis.
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(a) T=0.245, c=1 (b) T=0.245, c=0.1

Figure 2: The boundaries of the value ranges Dc(T )

The following two cases are possible:

(1) Dc(T ) is bounded by curves l1, l2, l5 − l10, if (20) has two solutions
p1 < p2 in the interval (c, p0).

(2) Dc(T ) is bounded by curves l1−l4, if (20) has less than two solutions
in the interval (c, p0).

Proof. The curve l1 is already given by Lemma 2. It can be seen from
Lemma 1 that, at t = 0, the Hamilton function H is maximized at
λ0 = −p. Thus, if p > c, H attains its maximum on [−c, c] at λ = −c.
Therefore, we have the following driving function:

λ(t) =

{
− c, 0 6 t 6 t1,

x(t)− p, t1 < t 6 T.
(22)

Denote x1 = x(t1), y1 = y(t1). Applying Remark 1 to the interval [0, t1],
we obtain

(x1 + c)y1 = c, (x1 + c)2 − y21 − 4t1 = c2 − 1.

Since λ(t) is continuous, (22) gives x1 = p− c. Thus, y1 =
c

p
and we can

also find t1:

4t1 = p2 − c2

p2
− c2 + 1. (23)

Integration of (6) and (7) over the interval [t1, T ] yields the system (18).
The equation (23) shows that t1 increases as a function of p. Therefore,
we can rewrite the condition t1 ∈ [0, T ] as p ∈ [c, p0], where c and p0 are
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Figure 3: The boundary of the value range Dc(T ), T = 0.247, c = 0.05.

the roots of (23) for t1 = 0 and t1 = T , respectively. Note that if p = c,
equations (18) turn into (13).

We have to satisfy the condition λ(t) ∈ [−c, c]. Since λ(t) is equal to
−c on [0, t1] and increases on [t1, T ], we only have to ensure that λ(T ) 6 c.
According to Lemma 2 for p = c, we have λ(T ) < c. Assume that at some
point p ∈ (c, p0], λ(T ) > c. Then, due to continuity of λ(T ) as a function
of p, there is a point p1 ∈ (c, p0), such that λ(T ) = c. Using (22) and (18),
we can rewrite it as

−p log
Y p

c
= 2c.

With (18) it gives the equation (20) for p1. Thus, if (20) has no roots in
(c, p0), the case (2) takes place. Note, however, the existing of a single root
of (20) in (c, p0) does not guarantee violation of the condition λ(T ) 6 c,
and, thus, the case (2) is still possible.

Now consider the driving function

λ(t) =


− c, 0 6 t 6 t1,

x(t)− p, t1 < t 6 t2,

c, t2 < t 6 T.

(24)

Denote x2 = x(t2), y2 = y(t2). Applying Remark 1 to the phase system
for the interval [t2, T ], we can write

(X − c)Y = (x2 − c)y2, (X −C)2 − Y 2 − 4T = (x2 − c)2 − y22 − 4t2. (25)

The condition λ(t2) = c gives x2 = c+ p. Integrating (6) and (7) over the
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interval [t1, t2], we obtain

2p2 log
y2p

c
+ y22 − p2 = 1− 4t2 − c2, x2 = −c+ p

(
1− log

y2p

c

)
,

that with (25) leads us to (21). These equations describe the boundary
segment governed by the driving functions of the type (24).

From (25) and (21), we can deduce the equation for t2

4t2 = 1− c2 + 4pc+ p2 − (X − c)2Y 2

p2
, (26)

and, therefore, we have

4(t2 − t1) = 4pc+
c2 − (X − c)2Y 2

p2
.

The second equation in (21) implies that c2 > (X − c)2Y 2; therefore, the
inequality t1 < t2 always holds. Since t1 increases and takes the value
t1 = T at p = p0, there is a point p2 ∈ [p1, p0], such that at this point
t2 = T . Substituting t2 = T into (26) and using the second equation in
(21), we again obtain the equation (20) for p2. Thus, we see that existing
of two roots of (20) p1 < p2 in the interval [c, p0] is a necessary condition
for the case (1).

It is not difficult to see that the segment of the boundary corresponding
to p ∈ [p2, p0] is delivered by the driving functions of the type (22) and,
consequently, is described by the system (18).

For the remaining part of the boundary ∂Dc(T ) the Hamilton function
is maximized outside of the interval [−c, c] and, thus, we have |λ(t)| = c.
Therefore, we can use the generalized Loewner equation (see [6, 7])

dg(z, t)

dt
= µ

2

g(z, t)− c
+ (1− µ)

2

g(z, t) + c
,

g(z, 0) = z, µ ∈ [0, 1].

Putting z(t) = g(i, t) and integrating the equation over [0, T ] we obtain
the equation (17) for the curve l2, parameterized by µ ∈ [0, 1]. �
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