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FRAMES

Abstract. G-fusion frames, which are obtained from the combi-
nation of g-frames and fusion frames, were recently introduced for
Hilbert spaces. In this paper, we present a new identity for g-
frames, which was given by Najati for a special case. Also, by
using the idea of this identity and the dual frames, some equalities
and inequalities are presented for g-fusion frames.
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1. Introduction. Recent developments in the frame theory and
their applications are the result of some mathematicians’ efforts in this
topic (see [10], [13], [12], [3], [6], [8]). By more than half a century, this
theory has got interesting applications in different branches of science,
such as the filter bank theory, signal and image processing, wireless com-
munications, atomic systems, and the Kadison-Singer problem. In 2005,
Balan, Casazza, and others found some useful identities for frames by
studying properties of the Parseval frames [2]. Simil ar results for fusion
frames, g-frames, and 𝐾-frames are presented in [18], [21], [1]. In [22], a
special kind of frames called g-fusion frames is introduced; they are com-
binations of g-frames and fusion frames. We present some identities for
these frames.

2. Preliminaries. Throughout this paper, 𝐻 and 𝐾 are separable
Hilbert spaces, 𝜋𝑉 is the orthogonal projection from 𝐻 onto a closed
subspace 𝑉 ⊂ 𝐻, and ℬ(𝐻,𝐾) is the collection of all the bounded linear
operators of 𝐻 into 𝐾. If 𝐾 = 𝐻, then ℬ(𝐻,𝐻) will be denoted by ℬ(𝐻).
Also, {𝐻𝑗}𝑗∈J is a sequence of Hilbert spaces and Λ𝑗 ∈ ℬ(𝐻,𝐻𝑗) for each

© Petrozavodsk State University, 2020

http://creativecommons.org/licenses/by/4.0/


Some identities for g-fusion frames 153

𝑗 ∈ J, where J is a subset of Z. The following lemmas from the operator
theory will be needed.

Lemma 1. [13] Let 𝑉 ⊆ 𝐻 be a closed subspace, and 𝑇 be a linear
bounded operator on 𝐻. Then

𝜋𝑉 𝑇
* = 𝜋𝑉 𝑇

*𝜋𝑇𝑉 .

Lemma 2. [21] Let 𝑢 ∈ ℬ(𝐻) be adjoint and 𝑣 := 𝑎𝑢2 + 𝑏𝑢 + 𝑐 where
𝑎, 𝑏, 𝑐 ∈ R.

(I) If 𝑎 > 0, then

inf
‖𝑓‖=1

⟨𝑣𝑓, 𝑓⟩ ≥ 4𝑎𝑐− 𝑏2

4𝑎
.

(II) If 𝑎 < 0, then

sup
‖𝑓‖=1

⟨𝑣𝑓, 𝑓⟩ ≤ 4𝑎𝑐− 𝑏2

4𝑎
.

Lemma 3. [2] If 𝑢, 𝑣 are operators on 𝐻 satisfying 𝑢 + 𝑣 = 𝑖𝑑𝐻 , then
𝑢− 𝑣 = 𝑢2 − 𝑣2.

We define the space H2 := (
∑︀

𝑗∈J ⊕𝐻𝑗)ℓ2 by

H2 = {{𝑓𝑗}𝑗∈J : 𝑓𝑗 ∈ 𝐻𝑗,
∑︁
𝑗∈J

‖𝑓𝑗‖2< ∞},

with the inner product defined by

⟨{𝑓𝑗}, {𝑔𝑗}⟩ =
∑︁
𝑗∈J

⟨𝑓𝑗, 𝑔𝑗⟩.

It is clear that H2 is a Hilbert space with pointwise operations.

Definition 1. [23] We call the sequence {Λ𝑗}𝑗∈J a g-frame for 𝐻 with
respect to {𝐻𝑗}𝑗∈J if there exist 0 < 𝐴 ≤ 𝐵 < ∞, such that for each
𝑓 ∈ 𝐻

𝐴‖𝑓‖2≤
∑︁
𝑗∈J

‖Λ𝑗𝑓‖2≤ 𝐵‖𝑓‖2. (1)

If 𝐴 = 𝐵 = 1, we call {Λ𝑗}𝑗∈J a Parseval g-frame. The synthesis and
analysis operators in g-frames are defined by

𝑇 : H2 −→ 𝐻 , 𝑇 * : 𝐻 −→ H2
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𝑇 ({𝑓𝑗}𝑗∈J) =
∑︁
𝑗∈J

Λ*
𝑗𝑓𝑗 , 𝑇 *(𝑓) = {Λ𝑗𝑓}𝑗∈J.

Therefore, the g-frame operator is defined by

𝑆𝑓 = 𝑇𝑇 *𝑓 =
∑︁
𝑗∈J

Λ*
𝑗Λ𝑗𝑓.

The operator 𝑆 is bounded, positive, and invertible. If Λ̃𝑗 := Λ𝑗𝑆
−1, then

{Λ̃𝑗}𝑗∈J is called a (canonical) dual g-frame of {Λ𝑗}𝑗∈J, and we can write

𝑓 =
∑︁
𝑗∈J

Λ̃*
𝑗Λ𝑗𝑓 =

∑︁
𝑗∈J

Λ*
𝑗 Λ̃𝑗𝑓. (2)

If {Λ𝑗}𝑗∈J is a g-frame for 𝐻 with bounds 𝐴 and 𝐵, respectively, then
{Λ̃𝑗}𝑗∈J is also a g-frame for 𝐻 with bounds 𝐵−1 and 𝐴−1, respectively.

Definition 2. [22] Let 𝑊 = {𝑊𝑗}𝑗∈J be a family of closed subspaces of
𝐻, {𝑣𝑗}𝑗∈J be a family of weights, i. e., 𝑣𝑗 > 0. We say Λ := (𝑊𝑗,Λ𝑗, 𝑣𝑗) is
a g-fusion frame for 𝐻 if there exist 0 < 𝐴 ≤ 𝐵 < ∞, such that for each
𝑓 ∈ 𝐻

𝐴‖𝑓‖2≤
∑︁
𝑗∈J

𝑣2𝑗‖Λ𝑗𝜋𝑊𝑗
𝑓‖2≤ 𝐵‖𝑓‖2. (3)

It is easy to see that these frames are extensions of g-frames. We call
Λ a Parseval g-fusion frame if 𝐴 = 𝐵 = 1. When the right-hand part of
(3) holds, Λ is called a g-fusion Bessel sequence for 𝐻 with the bound 𝐵.
Throughout this paper, Λ is a triple (𝑊𝑗,Λ𝑗, 𝑣𝑗) with 𝑗 ∈ J.

The synthesis and analysis operators in the g-fusion frames are defined
by (for more details, we refer [22])

𝑇Λ : H2 −→ 𝐻, 𝑇 *
Λ : 𝐻 −→ H2

𝑇Λ({𝑓𝑗}𝑗∈J) =
∑︁
𝑗∈J

𝑣𝑗𝜋𝑊𝑗
Λ*

𝑗𝑓𝑗, 𝑇 *
Λ(𝑓) = {𝑣𝑗Λ𝑗𝜋𝑊𝑗

𝑓}𝑗∈J.

Thus, the g-fusion frame operator is given by

𝑆Λ𝑓 = 𝑇Λ𝑇
*
Λ𝑓 =

∑︁
𝑗∈J

𝑣2𝑗𝜋𝑊𝑗
Λ*

𝑗Λ𝑗𝜋𝑊𝑗
𝑓.

Therefore,
𝐴 𝑖𝑑𝐻 ≤ 𝑆Λ ≤ 𝐵 𝑖𝑑𝐻 .
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This means that 𝑆Λ is a bounded, positive, and invertible operator (with
an adjoint inverse), and we have

𝐵−1𝑖𝑑𝐻 ≤ 𝑆−1
Λ ≤ 𝐴−1𝑖𝑑𝐻 .

So, we have the following reconstruction formula for any 𝑓 ∈ 𝐻:

𝑓 =
∑︁
𝑗∈J

𝑣2𝑗𝜋𝑊𝑗
Λ*

𝑗Λ𝑗𝜋𝑊𝑗
𝑆−1
Λ 𝑓 =

∑︁
𝑗∈J

𝑣2𝑗𝑆
−1
Λ 𝜋𝑊𝑗

Λ*
𝑗Λ𝑗𝜋𝑊𝑗

𝑓. (4)

Let Λ̃ := (𝑆−1
Λ 𝑊𝑗,Λ𝑗𝜋𝑊𝑗

𝑆−1
Λ , 𝑣𝑗). Then Λ̃ is called the (canonical) dual

g-fusion frame of Λ. Hence, for each 𝑓 ∈ 𝐻 we get

𝑓 =
∑︁
𝑗∈J

𝑣2𝑗𝜋𝑊𝑗
Λ*

𝑗 Λ̃𝑗𝜋𝑊𝑗
𝑓 =

∑︁
𝑗∈J

𝑣2𝑗𝜋𝑊𝑗
Λ̃*

𝑗Λ𝑗𝜋𝑊𝑗
𝑓, (5)

where �̃�𝑗 := 𝑆−1
Λ 𝑊𝑗 , Λ̃𝑗 := Λ𝑗𝜋𝑊𝑗

𝑆−1
Λ . Thus, we obtain

⟨𝑆−1
Λ 𝑓, 𝑓⟩ =

∑︁
𝑗∈J

𝑣2𝑗‖Λ̃𝑗𝜋�̃�𝑗
𝑓‖2. (6)

3. The Main Results. Let {Λ𝑗}𝑗∈J be a g-frame for 𝐻 with respect to
{𝐻𝑗}𝑗∈J with bounds 𝐴,𝐵 and {Λ̃𝑗}𝑗∈J be a (canonical) dual g-frame of
{Λ𝑗}𝑗∈J. Suppose that I ⊆ J and let

𝑆I : 𝐻 → 𝐻

𝑆I𝑓 :=
∑︁
𝑗∈I

Λ*
𝑗 Λ̃𝑗𝑓.

This is a general case of the operator 𝑆𝐽 presented in [21]. We have

‖𝑆I𝑓‖2=
(︁

sup
‖ℎ‖=1

|⟨𝑆I𝑓, ℎ⟩|
)︁2

= sup
‖ℎ‖=1

(︁∑︁
𝑗

|⟨Λ̃𝑗𝑓,Λ𝑗ℎ⟩|
)︁2

≤

≤
∑︁
𝑗

‖Λ̃𝑗𝑓‖2× sup
‖ℎ‖=1

∑︁
𝑗

‖Λ𝑗ℎ‖2≤ 𝐵𝐴−1‖𝑓‖2.

Thus, 𝑆I ∈ ℬ(𝐻) and is positive. From (2) we obtain that 𝑆I +𝑆I𝑐 = 𝑖𝑑𝐻 .

Theorem 1. For 𝑓 ∈ 𝐻, we have∑︁
𝑗∈I

⟨Λ̃𝑗𝑓,Λ𝑗𝑓⟩ − ‖𝑆I𝑓‖2=
∑︁
𝑗∈I𝑐

⟨Λ̃𝑗𝑓,Λ𝑗𝑓⟩ − ‖𝑆I𝑐𝑓‖2
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where I𝑐 is the complement of I.

Proof. For each 𝑓 ∈ 𝐻, we have∑︁
𝑗∈I

⟨Λ̃𝑗𝑓,Λ𝑗𝑓⟩ −
⃦⃦⃦∑︁

𝑗∈I

Λ*
𝑗 Λ̃𝑗𝑓

⃦⃦⃦2

= ⟨𝑆I𝑓, 𝑓⟩ − ‖𝑆I𝑓‖2=

= ⟨𝑆I𝑓, 𝑓⟩ − ⟨𝑆*
I 𝑆I𝑓, 𝑓⟩ = ⟨(𝑖𝑑𝐻 − 𝑆I)

*𝑆I𝑓, 𝑓⟩ = ⟨𝑆*
I𝑐(𝑖𝑑𝐻 − 𝑆I𝑐)𝑓, 𝑓⟩ =

= ⟨𝑆*
I𝑐𝑓, 𝑓⟩ − ⟨𝑆*

I𝑐𝑆I𝑐𝑓, 𝑓⟩ = ⟨𝑓, 𝑆I𝑐𝑓⟩ − ⟨𝑆I𝑐𝑓, 𝑆I𝑐𝑓⟩ =

=
∑︁
𝑗∈I𝑐

⟨Λ𝑗𝑓, Λ̃𝑗𝑓⟩ − ‖
∑︁
𝑗∈I𝑐

Λ*
𝑗 Λ̃𝑗𝑓‖2=

∑︁
𝑗∈I𝑐

⟨Λ̃𝑗𝑓,Λ𝑗𝑓⟩ − ‖
∑︁
𝑗∈I𝑐

Λ*
𝑗 Λ̃𝑗𝑓‖2

and the proof is complete. �

Now, if {Λ𝑗}𝑗∈J is a Parseval g-frame, then Λ̃𝑗 = Λ𝑗, and we obtain
the following famous formula presented in [21]:∑︁

𝑗∈I

‖Λ𝑗𝑓‖2−‖𝑆I𝑓‖2=
∑︁
𝑗∈I𝑐

‖Λ𝑗𝑓‖2−‖𝑆I𝑐𝑓‖2,

where 𝑆I𝑓 =
∑︀

𝑗∈I Λ*
𝑗Λ𝑗𝑓 .

The same can be obtained for g-fusion frames. Let Λ be a g-fusion
frame for 𝐻 with a (canonical) dual g-fusion frame Λ̃ = (�̃�𝑗, Λ̃𝑗, 𝑣𝑗), where
�̃�𝑗 = 𝑆Λ𝑊𝑗 and Λ̃𝑗 = Λ𝑗𝜋𝑊𝑗

𝑆−1
Λ . For simplicity, we denote the following

operator with the same symbol 𝑆I, where, again, I is a finite subset of J:

𝑆I𝑓 =
∑︁
𝑗∈I

𝑣2𝑗𝜋𝑊𝑗
Λ*

𝑗 Λ̃𝑗𝜋𝑊𝑗
𝑓, (∀𝑓 ∈ 𝐻). (7)

It is easy to check that 𝑆I ∈ ℬ(𝐻) and positive. Again, we have

𝑆I + 𝑆I𝑐 = 𝑖𝑑𝐻 .

Remark 1. Let Λ be a Parseval g-fusion frame for 𝐻. Since ℬ(𝐻) is
a 𝐶*-algebra and 𝑆I is positive, so 𝑟(𝑆I) = ‖𝑆I‖, where 𝑟 is the spectral
radius. Thus

max
𝜆∈𝜎(𝑆I)

|𝜆|= 𝑟(𝑆I) ≤ 1

and we conclude that 𝜎(𝑆I) ∈ [0, 1].

Theorem 2. Let 𝑓 ∈ 𝐻; then∑︁
𝑗∈I

𝑣2𝑗 ⟨Λ̃𝑗𝜋𝑊𝑗
𝑓,Λ𝑗𝜋𝑊𝑗

𝑓⟩ − ‖𝑆I𝑓‖2=
∑︁
𝑗∈I𝑐

𝑣2𝑗 ⟨Λ̃𝑗𝜋𝑊𝑗
𝑓,Λ𝑗𝜋𝑊𝑗

𝑓⟩ − ‖𝑆I𝑐𝑓‖2.
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Proof. The proof follows a similar argument as in the proof of Theo-
rem 1. �

Corollary 1. Let Λ be a Parseval g-fusion frame for 𝐻. Then∑︁
𝑗∈I

𝑣2𝑗‖Λ𝑗𝜋𝑊𝑗
𝑓‖2−

⃦⃦⃦∑︁
𝑗∈I

𝑣2𝑗𝜋𝑊𝑗
Λ*

𝑗Λ𝑗𝜋𝑊𝑗
𝑓
⃦⃦⃦2

=

=
∑︁
𝑗∈I𝑐

𝑣2𝑗‖Λ𝑗𝜋𝑊𝑗
𝑓‖2−

⃦⃦⃦∑︁
𝑗∈I𝑐

𝑣2𝑗𝜋𝑊𝑗
Λ*

𝑗Λ𝑗𝜋𝑊𝑗
𝑓
⃦⃦⃦2

.

Moreover,∑︁
𝑗∈I

𝑣2𝑗‖Λ𝑗𝜋𝑊𝑗
𝑓‖2+

⃦⃦⃦∑︁
𝑗∈I𝑐

𝑣2𝑗𝜋𝑊𝑗
Λ*

𝑗Λ𝑗𝜋𝑊𝑗
𝑓
⃦⃦⃦2

≥ 3

4
‖𝑓‖2.

Proof. If 𝑓 ∈ 𝐻, we obtain∑︁
𝑗∈I

𝑣2𝑗‖Λ𝑗𝜋𝑊𝑗
𝑓‖2+‖𝑆I𝑐𝑓‖2= ⟨(𝑆I + 𝑆2

I𝑐)𝑓, 𝑓⟩ =

= ⟨(𝑆I + 𝑖𝑑𝐻 − 2𝑆I + 𝑆2
I )𝑓, 𝑓⟩ = ⟨(𝑖𝑑𝐻 − 𝑆I + 𝑆2

I )𝑓, 𝑓⟩.

Now, by Lemma 2 for 𝑎 = 1, 𝑏 = −1, and 𝑐 = 1, the inequality holds. �

Corollary 2. Let Λ be a Parseval g-fusion frame for 𝐻. Then

0 ≤ 𝑆I − 𝑆2
I ≤ 1

4
𝑖𝑑𝐻

Proof. We have 𝑆I𝑆I𝑐 = 𝑆I𝑐𝑆I. Then 0 ≤ 𝑆I𝑆I𝑐 = 𝑆I − 𝑆2
I . Also, by

Lemma 2, we get

𝑆I − 𝑆2
I ≤ 1

4
𝑖𝑑𝐻 .

The proof is complete. �

Theorem 3. Let Λ be a g-fusion frame with the g-fusion frame operator
𝑆Λ. If I ⊆ J and 𝑓 ∈ 𝐻, then∑︁

𝑗∈I

𝑣2𝑗‖Λ𝑗𝜋𝑊𝑗
𝑓‖2+‖𝑆− 1

2
Λ 𝑆I𝑐𝑓‖2=

∑︁
𝑗∈I𝑐

𝑣2𝑗‖Λ𝑗𝜋𝑊𝑗
𝑓‖2+‖𝑆− 1

2
Λ 𝑆I𝑓‖2.

Proof. Let Θ𝑗 := Λ𝑗𝜋𝑊𝑗
𝑆
− 1

2
Λ and 𝑋𝑗 := 𝑆

− 1
2

Λ 𝑊𝑗. Example 2.2 [22] shows
that (𝑋𝑗,Θ𝑗, 𝑣𝑗) is a Parseval g-fusion frame for 𝐻. Then, by Corollary 1,
we have
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∑︁
𝑗∈I

𝑣2𝑗‖Θ𝑗𝜋𝑋𝑗
𝑓‖2−

⃦⃦⃦∑︁
𝑗∈I

𝑣2𝑗𝜋𝑋𝑗
Θ*

𝑗Θ𝑗𝜋𝑋𝑗
𝑓
⃦⃦⃦2

=

=
∑︁
𝑗∈I𝑐

𝑣2𝑗‖Θ𝑗𝜋𝑋𝑗
𝑓‖2−

⃦⃦⃦∑︁
𝑗∈I𝑐

𝑣2𝑗𝜋𝑋𝑗
Θ*

𝑗Θ𝑗𝜋𝑋𝑗
𝑓
⃦⃦⃦2

.

By replacing 𝑓 by 𝑆
1
2
Λ𝑓 and the fact that∑︁

𝑗∈I

𝑣2𝑗𝜋𝑋𝑗
Θ*

𝑗Θ𝑗𝜋𝑋𝑗
𝑓 =

∑︁
𝑗∈I

𝑣2𝑗 (Θ𝑗𝜋𝑋𝑗
)*Θ𝑗𝜋𝑋𝑗

𝑓 =

=
∑︁
𝑗∈I

𝑣2𝑗 (Λ𝑗𝜋𝑊𝑗
𝑆
− 1

2
Λ 𝜋𝑋𝑗

)*Λ𝑗𝜋𝑊𝑗
𝑆
− 1

2
Λ 𝜋𝑋𝑗

𝑓 =

=
∑︁
𝑗∈I

𝑣2𝑗𝑆
− 1

2
Λ 𝜋𝑊𝑗

Λ*
𝑗Λ𝑗𝜋𝑊𝑗

𝑆
− 1

2
Λ 𝑓 =

= 𝑆
− 1

2
Λ 𝑆I𝑆

− 1
2

Λ 𝑓,

the proof is complete. �

Corollary 1. Let Λ be a g-fusion frame with the g-fusion frame operator
𝑆Λ. If I ⊆ J, then

0 ≤ 𝑆I − 𝑆I𝑆
−1
Λ 𝑆I ≤

1

4
𝑆Λ.

Proof. In the proof of Theorem 3, we showed that∑︁
𝑗∈I

𝑣2𝑗𝜋𝑋𝑗
Θ*

𝑗Θ𝑗𝜋𝑋𝑗
𝑓 = 𝑆

− 1
2

Λ 𝑆I𝑆
− 1

2
Λ 𝑓.

By Corollary 2, we get

0 ≤
∑︁
𝑗∈I

𝑣2𝑗𝜋𝑋𝑗
Θ*

𝑗Θ𝑗𝜋𝑋𝑗
𝑓 −

(︁∑︁
𝑗∈I

𝑣2𝑗𝜋𝑋𝑗
Θ*

𝑗Θ𝑗𝜋𝑋𝑗
𝑓
)︁2

≤ 1

4
𝑖𝑑𝐻 .

Therefore,

0 ≤ 𝑆
− 1

2
Λ (𝑆I − 𝑆I𝑆

−1
Λ 𝑆I)𝑆

− 1
2

Λ ≤ 1

4
𝑖𝑑𝐻

and the proof is complete. �

Corollary 2. Suppose that Λ is a g-fusion frame with the g-fusion frame
operator 𝑆Λ. If I ⊆ J and 𝑓 ∈ 𝐻, then∑︁

𝑗∈I

𝑣2𝑗‖Λ𝑗𝜋𝑊𝑗
𝑓‖2+‖𝑆− 1

2
Λ 𝑆I𝑐𝑓‖2≥

3

4
‖𝑆−1

Λ ‖−1‖𝑓‖2.
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Proof. By Theorem 3 and Corollary 1, we can write∑︁
𝑗∈I

𝑣2𝑗‖Λ𝑗𝜋𝑊𝑗
𝑓‖2+‖𝑆− 1

2
Λ 𝑆I𝑐𝑓‖=

=
∑︁
𝑗∈I

𝑣2𝑗‖Θ𝑗𝜋𝑋𝑗
𝑆

1
2
Λ𝑓‖

2+‖
∑︁
𝑗∈I𝑐

𝑣2𝑗𝜋𝑋𝑗
Θ*

𝑗Θ𝑗𝜋𝑋𝑗
𝑆

1
2
Λ𝑓‖

2≥

≥ 3

4
‖𝑆

1
2
Λ𝑓‖

2=
3

4
⟨𝑆Λ𝑓, 𝑓⟩ ≥

3

4
‖𝑆−1

Λ ‖−1‖𝑓‖2.

The poof is complete. �

Theorem 4. Let Λ be a Parseval g-fusion frame for 𝐻 and I ⊆ J. Then

(I) 0 ≤ 𝑆I − 𝑆2
I ≤ 1

4
𝑖𝑑𝐻 .

(II)
1

2
𝑖𝑑𝐻 ≤ 𝑆2

I + 𝑆2
I𝑐 ≤

3

2
𝑖𝑑𝐻 .

Proof. (I) Since 𝑆I + 𝑆I𝑐 = 𝑖𝑑𝐻 , 𝑆I𝑆I𝑐 + 𝑆2
I𝑐 = 𝑆I𝑐 . Thus,

𝑆I𝑆I𝑐 = 𝑆I𝑐 − 𝑆2
I𝑐 = 𝑆I𝑐(𝑖𝑑𝐻 − 𝑆I𝑐) = 𝑆I𝑐𝑆I.

But Λ is Parseval, so 0 ≤ 𝑆I𝑆I𝑐 = 𝑆I−𝑆2
I . On the other hand, by Lemma 3,

we get

𝑆I − 𝑆2
I ≤ 1

4
𝑖𝑑𝐻 .

(II) We have seen that 𝑆I𝑆I𝑐 = 𝑆I𝑐𝑆I; then, by Lemma 3,

𝑆2
I + 𝑆2

I𝑐 = 𝑖𝑑𝐻 − 2𝑆I𝑆I𝑐 = 2𝑆2
I − 2𝑆I + 𝑖𝑑𝐻 ≥ 1

2
𝑖𝑑𝐻 .

On the other hand, we have, again, by Lemma 3 and 0 ≤ 𝑆I − 𝑆2
I :

𝑆2
I + 𝑆2

I𝑐 ≤ 𝑖𝑑𝐻 + 2𝑆I − 2𝑆2
I ≤ 3

2
𝑖𝑑𝐻 .

This completes the proof. �

Corollary 1. Let Λ be a g-fusion frame with the g-fusion frame operator
𝑆Λ. If I ⊆ J, then

1

2
𝑆Λ ≤ 𝑆I𝑆

−1
Λ 𝑆I − 𝑆I𝑐𝑆

−1
Λ 𝑆I𝑐 ≤

3

2
𝑆Λ.
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Proof. We have ∑︁
𝑗∈I

𝑣2𝑗𝜋𝑋𝑗
Θ*

𝑗Θ𝑗𝜋𝑋𝑗
𝑓 = 𝑆

− 1
2

Λ 𝑆I𝑆
− 1

2
Λ 𝑓.

Therefore, similarly to the proof of Corollary 1, we get, by Theorem 4,
item (II),

1

2
𝑖𝑑𝐻 ≤ (𝑆

− 1
2

Λ 𝑆I𝑆
− 1

2
Λ )2 + (𝑆

− 1
2

Λ 𝑆I𝑐𝑆
− 1

2
Λ )2 ≤ 3

2
𝑖𝑑𝐻 ,

and the proof is now evident. �

Theorem 5. Let Λ be a g-fusion frame with the g-fusion frame operator
𝑆Λ. If I ⊆ J, then, for any 𝑓 ∈ 𝐻,∑︁

𝑗∈I

𝑣2𝑗‖Λ𝑗𝜋𝑊𝑗
𝑓‖2−

∑︁
𝑗∈J

𝑣2𝑗‖Λ̃𝑗𝜋�̃�𝑗
𝑀I𝑓‖2=

=
∑︁
𝑗∈I𝑐

𝑣2𝑗‖Λ𝑗𝜋𝑊𝑗
𝑓‖2−

∑︁
𝑗∈J

𝑣2𝑗‖Λ̃𝑗𝜋�̃�𝑗
𝑀I𝑐𝑓‖2,

where

𝑀I𝑓 =
∑︁
𝑗∈I

𝑣2𝑗𝜋𝑊𝑗
Λ*

𝑗Λ𝑗𝜋𝑊𝑗
𝑓.

Proof. Via the definition of 𝑆Λ, it is clear that 𝑀I+𝑀I𝑐 = 𝑆Λ. Therefore,
𝑆−1
Λ 𝑀I + 𝑆−1

Λ 𝑀I𝑐 = 𝑖𝑑𝐻 . Hence, by Lemma 3

𝑆−1
Λ 𝑀I − 𝑆−1

Λ 𝑀I𝑐 = (𝑆−1
Λ 𝑀I)

2 − (𝑆−1
Λ 𝑀I𝑐)

2.

Thus, for each 𝑓, 𝑔 ∈ 𝐻 we obtain

⟨𝑆−1
Λ 𝑀I𝑓, 𝑔⟩ − ⟨𝑆−1

Λ 𝑀I𝑆
−1
Λ 𝑀I𝑓, 𝑔⟩ = ⟨𝑆−1

Λ 𝑀I𝑐𝑓, 𝑔⟩ − ⟨𝑆−1
Λ 𝑀I𝑐𝑆

−1
Λ 𝑀I𝑐𝑓, 𝑔⟩.

We choose 𝑔 to be 𝑔 = 𝑆Λ𝑓 , and we can get

⟨𝑀I𝑓, 𝑓⟩ − ⟨𝑆−1
Λ 𝑀I𝑓,𝑀I𝑓⟩ = ⟨𝑀I𝑐𝑓, 𝑓⟩ − ⟨𝑆−1

Λ 𝑀I𝑐𝑓,𝑀I𝑐𝑓⟩.

Finally, by (6), the proof is complete. �
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