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CONNECTION FORMULAS AND REPRESENTATIONS OF
LAGUERRE POLYNOMIALS IN TERMS OF THE ACTION

OF LINEAR DIFFERENTIAL OPERATORS

Abstract. In this paper, we introduce the notion of Oε-classical
orthogonal polynomials, where Oε := I + εD (ε 6= 0). It is shown
that the scaled Laguerre polynomial sequence {a−nL(α)

n (ax)}n>0,
where a = −ε−1, is actually the only Oε-classical sequence. As an
illustration, we deal with some representations of Laguerre poly-
nomials L

(0)
n (x) in terms of the action of linear differential opera-

tors on the Laguerre polynomials L(m)
n (x). The inverse connection

problem of expanding Laguerre polynomials L
(m)
n (x) in terms of

L
(0)
n (x) is also considered. Furthermore, some connection formu-

las between the monomial basis {xn}n>0 and the shifted Laguerre
basis {L(m)

n (x+ 1)}n>0 are deduced.
Key words: Classical polynomials, Laguerre polynomials, lowering
and raising operators, structure relations, higher order differential
operators, connection formulas
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1. Introduction. Let O be a linear operator that acts on the space
P of polynomials in one variable and maps polynomials of degree n to
polynomials of degree n + n0 (n0 is a fixed integer). We call a sequence
{pn}n>0 of orthogonal polynomials O-classical if there exist a sequence
{qn}n>0 of orthogonal polynomials such that Opn = qn+n0 , where n > 0 if
n0 > 0 and n > n0 if n0 < 0. (This is Hahn’s property [1–4], [6–8], [12],
[13], [15], [18], [19], [23]).

It is known that the monic Laguerre polynomial sequence {L(α)
n }n>0,

where α 6= −n, n > 1, is classical and satisfies the relation (see [10], [16])

DL(α)
n = nL

(α+1)
n−1 , n > 1. (1)
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In [2], the first author introduced the notion of Rα-classical orthogonal
polynomials and put in evidence, for α ∈ C\{0,−1,−2, . . .}, the following
relation

RαL
(α)
n (x) = L

(α−1)
n+1 (x), n > 0. (2)

Note that whereas the first expression involves the operator D that lowers
the degree and raises the parameters, the second one involves
Rα := (x − α)I − xD, which raises the degree and lowers the parame-
ters. The two operators together are called shift operators. In [19], the
authors proved that {L(α)

n }n>0 is the only Fα-Appell orthogonal sequence
and satisfies

FαL
(α)
n (x) = cnL

(α)
n−1(x), n > 0, (3)

where Fα := DxD+αD, α ∈ C\{−1,−2, . . .}, is called lowering operator
(it lowers the degree and preserves the parameter) introduced by Dattoli
and Ricci (see [11]). We also see, by the second order differential equation
satisfied by the Laguerre polynomials, that [9]

LL(α)
n (x) = λnL

(α)
n (x), n > 0, (4)

where L := xD2 − (x − α − 1)D, is called Jacobi’s operator. Note that
the classical orthogonal polynomials (Hermite, Laguerre, Bessel, and Ja-
cobi) are essentially the only eigenfunctions of the Bochner’s operator,
i. e., satisfy the same relation (4) (see [9]).

Furthermore, the present contribution is a natural continuation of
a previous works. More precisely, in view of Eqs (1)−(4), it is natu-
ral to study the same problem with respect to the operator which, for
example, raises the parameters and preserves the degree of the polyno-
mial L(α)

n (x), n > 0. The operator is Oε := I + εD (ε 6= 0). The basic
idea has been deduced by starting from the so called second structure
relation [20,21]

L(α)
n (x) = (n+ 1)−1L

(α)′

n+1(x) + L(α)′

n (x), n > 0,

which gives, by using (1), the following relation

OL(α)
n (x) = L(α+1)

n (x), n > 0, (5)

where O := I −D, with I as the identity operator. This means that the
above family of standard orthogonal polynomials is an O-classical poly-
nomial sequence with respect to the operator O, i. e., it is an orthogonal
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polynomial sequence, whose sequence of O is also orthogonal. For a given
ε 6= 0, let us consider Oε : P → P the linear operator defined in the linear
space P of polynomials with complex coefficients

Oε := I + εD (O−1 = O).

The aim of this paper is to put in evidence the relation (5) and characterize
the Oε-classical orthogonal polynomials.

The further contents of this paper is as follows. Section 2 gives some
preliminaries, while the main result is proved in Section 3. In Sections 4
and 5, we give some new properties related to the above operator and the
Laguerre polynomials.

2. Preliminaries. Let P be the linear space of polynomials in one
variable with complex coefficients. Let P ′ be the algebraic linear dual of
P . We write 〈u, p〉 := u(p) (u ∈ P ′, p ∈ P). A linear functional u ∈ P ′ is
said to be regular or quasi-definite [10], [22] if det〈u, xi+j〉i, j=1,...,n 6= 0 for
n > 0. This is equivalent to the existence of a unique sequence of monic
polynomials {Pn}n>0 of degree n such that 〈u, PnPm〉 = rnδn,m, n, m > 0,
with rn 6= 0 (n > 0). The sequence {Pn}n>0 is then called a monic
orthogonal polynomial sequence (MOPS) with respect to u.

Theorem 1. (Favard’s Theorem [10]). Let {Pn}n>0 be a monic poly-
nomial sequence. Then {Pn}n>0 is orthogonal if and only if there ex-
ist two sequences of complex numbers {βn}n>0 and {γn}n>0, such that
γn 6= 0, n > 1 and satisfies the three-term recurrence relation

(TTRR)

{
P0(x) = 1, P1(x) = x− β0,
Pn+2(x) = (x− βn+1)Pn+1(x)− γn+1Pn(x), n > 0.

(6)

When {Pn}n>0 is a MOPS, then {P̃n}n>0, where P̃n(x) = a−nPn(ax +
+ b), (a, b) ∈ C∗ × C, is also a MOPS and satisfies [20], [21]{

P̃0(x) = 1, P̃1(x) = x− β̃0,
P̃n+2(x) = (x− β̃n+1)P̃n+1(x)− γ̃n+1P̃n(x), n > 0,

(7)

where β̃n = a−1(βn − b) and γ̃n+1 = a−2γn+1.
An orthogonal polynomial sequence {Pn}n>0 is called classical, if

{P ′n}n>0 is also orthogonal (Hermite, Laguerre, Bessel, or Jacobi), [10].
This is essentially the Hahn-Sonine characterization (see [12], [24]) of the
classical orthogonal polynomials.
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It is well-known that any classical polynomial sequence {Pn}n>0 can
be characterized taking into account its orthogonality as well as the First
Structure Relation (FSR), or the Second Structure Relation (SSR) [5],
[20], [21]:

(FSR) φ(x)P ′n+1(x) = r(x,n)Pn+1(x) + snPn(x), n > 0, (8)
(SSR) Pn(x) = (n+ 1)−1P ′n+1(x) + anP

′
n(x) + bnP

′
n−1(x), n > 0. (9)

Note that if Pn(x) = L
(α)
n (x), (α 6= −n, n > 1) is the monic Laguerre

polynomial, then we have a MOPS for which formulas (6), (8), and (9)
were given for n > 0 by [16], [20], [22]

(TTRR)


L
(α)
0 (x) = 1, L

(α)
1 (x) = x− α− 1,

L
(α)
n+2(x) =

(
x− (2n+ α + 1)

)
L
(α)
n+1(x)−

−(n+ 1)(n+ α + 1)L
(α)
n (x).

(10)

(FSR) xL
(α)′

n+1(x) = (n+1)L
(α)
n+1(x)+(n+1)(n+α+1)L(α)

n (x), n > 0, (11)

(SSR) L(α)
n = (n+ 1)−1L

(α)′

n+1(x) + L(α)′

n (x)n > 0. (12)

Note that the monic Laguerre polynomial can be expressed by the Ro-
drigues formula [17]

L(α)
n (x) = (−1)nexx−α

dn

dxn
(
e−xxn+α

)
, n > 0.

It also satisfies the following explicit representation [25]:

L(α)
n (x) =

n∑
ν=0

(−1)n−ν
(
n

ν

)
Γ(n+ α + 1)

Γ(ν + α + 1)
xν , n > 0. (13)

Recall the two formulas [25], [26]: for all n > 0, α > −1,

L(α)
n (tx) =

n∑
k=0

(−1)n−k
(
n

k

)
Γ(n+ α + 1)

Γ(k + α + 1)
tk(1− t)n−kL(α)

k (x), (14)

and for all n > 0, α > −1
2
:

L(α)
n (x) =

n!Γ(n+ α + 1)√
π(2n)!Γ(α + 1

2
)

1∫
−1

(1− t2)α−
1
2H2n

(
t
√
x
)
dt, (15)
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where Hn(x) is the Hermite polynomial on degree n.
3. Hahn’s property with respect to the operator Oε.

Recall that the operator Oε is defined by

Oε : P −→ P
f 7−→ f + εf ′, (ε 6= 0).

Our purpose here is to describe all the Oε-classical orthogonal polyno-
mials, i. e., the SMOP {Pn}n>0 such that the monic sequence {Qn}n>0,
where

Qn(x) = Pn(x) + εP ′n(x), n > 0, (16)

is also orthogonal. Suppose that {Pn}n>0 and {Qn}n>0 are SMOP satis-
fying{

P0(x) = 1, P1(x) = x− β0,
Pn+2(x) = (x− βn+1)Pn+1(x)− γn+1Pn(x), γn+1 6= 0, n > 0,

(17)

{
Q0(x) = 1, Q1(x) = x− χ0,

Qn+2(x) = (x− χn+1)Qn+1(x)− θn+1Qn(x), θn+1 6= 0, n > 0.
(18)

We have the following result.

Lemma 1. The sequences {Pn}n>0 and {Qn}n>0 are related as follows:

Pn+1(x) = Qn+1(x)− ε(n+ 1)Qn(x), n > 0, (19)
P ′n+1(x) = (n+ 1)Qn(x), n > 0, (20)

where {βn}n>0, {χn}n>0, {γn}n>0 and {θn}n>0 satisfy

χn = βn − ε, n > 0, (21)
θn+1 = γn+1 + ε2(n+ 1), n > 0. (22)

Proof. By starting (16), with n replaced by n + 2, and using (17) and
(18), we obtain
(x− χn+1)Qn+1(x)− θn+1Qn(x) =

= (x− βn+1)Qn+1(x)− γn+1Qn(x) + εPn+1(x), n > 0.
Equivalently,

(βn+1 − χn+1)Qn+1(x) + (γn+1 − θn+1)Qn(x) = εPn+1(x), n > 0.
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By comparing the degrees in the last equation, we obtain
χn+1 = βn+1 − ε, n > 0 and then

εQn+1(x) + (γn+1 − θn+1)Qn(x) = εPn+1(x), n > 0. (23)

Making n = 1 in (16), we get χ0 = β0 − ε; then (21) is valid. Inserting
(16), with n replaced by n+ 1, in (23) we obtain

ε2P ′n+1(x) = (θn+1 − γn+1)Qn(x), n > 0.

After analysis of the degree, we obtain (22). Hence, (19) and (20) are
valid. �

Based on Lemma 1 and the SSR of Laguerre polynomials, we can state
that the scaled Laguerre polynomial sequence {a−nL(α)

n (ax)}n>0 where
a = −ε−1, is the only Oε-classical orthogonal sequence. More precisely,
for all n > 0,

Pn(x) = (−ε)nL(α)
n (−ε−1x) and Qn(x) = (−ε)nL(α+1)

n (−ε−1x).

Theorem 2. For any nonzero complex number ε and any monic poly-
nomial sequence {Pn}n>0, the following statements are equivalent.

(i) {Pn}n>0 is an Oε-classical orthogonal sequence.
(ii) There exists a ∈ C, a 6= 0 such that Pn(x) = a−nL

(α)
n (ax), n > 0.

Proof. (i)⇒(ii). Assume that {Pn}n>0 is a monic Oε-classical orthogonal
sequence. Then, there exists a monic orthogonal sequence {Qn}n>0 that
satisfies (16) and gives, after inserting in (19),

Pn(x) =
1

n+ 1
P ′n+1(x)− εP ′n(x), n > 0. (24)

Essentially, (24) corresponds to the scaled Laguerre polynomial sequence

{(−ε)nL(α)
n (−ε−1x)}n>0,

(see (12)), i. e., Pn(x) = (−ε)nL(α)
n (−ε−1x), n > 0, (α 6= −n, n > 1),

where, from (10) and (7), we have

βn = −ε(2n+α+ 1), n > 0 and γn+1 = ε2(n+ 1)(n+α+ 1), n > 0.

In the same way, from (21) and (22), we obtain

χn = −ε(2n+ α + 2), n > 0, θn+1 = ε2(n+ 1)(n+ α + 2), n > 0.
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Then, we also conclude that Qn(x) = (−ε)nL(α+1)
n (−ε−1x), n > 0.

(ii)⇒(i). Let a in C, with a 6= 0 and let Pn(x) = a−nL
(α)
n (ax), n > 0.

It is clear that {Pn}n>0 is a MOPS. By using the the (SSR) (12) satisfied
by L(α)

n (x), n > 0 and the relation (1), we have

L(α+1)
n (x) = L(α)

n (x)− L(α)′

n (x), n > 0. (25)

Besides, from (25), where x is replaced by ax, it comes that

L(α+1)
n (ax) = L(α)

n (ax)− a−1
(
L(α)
n (ax)

)′
, n > 0,

or, equivalently, a−nL(α+1)
n (ax) =

(
I− a−1D

)
a−nL

(α)
n (ax), n > 0, i. e.,

OεPn(x) = a−nL(α+1)
n (ax), n > 0,

where ε = −a−1. Hence, (i) holds, since {a−nL(α+1)
n (ax)}n>0 is a MOPS. �

4. Higher-order differential relations. As a consequence of Sec-
tion 3, we have

OεL
(α)
n (−ε−1x) = L(α+1)

n (−ε−1x), n > 0.

If we take ε = −1 and O−1 := O, we have the canonical situation

OL(α)
n (x) = L(α+1)

n (x), n > 0,

which gives, by induction on m ∈ N,

OmL(α)
n (x) = L(α+m)

n (x), n > 0, (O0 = I). (26)

Note that by using (1), the polynomial L(α+m)
n (x) can be written as follows

L(α+m)
n (x) =

1

(n+ 1)(n+ 2) · · · (n+m)
DmL

(α)
n+m(x), n > 0, m > 0,

=
n!

(n+m)!
DmL

(α)
n+m(x), n > 0, m > 0,

and, then, we get the following relation between Om and Dm:

OmL(α)
n (x) =

n!

(n+m)!
DmL

(α)
n+m(x), n > 0, m > 0,
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with the convention O0 = D0 = I.
By (26), with α = 0, and using the fact that Om = (I−D)m and the

binomial formula, we can state the following result.

Lemma 2. The monic Laguerre polynomials L(m)
n (x), m > 0, are repre-

sented in terms of the action of linear differential operators on the Laguerre
polynomials L(0)

n (x), as follows:

L(m)
n (x) =

m∑
ν=0

(−1)ν
(
m

ν

)
DνL(0)

n (x), n > 0.

Having Lemma 2, it is natural to study if the reciprocal is true. Firstly,
we need the following relation, obtained from the explicit expression for
the Laguerre polynomials

xL(1)′

n (x) + L(1)
n (x) = (n+ 1)L(0)

n (x), n > 1. (27)

Theorem 3. The representation of the Laguerre polynomials L(0)
n (x) in

terms of action of linear differential operators on the Laguerre polynomials
L
(m)
n (x), is given by

L(0)
n (x) =

n!

(n+m)!

m∑
ν=0

[(
m

ν

)]2
ν! xm−νDm−νL(m)

n (x), n > 0. (28)

Proof. We prove this by induction on m ∈ N. For m = 0 this is obvious.
Now suppose (28) holds and prove the same form+1 instead ofm. Indeed,
by differentiating both sides of (28) and using (1), with α = 0, we get, for
all n > 1,

n!

(n+m)!

m∑
ν=0

[(
m

ν

)]2
ν!
(
xm−νDm−ν+

+ (m− ν)xm−ν−1Dm−ν−1
)
L
(m+1)
n−1 (x) = L

(1)
n−1(x).

Multiplying both sides of the previous equation by x, applying the
operator D, and using the identity (27), we obtain for all n > 1

(n− 1)!

(n+m)!

{
m∑
ν=0

(m!)2

[(m− ν)!]2ν!
xm+1−νDm+1−ν+
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+
m∑
ν=0

(2m− 2ν + 1)(m!)2

[(m− ν)!]2ν!
xm−νDm−ν+

+
m−1∑
ν=0

(m!)2

[(m− 1− ν)!]2ν!
xm−1−νDm−1−ν

}
L
(m+1)
n−1 (x) = L

(0)
n−1(x).

By replacing ν by ν − 1 (resp. ν − 2) in the second (resp. third) sum, we
obtain for all n > 1

(n− 1)!

(n+m)!

m∑
ν=2

{
(m!)2

[(m− ν)!]2ν!
+

(2m− 2ν + 3)(m!)2

[(m+ 1− ν)!]2(ν − 1)!
+

+
(m!)2

[(m+ 1− ν)!]2(ν − 2)!

}
xm+1−νDm+1−νL

(m+1)
n−1 (x)+

+
(n− 1)!

(n+m)!

(
xm+1Dm+1+(m+1)2xmDm+(m+1)! I

)
L
(m+1)
n−1 (x) = L

(0)
n−1(x).

After some calculations, with n replaced by n+ 1, we finally obtain for all
n > 0

L(0)
n (x) =

n!

(n+m+ 1)!

m+1∑
ν=0

[(
m+ 1

ν

)]2
ν! xm+1−νDm+1−νL(m+1)

n (x).

Hence the desired result is proved. �

4. Integral formulas. Consider the integral operator [14]:

Sc(P )(x) =

+∞∫
0

te−tP
(
t(x− c) + c

)
dt, c ∈ C, P ∈ P . (29)

In particular, for P (x) = (x− c)n, we have

Sc

(
(x− c)n

)
= (n+ 1)!(x− c)n, n > 0. (30)

By (30) and (13), it is easily seen that for every integer m ∈ N \ {0}

S0

(
xm−1L(m)

n (x)
)

= (n+m)!xm−1(x− 1)n, n > 0.

Equivalently,

xn =
1

(n+m)!

+∞∫
0

tme−tL(m)
n

(
t(x+ 1)

)
dt, n > 0. (31)
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Now, as an application of (31), some connection formulas between the
monomial basis {xn}n>0 and the shifted Laguerre basis {L(m)

n (x + 1)}n>0
are deduced.

Theorem 4.

(i) For every integer m > 1, the following formulas hold for all n > 0

xn =
n∑
k=0

(
n

k

)
(−1)n−k

(m+ k)!
L
(m)
k (x+ 1)

+∞∫
0

tm+k(1− t)n−ke−t dt, (32)

xn =
n∑
k=0

n−k∑
i=0

(
n

k

)(
n− k
i

)
(−1)k(m+ k + i)!

(m+ k)!
L
(m)
k (x+ 1). (33)

(ii) For m = 0, we have for all n > 0

xn =
n∑
k=0

(−1)k

k!

(−1)n

n+ 1

+∞∫
0

te−tL
(0)
k

(
t(x+ 1)

)
dt.

Proof. By inserting (14), with α replaced by m and x by x+ 1 , in (31),
we obtain

xn =
n∑
k=0

(
n

k

)
(−1)n−k

(m+ k)!
L
(m)
k (x+ 1)

+∞∫
0

tm+k(1− t)n−ke−t dt, n > 0.

Then (32) follows.
Substitute the binomial formula for (1 − t)n−k, in this last equality, ob-
taining

xn =
n∑
k=0

(
n

k

)
(−1)n−k

(m+ k)!
L
(m)
k (x+ 1)

n−k∑
i=0

(−1)n
(
n− k
i

)
(m+ k + i)! =

=
n∑
k=0

n−k∑
i=0

(
n

k

)(
n− k
i

)
(−1)k(m+ k + i)!

(m+ k)!
L
(m)
k (x+ 1).

Hence we obtain (33).
For (ii), using (30) and (13) with α = m = 0, the operator S0 satisfies
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S0(L
(0)
n (x))(x) = n!

n∑
ν=0

(−1)n−ν
(
n

ν

)
(ν + 1) xν =

= n!

[ n∑
ν=1

(−1)n−ν
n!

(n− ν)!(ν − 1)!
xν +

n∑
ν=0

(−1)n−ν
(
n

ν

)
xν
]

=

= n!

[
nx

n−1∑
ν=0

(−1)n−ν−1
(
n− 1

ν

)
xν + (x− 1)n

]
=

= n!(x− 1)n−1
[
(n+ 1)x− 1

]
, n > 1. (34)

Using (34), with x replaced by x + 1, we obtain the following integral
relation

(n+ 1)xn + nxn−1 =
1

n!

+∞∫
0

te−tL(0)
n

(
t(x+ 1)

)
dt, n > 1.

This gives, by summation, the following result for all n > 1

n∑
k=1

[
(k + 1)(−x)k − k(−x)k−1

]
=

+∞∫
0

te−t
n∑
k=1

(−1)k

k!
L
(0)
k

(
t(x+ 1)

)
dt.

Taking a telescopic sum, we get

(n+ 1)(−x)n − 1 =

+∞∫
0

te−t
n∑
k=1

(−1)k

k!
L
(0)
k

(
t(x+ 1)

)
dt, n > 1.

Thus, the basic {xn}n>0 satisfies

xn =
(−1)n

n+ 1

+∞∫
0

te−t
n∑
k=0

(−1)k

k!
L
(0)
k

(
t(x+ 1)

)
dt, n > 0.

Hence, the desired result is proved. �

Remark 1. By substituting (15) into (31), with α replaced by m and x
by x+ 1, we obtain for all n > 0

xn =
n!m!4m

(2n)!(2m)!π

1∫
−1

+∞∫
0

(1− y2)m−
1
2 tme−tH2n

(
y
√
t(x+ 1)

)
dt dy,
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which gives, for n = 0,

1 =
m!4m

(2m)!π

1∫
−1

(1− y2)m−
1
2 dy

+∞∫
0

tme−t dt =

=
(m!)24m

(2m)!π

1∫
−1

(1− y2)m−
1
2 dy. (35)

Then, if we pose y = sin θ in (35), we recover the Wallis integral

π
2∫

0

sin2m θ dθ =
(2m)!π

22m+1(m!)2
, m > 0.
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ichungen genügen. Math. Zeit., 1962, vol. 78, pp. 439 – 445.

[19] Loureiro A. F., Maroni P. Quadratic decomposition of Appell sequences.
Expo. Math., 2008, vol. 26, pp. 177 – 186.
DOI: https://doi.org/10.1016/j.exmath.2007.10.002

https://doi.org/10.1080/10652460310001600672
https://doi.org/10.1016/j.amc.2006.08.108
https://doi.org/10.1023/A:1014597619994
https://doi.org/10.1016/j.exmath.2007.10.002


Laguerre polynomials 37

[20] Maroni P. Fonctions Eulériennes, Polynômes Orthogonaux Classiques.
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