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ON THE NECESSARY AND SUFFICIENT CONDITIONS
FOR THE MEASURABILITY OF A POSITIVE SEQUENCE

Abstract. The work is devoted to finding out the necessary and
sufficient conditions for the measurability of a sequence of positive
numbers. The concept of logarithmic measurability of a sequence is
also introduced. It is assumed that the considered sequences form
a sequence of zeros of some entire function of exponential type.
Therefore, clarification of this question can be useful in solving the
problem of completeness of the system of exponents or exponen-
tial monomials in some convex domain. Such characteristics of the
sequence as lower and upper densities, minimum and maximum
densities, lower and upper logarithmic block densities play an im-
portant role.
Key words: upper density, maximal density, logarithmic block
density, zeros of entire function
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Let Λ = {λn}∞n=1 be an unbounded nondecreasing (numbers λn can be
repeated) sequence of positive numbers.

The symbol B(z, t) denotes a closed circle with the center at the point
z and radius t. The upper and lower densities of the sequence Λ are,
respectively, the following quantities:

n̄(Λ) = lim
t→+∞

n(t,Λ)

t
, n(Λ) = lim

t→+∞

n(t,Λ)

t
,

where n(t,Λ) is the counting function of the sequence Λ, that is, the
number of its elements counting the multiplicities located in the circle
B(z, t):

n(t,Λ) =
∑
|λn|6t

1.
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If n̄(Λ) = n(Λ), the sequence Λ is called measurable and the quantity

n(Λ) = lim
t→+∞

n(t,Λ)

t

exists and is called the density of the sequence Λ.
We recall that the maximal and minimal density of the sequence Λ

are, respectively, the quantities

n̄0(Λ) = lim
δ→+0

lim
t→+∞

n(t,Λ)− n(t(1− δ),Λ)

δt
, δ ∈ (0; 1).

n0(Λ) = lim
δ→+0

lim
t→+∞

n(t,Λ)− n(t(1− δ),Λ)

δt
, δ ∈ (0; 1).

According to the Lemma in Section E3, Chapter VI in [3], the limit as
δ → 0+ always exists and the maximal density is well-defined.

If the sequence Λ is a sequence of positive numbers, then the logarith-
mic block density, introduced in [6], is:

L̄(Λ) = inf
a>1

lim
t→+∞

λ(at)− λ(t)

ln a
, λ(t) =

∑
λn6t

1

λn
.

According to Lemma 3.2 of [5], the quantity L̄(Λ) can be calculated as
follows:

L̄(Λ) = lim
a→+∞

lim
t→+∞

λ(at)− λ(t)

ln a
,

that is, the limit as a→∞ exists. Making the change of variables in the
latter identity, we can write

L̄(Λ) = lim
δ→1−0

lim
t→+∞

λ(t)− λ(t(1− δ))
− ln(1− δ)

,

where δ ∈ (0; 1). In what follows, we shall employ exactly this identity
while working with the logarithmic density.

For an arbitrary δ ∈ (0; 1), consider the following quantities

L(Λ, δ, t) =
λ(t)− λ(t(1− δ))
− ln(1− δ)

,

L̄(Λ, δ) = lim
t→+∞

L(Λ, δ, t), L(Λ, δ) = lim
t→+∞

L(Λ, δ, t),
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L(Λ, δ) = lim
t→+∞

L(Λ, δ, t),

and, likewise,

n0(Λ, δ, t) =
n(t,Λ)− n(t(1− δ),Λ)

δt
,

n̄0(Λ, δ) = lim
t→+∞

n0(Λ, δ, t), n0(Λ, δ) = lim
t→+∞

n0(Λ, δ, t),

n0(Λ, δ) = lim
t→+∞

n0(Λ, δ, t).

It is clear that

n̄0(Λ) = lim
δ→+0

n̄0(Λ, δ), n0(Λ) = lim
δ→+0

n0(Λ, δ),

L̄(Λ) = lim
δ→1−0

L̄(Λ, δ).

Later in this paper, the quantity L̄(Λ) will be called the upper loga-
rithmic block density of the sequence Λ in order to distinguish it from the
lower logarithmic block density, which we define as

L(Λ) = sup
δ∈(0;1)

L(Λ, δ).

Lemma 1. The function L(Λ, δ) has a limit at δ → 1 − 0, and the fol-
lowing equality holds:

L(Λ) = lim
δ→1−0

L(Λ, δ).

Proof. We reason as in the proof of Lemma 3.2 of [5]. Consider, for u > 0,
the function

ϕ(u) = lim
t→+∞

(
λ(eur)− λ(r)

)
.

Since eu2r → ∞ at r → ∞ for any fixed u2 > 0, it follows from the
properties of the lower limit that

ϕ(u1 + u2) = lim
t→+∞

(
λ(eu1+u2r)− λ(r)

)
=

= lim
t→+∞

(
λ(eu1+u2r)− λ(eu2r) + λ(eu2r)− λ(r)

)
>

> lim
t→+∞

(
λ(eu1+u2r)− λ(eu2r)

)
+ lim

t→+∞

(
λ(eu2r)− λ(eur)

)
= ϕ(u1) +ϕ(u2).
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Let v > 1 be fixed, u be large enough; then there is such a positive integer
N that u = Nv + w, where 0 6 w < r. In this case

ϕ(u)

u
>
Nϕ(v) + ϕ(w)

Nv + w
=
ϕ(v)

v
· 1

1 + w/Nv
+

ϕ(w)

Nv + w
.

Since N → +∞ at u→ +∞, at any v > 1 we have

lim
t→+∞

ϕ(u)

u
>
ϕ(v)

v
.

It follows from this inequality that

lim
u→+∞

ϕ(u)

u
> lim

u→+∞

ϕ(u)

u
, lim

u→+∞

ϕ(u)

u
> sup

u>1

ϕ(u)

u
.

Since inequalities with the opposite signs are obviously true,

lim
u→+∞

ϕ(u)

u
= sup

u>1

ϕ(u)

u
.

Making the change of variables u = − ln(1 − δ), r = t(1 − δ), δ ∈ (0; 1),
we obtain

lim
δ→1−0

lim
t→+∞

λ(t)− λ(t(1− δ))
− ln(1− δ)

= lim
δ→1−0

L(Λ, δ) = sup
δ∈(0;1)

L(Λ, δ) = L(Λ).

The lemma is proved. �

Exploring relationships between different densities is of the most in-
terest in the case when the sequence Λ is a sequence of zeros of some
entire function of exponential type. According to Lindelöf’s theorem, the
sequence Λ must have a finite upper density. Therefore, all the reasonings
given below can be carried out assuming that n̄(Λ) <∞.

Let δ ∈ (0; 1); then, according to Lemma 1 from [4] and Lemma 2.1
from [1], the series of inequalities is valid:

n0(Λ) 6 n(Λ, δ) 6 n(Λ) 6 L̄(Λ) 6 n̄(Λ) 6 n̄0(Λ, δ) 6 n̄0(Λ) (1)

If the sequence Λ is measurable, then all inequalities in this chain pass
into equalities.

It is easy to see that for any sequence Λ the inequality holds:

L(Λ) 6 L̄(Λ).
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Lemma 2. The following inequality holds:

n(Λ) 6 L(Λ).

Proof. If n(Λ) = 0, then the statement is trivial. Consider the case
n(Λ) > 0. Since n̄(Λ) < ∞, then, by (1), we have n(Λ) < ∞. Hence, for
any sufficiently small ε > 0 there is rε such that for r > rε the inequalities
hold:

n(r,Λ) > (n(Λ)− ε)r,

n(r,Λ) 6 (n̄(Λ) + ε)r.

Let δ ∈ (0; 1) and t(1− δ) > rε. We have:

∑
t(1−δ)<λn6t

1

λn
=

t∫
t(1−δ)

dn(r,Λ)

r
=
n(t,Λ)

t
− n(t(1− δ),Λ)

t(1− δ)
+

+

t∫
t(1−δ)

n(r,Λ)dr

r2
>
n(t,Λ)

t
− n(t(1− δ),Λ)

t(1− δ)
+ (n(Λ)− ε)

t∫
t(1−δ)

dr

r
>

> −n(t(1− δ),Λ)

t(1− δ)
+ (n(Λ)− ε)

t∫
t(1−δ)

dr

r
>

> −(n̄(Λ) + ε) + (n(Λ)− ε) ln

(
1

1− δ

)
.

Hence, based on Lemma 1 and letting δ → 1 − 0, we obtain the desired
result. The lemma is proved. �

Lemma 3. The equality holds:

n0(Λ) = lim
δ→0+

L(Λ, δ).

Proof. Let δ ∈ (0; 1). Then

n(Λ, δ, t) =
n(t,Λ)− n(t(1− δ),Λ)

δt
6

1

δ

∑
t(1−δ)<λn6t

1

λn
=

=
− ln(1− δ)

δ
L̄(Λ, δ, t).
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From here we obtain

n0(Λ, δ) 6
− ln(1− δ)

δ
L(Λ, δ). (2)

Likewise,

L(Λ, δ, t) =
1

− ln(1− δ)
∑

t(1−δ)<λn6t

mn

λn
6

6
1

− ln(1− δ)
n(t,Λ)− n(t(1− δ),Λ)

(1− δ)t
6

δ

(δ − 1) ln(1− δ)
n̄0(Λ, δ, t).

Therefore,

L̄(Λ, δ) 6
δ

(δ − 1) ln(1− δ)
n̄0(Λ, δ). (3)

Moving in (2) and (3) to the limit at δ → 0+, we obtain the lemma
statement. �

We will say that the positive sequence Λ is logarithmically measurable
if L(Λ) = L̄(Λ).

The following statement is true, which is the main result of this work.

Theorem 1. Let Λ = {λn}∞n=1 be a unbounded nondecreasing sequence
of positive numbers. Then the following statements are equivalent:

1) the sequence Λ is measurable;
2) the quantity L(Λ, δ) exists and does not depend on δ ∈ (0; 1);
3) the quantity n0(Λ, δ) exists and does not depend on δ ∈ (0; 1).

Proof. The implication 1) =⇒ 2) follows from Lemma 2 and the chain of
inequalities (1).

If the quantity L(Λ, δ) exists and does not depend on δ ∈ (0; 1), then
it follows from Lemma 3 and [4, Theorem 1] that n̄0(Λ) = n0(Λ). This
gives us an implication 2) =⇒ 3). Finally, if the quantity n0(Λ, δ) exists
and does not depend on δ, then we obtain that the maximal density is
equal to the minimal density, and then from the chain of inequalities (1)
the measurability of the sequence Λ follows. This gives an implication
3) =⇒ 1). The proof is complete. �

Remark 1. We give an example of a sequence that shows that loga-
rithmic measurability not entails measurability. Consider a sequence of
natural numbers λn ∈ N satisfying the condition

λn+1

λn
→∞, n→∞. (4)
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Suppose that the multiplicity of each point λn is µn = λn. Let δ ∈ (0; 1)
be fixed. Then, by virtue of (4), there is such a number N0 that for any
n > N0 the half-interval of the form (λn(1−δ), λn] contains only the point
λn. It follows that at any t > 0 the interval of the form (t(1−δ), t] contains
no more than one point of sequence Λn. We have

λ(t)− λ(t(1− δ))
− ln(1− δ)

=
1

− ln(1− δ)
∑

t(1−δ)<λn6t

λn
λn
6

1

− ln(1− δ)
.

From here we get that L(Λ) = L̄(Λ) = 0. Now calculate the upper and
lower densities. Since for any n > 1 and for a sufficiently small ε > 0,
inequalities

n(λn − ε,Λ)

λn − ε
6
n(λn,Λ)

λn
,

n(λn + ε,Λ)

λn + ε
6
n(λn,Λ)

λn
,

are true; so,

n̄(Λ) = lim
n→∞

n(λn,Λ)

λn
, n(Λ) = lim

n→∞

n(λn − ε,Λ)

λn − ε
= lim

n→∞

n(λn − ε,Λ)

λn
.

We have

n̄(Λ) = lim
n→∞

n(λn,Λ)

λn
= lim

n→∞

λ1 + λ2 + · · ·+ λn
λn

=

= 1 + lim
n→∞

(
λ1
λn

+
λ2
λn

+ · · ·+ λn−1
λn

)
.

It follows that n̄(Λ) > 1. On the other hand, by virtue of (4), for any
number M > 1 there exists a number n0 such that for all n > n0 the
inequality

λn+1

λn
> M or

λn−1
λn

< 1/M, n > n0 (5)

is satisfied. Since the dropping of a finite number of sequence points does
not affect the value of its densities, it can be assumed, without loss of
generality, that (5) is fulfilled for all n > 1. Then

0 6
λ1
λn

+
λ2
λn

+ · · ·+ λn−1
λn

=

=
λ1
λ2

λ2
λ3
· · · λn−1

λn
+
λ2
λ3
· · · λn−1

λn
+ · · ·+ λn−1

λn
<
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<
1

Mn−1 +
1

Mn−2 + · · ·+ 1

M
=

=
1

M − 1

(
1− 1

Mn−1

)
→ 0, M → +∞.

From here we get n̄(Λ) 6 1. Therefore, n̄(Λ) = 1. At the same time,

n(Λ) = lim
n→∞

n(λn − ε,Λ)

λn
= lim

n→∞

(
λ1
λn

+
λ2
λn

+ · · ·+ λn−1
λn

)
= 0.

Hence, n(Λ) < n̄(Λ). This means that the Λ sequence is not measurable,
though L(Λ) = L̄(Λ).

Remark 2. A natural question arises: can this result be extended to
complex sequences? It turned out that the answer is no. For such se-
quences the upper logarithmic block density is defined as

L̄(Λ) = inf
a>1

lim
t→+∞

l(at, t,Λ)

ln a
,

where

l(t1, t2,Λ) = max{l−(t1, t2,Λ), l+(t1, t2,Λ)},

l−(t1, t2,Λ) =
∑

t1<|λn|6t2,Reλn<0

−Re
1

λn
,

l+(t1, t2,Λ) =
∑

t1<|λn|6t2,Reλn>0

Re
1

λn
,

(see [2], [7], [8]). This is explained by the fact that the chain of inequalities
similar to the chain (1) and the complex version of Lemma 2 are necessary
for the validity of the theorem statement in the complex case. However,
Lemma 2 is no longer valid in the case of a complex sequence. For example,
for the sequence Λ = {i

√
n}∞n=1 we obtain the following equations:

n(Λ) = lim
n→∞

=
n

|λn|
= lim

n→∞

n√
n

=∞, L̄(Λ) = 0.

This is a counterexample to Lemma 2 in the complex case. Note that
in [9, Theorem 3, Theorem 6] there are more general statements where it
is shown that the upper density of a positive sequence of points can be
arbitrarily large, while the logarithmic block densities in all directions are
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zero. From [9, Theorem 6] it can be seen that the upper density can be
replaced by the lower density arbitrarily large.
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