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HYPERHOLOMORPHIC FUNCTIONS WITH VALUES
IN A MODIFIED FORM OF QUATERNIONS

Abstract. We give the definition of hyperholomorphic pseudo-
complex functions, i.e., functions with values in a special form
of quaternions, and propose the necessary variables, functions, and
Dirac operators to describe the Cauchy integral theorem and the
generalized Cauchy-Riemman system. We investigate the proper-
ties and corollaries corresponding to the Cauchy integral theorem
for the pseudo-complex number system discussed in this paper.
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1. Introduction. The non-commutative four-dimensional space R*
of hypercomplex numbers, which are called quaternions with four real
numbers, was studied by Hamilton [5]. Since quaternions involve non-
commutative multiplication, quaternions have different algebraic proper-
ties compared to the complex number system. In 1935, Fueter [2] defined
regular quaternionic functions in R*. Later Deavours [1] and Subdery [12]
developed quaternionic analysis, based on complex analysis.

Many formulas in R* are simpler and more convenient to apply in
physics when written in terms of C? . In [11], N6no represented quater-
nions in the complex-number form. In [6], Kajiwara et al. gave an integra-
bility condition for any hyperholomorphic function f; 4+ fsj composed of
harmonic complex-valued functions f; and fy in a pseudoconvex domain
of C*. In [7], [8], Kim et al. presented a ternary representation of real
quaternions and also introduced the pseudo-complex number form with
the modified basis 7. The regularity of a function defined in R? relative to
the commonly known properties of regular functions was defined.

(©) Petrozavodsk State University, 2020

[G) ev-rc |


http://creativecommons.org/licenses/by/4.0/

84 Ji Eun Kim

Hamilton tried to generalize complex numbers to the form a + b+ jc,
where a,b,c € R and i? = j2 = —1. However, since the set {a + ib +
+ je | a,b,c € R} is not closed under multiplication (which was proved
by Kenneth in 1966), this set cannot be generalized as an algebra. Later,
Hamilton found a closed multiplication for complex numbers, denoted by
q = ix+jy+kz, where i2 = j? = k? = ijk = —1. Some interesting investi-
gations were carried out on the set {a+1ib+jc | a,b,c € R}. Leutwiler [9]
studied the interplay between the solutions f = u + v + jw of the gener-
alized Cauchy-Riemann system and functions of the reduced quaternionic
variable z = x + 1y + jt. Leutwiler showed that every solution f of that
system defined in some neighborhood of the origin admits a series expan-
sion in terms of the elementary polynomial solutions. In [3], [4], Giirlebeck
and Sproflig studied quaternion-valued functions that are defined in open
subsets of R" (n = 3,4) and are solutions of generalized Cauchy-Riemann
or Dirac systems. Their research is related to boundary-value problems
and partial differential equations.

This paper recalls the properties resulting from the applications of
the defined differential operators and the regularity of modified ternary
functions. Using the properties of a modified ternary function, we present
integration over the boundary of a domain in the modified ternary num-
bers. In addition, the present paper presents and verifies the Cauchy
integral theorem for modified ternary functions. We also expose corollar-
ies to the Cauchy integral theorem. The paper introduces the definitions
of hyperholomorphic functions on the real ternary numbers and represents
pseudo-complex numbers as a special form of quaternions, defined as a+b.
In section 2, we provide the necessary variables, functions, and operators
used in the paper. In section 3, we refer to Naser [10] and Noéno [11] in
order to propose Dirac operators and Cauchy integral theorems. And then
we introduce the properties and corollaries corresponding to the Cauchy
integral theorem for the pseudo-complex number system.

2. Preliminaries. Let T be the set of all ternary numbers:

T ={z|z = xo + z161 + 2262, T, 21,29 € R},

where €2 = €2 = —1 and eje; = /—1. An element z of T can be written as

2 =X+ T1€1 + Totg =

+a61—|—b62 Va2 + b2 N va? + b2
=T xTrie —X9€e =
T Va2 + 02 \aeg +bey .

ae; + bey
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ae; +bey (axy +brs  bry — axs
ZTo + + €iea |,
Va2 + b2 \ Va2 +1> Va2 +b?

where a and b are real non-zero numbers. Let ¢ be the modified basis in T,

denoted by

~ aey + bey 5
1 = ————— and 12:—1.

Va? + b

Then, an element z of T can also be written as
z = Tg + 120;
such a number is called a pseudo-complex number; here

axy, + bxs i bx1 — axs
e1€és.
VZ+ Vet

The set of pseudo-complex numbers, denoted by P, is isomorphic to R x C;
that is, P 2 R x C. The addition and multiplication for pseudo-complex
numbers are given by

zZ0 —

2w = (zo +1i20) % (yo + 1w) =
= (w0 £ yo) + (20 & wo)

and
2w = (T + zzo)(yo + %wo) =

= (zoyo — Zowo) + %(Jfowo + 20Y0),

respectively. From the multiplication over P, we can obtain zyi = Zo.
Hence, the multiplication over P is closed and associative but not commu-
tative.

Let z be the conjugate of z, denoted by z = zy — iz with 2z = zz.
Also, the norm | - | is written by

|z| := V2Z = \/ 23 4+ Zo20 = \/ 23 + 23 + 23.

The inverse element z~! of IP is denoted by

1o 2
z EE
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Now, consider the definition of hyperholomorphy for pseudo-complex func-
tions. First, the differential operators are given by

D_E)_%@_(?_e@_e@
N al’o 820 N 8x0 1(9271 28372
and
- ;2 _ 9 .7,
n 8x0 820 N 81’0 16.731 28(L’2’
where
i_l 0 ( a B b ee)+
0z 20x1 \ Va2 + b2 \/@2—1—6212
+ 0 < b + a ee)—
0ms \Va2+ 02 a2+
_1( a 0 N b (9)_
2 \Va2+020x1 a2+ b2 0xs
B b 0 B a 0 oo
V@ TR on a5 om)
and

3} 10 ( LI b >+
= = e1e
830 2 le \/a2 + b2 \/&2 + b2 122

n 0 ( b B a ee)
0o \ V2102 Ve +2 )

1 a 0 b 0
= + +
2 (x/a2+b23$1 \/a2+b25$2)
b 0 a 0
+ - €1€3.
Va2 +020x1 a2+ b2 0xs

Then, the Laplacian operator is given by

S — 0 . 0 0 ~ 0
Aw=DD=DD= (axo _Zazo) (axg +Zazo> N

0? 0? 0?0 7
"~ 022 * 02007, 02 - ox? - ox3
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3. Properties of hyperholomorphic functions. Let (2 be a do-
main in R?. Consider a function f defined on Q and with values in Pi such
that f: ) — [P is defined by

f = o+ urer +ugey = ug +ify.
That is, f satisfies
2= (20,1, 22) € Q= f(2) = up(wo, 21, 22) + 1.fo(0, 21, T2) € P,
where u, (r =0,1,2) are real-valued functions and

auy + bus . bu, — ausy
ere
Vet+R Vet

is a complex-valued function. The function f is called a pseudo-complex
function. Let the differential operators defined in Section 2 be applied to
a function f: Q) — P. Then we have the following equalities:

. 8 A 8 ~ . 8u0 8f0 A 8f0 8u0
Df N (833'0 Z@EO) (UO +Zf0) N <8$0 + 820) e (31:0 830

and

v 0 A 0 A . 8u0 o 8f0 A 8f0 8u0
Df = ((9_:E0+Z(?_20) (uo +1fo) = (a_xg 0_2’0) T (8_1;0—'_830) :

fo=

Since the set P has non-commutative multiplication, we also apply oper-
ators to the function f from the right. We have

Ctwgrify (20 Z (Dm0 ORY s (0f  Ou
JD = (w0 +ifo) (axo Zazo> - (axo N azo> T <8x0 azo>

and

B i (23 D) (D OB i (0h,
fD = (ug +ify) (8:::0 +Zazo) = (83:0 az(}) + 1 (8:1;0 + azo)'

Hence, the equality D f = 0 implies that f satisfies the following equations:

Ou _0fo 4 Of _ Ow (1)
8560 - 820 8x0 n 850,
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called the (left-)pseudo-complex Cauchy-Riemann equations. Similarly, if
f satisfies fD = 0 then we obain the equations:

Ouy _ Ofn

0 0
— =—_—— and ﬁz—@, (2)
ory 0% 0z 0%
called the (right-)pseudo-complex Cauchy-Riemann equations. Basing on
the definition of the Laplacian, we also obtain

— 0? 0? A
Af = (DD)f = <8_£L‘(2) + 82083(])(”0 + Zfo) =

((‘9%0 9%y )+%<82f0 02 f, >

852 | 32007 022 | 92007

Since multiplication over PP is associative,
(DD)f = D(Df)

Therefore,

— B 0 A 0 Oug dfo ~ ([ O0fo Oug -
bbf) = (a——a—>{(a—‘a—)+(a—+a—)}‘

2 2 2 2
:8u0 0" fo +%<af0 é7U0>_

052 Omedz |\ 022 | 0r0d 7,

O 9, o2fy o
_Z<azoglo - azoaozo> + (82030:150 + azogozo> =
_ <32U0 *ug > +;<32fo 82fo )

82 | 92007 922 | 97007

Definition 1. Let Q be an open set in R3. A function f : Q — P,

[(2) = uo(wo, x1,72) + 2fo(%’o,ﬂﬂl, T3),
is said to be left-hyperholomorphic on 2 if f satisfies the following two
conditions:

1) wug is a real-analytic function and fy is a holomorphic function,
2) f satisfies the equation Df = 0 on ).

Involving the non-commutativity of multiplication, comparing (1) and (2),
we also give the following
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Definition 2. Let Q be an open set in R3. A function f : Q — P,

f(2) = uo(xo, T1, 72) + i fo(o, T1, 1)
is said to be right hyperholomorphic on () if f satisfies the following two
conditions:
1) wug is a real-analytic function and fy is a holomorphic function.
2) f satisfies the equation fD = 0 on (2,

Since a right hyperholomorphic function is dealt with in a similar manner
as a left hyperholomorphic function, we only consider left hyperholomor-
phic functions and simply call them hyperholomorphic.

Proposition 1. Let Q be an open set in R3 and f be a hyperholomorphic
function on ). Then

of _ _;0f

ZL'O 820

D =
f=p=ot
Proof. Since f is a hyperholomorphic function on €, (1) yields

8u0 8f0 A 8f0 8u0 8u0 A 8f0 0
D = —_— —_— —_ pu— pu—
f (8:1:0 * 820> e (8950 820) al'o * Zal’o 8:1:0

f.

Moreover, by (1), for Df we also have
pp=2f ;0u0 _ 50f ;0u Z((")’A 8 >_A8

— =

820

820 820 - 820 820 0 OZfO + 8_0100

OJ

Let us now consider the properties of hyperholomorphic functions in
pseudo-complex numbers.

Proposition 2. Let ) be an open set in R3 and f and g be hyperholo-
morphic functions on §2. Then

1) af is hyperholomorphic on §Q if « is any real constant,

2) fa is hyperholomorphic on ) if « is any ternary constant,

3) f < g is hyperholomorphic on ).
Proof. The condition that f and g are both hyperholomorphic functions

means that they satisfy (1). For proving items 1) — 3), it suffices to satisfy
the second condition of Definition 1.
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1) When « is any real constant, it is obvious that D(af) = 0.

2) Let a be a pseudo-complex constant, « = ag + iy, where aq is real

and
ciaq + csas CoG — C10a9

— +
Ve + Ve +d

with ¢, and a, (r = 1,2) being real numbers. By (1), we infer

() €162

D(fa) = (ai " ai_) {(uotto — Tooo) + i(uotio + foao)} =

8u0 8% 8u0 8 f() ) n

Qo — 5 Qo

a (8270 @ 81’0 @0~ 820 620

A aUO afO 8UO a% _
+Z(8x0a0+8x0a0+8ioao 820a0) = 0.

3) Since f and g are hyperholomorphic functions on €2, we have

0

D(f+g)= (81% + %8_50> {(uo £ vo) +1(fo £ g0)} =

Qug |, vy Ofy _ Jgo
— (o P  YJo Y50
(8:150 uo 0z | 0m)
+%(a“°iavo+af° iago):o.

0 50 0 30 (91:0 o 8;1:0

O

Example. Let Q be an open set in R? and f and ¢ be hyperholomorphic
functions on §2. Then fg is not always hyperholomorphic on 2. Since f
and g are hyperholomorphic functions on €2, we obtain

— 0 ~ 0 _ .

D(fg) = (8_:1:0 + 28_20) {(uovo — fogo) + i(uogo + fovo)} =
_(Quwo _9fo)\ L, (9% 99 _
N 8%0 820 0 0 8370 820

ofy  Oug — g0 g
<8$0 + 87;()) g0 (f() (9x0 + fO 820) +

[ (Ouy  Ofo dgo ~ Ouvg
“{(axo 0§o)gO+u0(8xo+8§0>}+
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A 0f0 8U0 aUO _690 .
+Z{(al’0+a§0) (f08 Zo 0820)}_

. —+ 090 vy A 390 .
= foa—I0 fo foa 7o Zfo =
0w . ago _ dg
—foazo foaz0 —Hfoa fo Zo foaz0 820
If foa— — fo gz = 0 then the function fg is hyperholomorphic on 2. For
20 0

example, if f is a real Valued functlon then fg is hyperholomorphic on 2.

However, when fo 7£ fo f g is not hyperholomorphic on 2.

Put
w = dZO N d?o - Zdl’() A dZO.

Theorem 1. Let €2 be a domaiﬁ in R? and U be any domain in ) with
smooth boundary bU such that U C Q). If f is a hyperholomorphic on )

then
/wf =0.

bU
Proof. We have

(Uf :(dZO AN d?o — %dﬂ?o VAN dZo)(U(] + %fo) =
:(UodZ() N dzo + fodeo VAN dzo> + :L(fodzo AN dZO - U,()dl'o A dZQ)

Let 0 and 0 be the following operators:

0= %aixodxo + %dzo and 0= lai%dxo + %dzo
Then
dwf) = (0+0)(wf) = (idxo + 0 —dzy + id,zO) (wf) =
0z 0% 0
— <%_%) da;o/\dzoAdzo+%(%+%> drg Ndzg NdZy =0
Ory 0z Org 0%

in U. It now suffices to apply the Stokes theorem. []

Theorem 2. Let Q be an open set in R®. If f is hyperholomorphic on
Q) then ug and fy are harmonic functions on ). Moreover, f is harmonic

on ().
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Proof. It suffices to show that Aug =0 and Afy = 0. Indeed, we have
Puy | O 0O 0 0h
8x3 820820 N 8950 8,20 820 8m0 o

— 0? 0? g 0 o 0
Afoz(DD)foz f0+ fo . Uo Uo

AUO = (Db)uO =

81’3 8z08§0 B _8x0 820 + 320 81’0 =0

By these equalities and (1), we can obtain the equality Af = 0 as
follows:

— 82UO 82f0 32f0 82U0
Af=(DD)f = —
f=(bD)] <8$(2) 8x08z0+8208x0+6z08§0)
A [ 02 0? 0? 0?
ci(Sly Tw O | TN )
oxi  0x00Zyp 0%Zo0x9 07Z02

. 0 8UO 8f0 0 (9fo au()
N 8:60 (&co 820> + 820 <8a:0 + 820) +

439 (8f°+au°>+ﬁ 0 ( aUOJF%)ZO.

8x0 (9900 870 Z(‘?EO B 81’0 820
Thus, f is a harmonic function on 2. [J

Consider the following example related to the statement presented in
Theorem 2.
Example. Let uy be a real-valued harmonic function such that
Zo
ug(2) = —
o= L
in a domain D C P. Then the hyper-conjugate harmonic function fy of

ug can be found in D as
<0

fo=—12.

|2*
Moreover, ug + 1 fo is hyperholomorphic in D.
The following theorem is the Cauchy integral formula for a hyperholomor-
phic function in P.

Theorem 3. Let (! be a bounded domain in P and f = ug + ifo be
hyperholomorphic on ). Then, for every z = x¢ + 129 € §2, f can be
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expressed as

10 =5 [ 2wt (€)= 3 [~ Dhauer(o),

272 ¢ — z|4 272 IC

where ¢ = yo + ¢y and w; = d¢y A dCy — idyo A dC.

Proof. In order to conveniently find the formula of Theorem 3, we put
(¢, 2) = (C —Z) and (¢, 2) = |¢ — z|*. Let R be the distance between
b and z. Let B = B(z,p) be the open ball of radius p with center
z € §, where 0 < p < R. Suppose §(z,p) = Q — B. Since ﬁ
hyperholomorphic, by the Stokes theorem, we infer

g | d{—%w%

Q(z,p)

/ wC,

—;’Ziiziiwcﬂo —/ e IO

is

Moreover, we obtain

/ ¢@ wef(¢)

}ch(C) + / {—:ZEE?) } dw f(C) =

= {/f(odxo/\dzo/\dfo/WCa Z)dWCf(O}'

B B

Since f is hyperholomorphic in ©, we have

hm—/f QO dxg Adzg AdZy = —2m2f(2),

p—0 p

hm—/@g e f(C) = 0.

p—0
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Hence,
HG2)

vc)" / §(¢ 0 /O F2m i)

Thus, the function f(z) can be expressed as
1 ¢(¢, 2)
27r2 R0~ g [ S0
bQ

O

Corollary 1. Let Q be a bounded domain in T and f = wug + ify be
hyperholomorphic in a bounded domain §2 C T. Then, for every z € €,
the function f can be expressed as

27r2/|( i €=

_ L (yo — o) —i(¢o — 20)
22 J (o = zol® + 1o = 20/*)?

we f(€)-

Proof. Since f is a hyperholomorphic function on €2, we have

dwe f(C) =

and the corollary follows by Theorem 3. [
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