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1. Introduction and Preliminaries. Throughout the paper, we
denote by ℳ a semi-finite von Neumann algebra acting on the Hilbert
space ℋ, with a normal faithful semi-finite trace 𝜏 . We denote the identity
in ℳ by 1 and let 𝒫 denote the projection lattice of ℳ. We write 𝑝 ∼ 𝑞
for 𝑝, 𝑞 ∈ 𝒫 if 𝑝 = 𝑢*𝑢 and 𝑞 = 𝑢𝑢* for some 𝑢 ∈ ℳ. A closed densely
defined linear operator 𝑥 in ℋ with the domain 𝐷 (𝑥) ⊆ ℋ is said to
be affiliated with ℳ if 𝑢*𝑥𝑢 = 𝑥 for all unitary 𝑢 that belong to the
commutant ℳ′ of ℳ. If 𝑥 is affiliated with ℳ, then 𝑥 is said to be 𝜏 -
measurable if for every 𝜀 > 0 there exists a projection 𝑒 ∈ ℳ such that
𝑒 (ℋ) ⊆ 𝐷 (𝑥) and 𝜏 (1 − 𝑒) < 𝜀. The set of all 𝜏 -measurable operators will
be denoted by 𝐿0 (ℳ,𝜏), or, simply, 𝐿0 (ℳ). The set 𝐿0 (ℳ) is a *-algebra
with sum and product being the respective closures of the algebraic sum
and product; see [7]. A closed densely defined linear operator 𝑥 admits
a unique polar decomposition 𝑥 = 𝑢 |𝑥|, where 𝑢 is a partial isometry
such that 𝑢*𝑢 = (ker𝑥)⊥ and 𝑢𝑢* = im𝑥 (with im𝑥 = 𝑥 (𝐷 (𝑥)). We
call 𝑟 (𝑥) = (ker𝑥)⊥ and 𝑙 (𝑥) = im𝑥 the left and right supports of 𝑥,
respectively. Thus, 𝑙 (𝑥) ∼ 𝑟 (𝑥). Note that 𝑙 (𝑥) (resp., 𝑟 (𝑥)) is the least
projection 𝑒 such that 𝑒𝑥 = 𝑥 (resp., 𝑥𝑒 = 𝑥). If 𝑥 is self-adjoint, then
𝑟 (𝑥) = 𝑙 (𝑥). This common projection is then said to be the support of 𝑥
and denoted by 𝑠 (𝑥). For further details, we see [8].
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Let ℳ+ be the positive part of ℳ. Set 𝑆+(ℳ) = {𝑥 ∈ ℳ+ :
𝜏(𝑠(𝑥)) < ∞} and let 𝑆 (ℳ) be the linear span of 𝑆+ (𝑀). Let

0 < 𝑝 < ∞, the non-commutative 𝐿𝑝-space 𝐿𝑝(ℳ, 𝜏) is the completion of
(𝑆, ‖·‖𝑝), where ‖𝑥‖𝑝 = 𝜏(|𝑥|𝑝)

1
𝑝 < ∞ for each 𝑥 ∈ 𝐿𝑝 (ℳ, 𝜏). In addition,

we put 𝐿∞ (ℳ, 𝜏) = ℳ and denote by ‖·‖𝑝 (= ‖·‖) the usual operator
norm. It is well known that 𝐿𝑝 (ℳ, 𝜏) are Banach spaces under ‖·‖𝑝 for
1 6 𝑝 < ∞ and they have a lot of expected properties of classical 𝐿𝑝-
spaces. Let 𝑥 be a 𝜏 -measurable operator and 𝑡 > 0. The “𝑡-th singular
number (or generalized 𝑠-number) of 𝑥” is defined by [5]

𝜇𝑡 (𝑥) = inf {‖𝑥𝑒‖ : 𝑒 ∈ 𝑃, 𝜏(1 − 𝑒) 6 𝑡}.

Recall that a linear map Φ is positive if Φ(𝑋) is positive whenever 𝑋 is
positive. The celebrated Jensen inequality for operators [2] states that if
𝑋 is a positive operator (self-adjointness is enough), Φ is a positive linear
map, and 𝑓 is an operator monotone on the interval [0,∞), then

Φ (𝑓 (𝑋)) 6 𝑓 (Φ (𝑋)) . (1)

In this paper, we prove the same result for measurable operators affiliated
with a given von Neumann algebra. Furthermore, we use the technique of
Zhao and Wu [11], via the notion of generalized singular numbers studied
by Fack and Kosaki [5], to obtain generalizations of results in [11] for
𝜏 -measurable operators case. The obtained inequalities improve known
results in [9]. In addition, Audenaert in [1] obtained that if 𝑋 and 𝑌 are
two 𝑛× 𝑛 matrices and 0 6 𝜈 6 1, then for any unitarily invariant norm
‖·‖𝑢,

‖𝑋𝑌 *‖2𝑢 6 ‖𝜈𝑋*𝑋 + (1 − 𝜈)𝑌 *𝑌 ‖𝑢‖(1 − 𝜈)𝑋*𝑋 + 𝜈𝑌 *𝑌 ‖𝑢. (2)

In the next section, we present a 𝜏 -measurable version of (2).
2. Main Theorems. We need the following lemma [3, Theorem 5]:

Lemma 1. Let ℳ be a von Neumann algebra on Hilbert space ℋ and
a function 𝑓 : R+ → R+ be an operator monotone with respect to ℳ.
Then 𝑓 (𝐴) 6 𝑓 (𝐵) for any pair of positive self-adjoint operators 𝐴, 𝐵
affiliated with ℳ, such that 𝐴 6 𝐵.

We are ready to prove our promised extension of inequality (1).

Theorem 1. Let Φ be a unital positive linear continuous map,
𝑓 : R+ → R+ be an operator monotone function with respect to ℳ
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and 𝑥 ∈ 𝑆 (ℳ). Then

Φ (𝑓 (𝑥)) 6 𝑓 (Φ (𝑥)) .

Proof. We use the same strategy as in [4, Corollary 3.2]. Put 𝑥𝑛 = 𝑥𝜒([0,𝑛]).
It is clear that 𝑥𝑛 is a increasing sequence of positive operators in ℳ and
converges nearly everywhere to 𝑥. Note that 𝑥𝑛 commute with 𝑥 for every
𝑛. So, the convergence nearly everywhere of the sequence 𝑥𝑛 to 𝑥 can
be considered as in the commutative case. Therefore, for an operator
monotone function 𝑓 with respect to ℳ, and thus continuous on R+, the
sequence 𝑓 (𝑥𝑛) converges nearly everywhere to 𝑓 (𝑥). By Lemma 1, since
𝑥𝑛 6 𝑥𝑛+1 6 . . . 6 𝑥, we also have

𝑓 (𝑥𝑛) 6 𝑓 (𝑥𝑛+1) 6 . . . 6 𝑓 (𝑥) ,

and, since Φ is a positive linear continuous map,

Φ (𝑓 (𝑥𝑛)) 6 Φ (𝑓 (𝑥𝑛+1)) 6 . . . 6 Φ (𝑓 (𝑥)) .

Consequently, Φ (𝑓 (𝑥𝑛)) converge nearly everywhere to Φ (𝑓 (𝑥)). On the
other hand, for every 𝑥𝑛, by inequality (1), we have

Φ (𝑓 (𝑥𝑛)) 6 𝑓 (Φ (𝑥𝑛)) 6 𝑓 (Φ (𝑥)) .

Tending 𝑛 → ∞, we obtain the desired inequality. �

The following result can be found in [10, Lemma 3.2].

Lemma 2. Let 𝑥, 𝑦 ∈ 𝑆(ℳ) and 𝑧 ∈ ℳ. Then, for every 𝑟 > 0,

‖|𝑥*𝑧𝑦|𝑟‖2𝑝 6 ‖|𝑥𝑥*𝑧|𝑟‖𝑝 ‖|𝑧𝑦𝑦
*|𝑟‖𝑝.

Theorem 2. Let 𝑥, 𝑦 ∈ 𝑆(ℳ) and 𝑧 ∈ ℳ. Then, for every 𝑟 > 0,

𝑔(𝑠, 𝑡) =
⃦⃦
|𝑥1−𝑡𝑧𝑦1+𝑠|𝑟

⃦⃦
𝑝

⃦⃦
|𝑥1+𝑡𝑧𝑦1−𝑠|𝑟

⃦⃦
𝑝

is log-convex on [−1, 1]× [−1, 1], hence is convex, and attains its minimum
at (0, 0).

Proof. The function 𝑔 is continuous and 𝑔(𝑠, 𝑡) = 𝑔(−𝑠,− 𝑡) (𝑠, 𝑡 ∈ [0, 1]).
Thus, it is enough to show that

𝑔 (𝑠1, 𝑡1) 6
1

2
{𝑔 (𝑠1 + 𝑠2, 𝑡1 + 𝑡2) + 𝑔 (𝑠1 − 𝑠2, 𝑡1 − 𝑡2)}
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where 𝑠1 ± 𝑠2, 𝑡1 ± 𝑡2 ∈ [−1, 1] × [−1, 1].
Applying Lemma 2,⃦⃦
|𝑥1−𝑡1𝑧𝑦1+𝑠1 |𝑟

⃦⃦
2

=
⃦⃦
|𝑥𝑡2

(︀
𝑥1−𝑡1−𝑡2𝑧𝑦1+𝑠1−𝑠2

)︀
𝑦𝑠2|𝑟

⃦⃦
𝑝
6

6
{︀⃦⃦

|𝑥1−(𝑡1−𝑡2)𝑧𝑦1+(𝑠1−𝑠2)|𝑟
⃦⃦
𝑝

⃦⃦
|𝑥1−(𝑡1+𝑡2)𝑧𝑦1+(𝑠1+𝑠2)|𝑟

⃦⃦
𝑝

}︀ 1
2 (3)

and⃦⃦
|𝑥1+𝑡1𝑧𝑦1−𝑠1 |𝑟

⃦⃦
𝑝

=
⃦⃦
|𝑥𝑡2

(︀
𝑥1+𝑡1−𝑡2𝑧𝑦1−𝑠1−𝑠2

)︀
𝑦𝑠2|𝑟

⃦⃦
𝑝
6

6
{︀⃦⃦

|𝑥1+(𝑡1+𝑡2)𝑧𝑦1−(𝑠1+𝑠2)|𝑟
⃦⃦
𝑝

⃦⃦
|𝑥1+(𝑡1−𝑡2)𝑧𝑦1−(𝑠1−𝑠2)|𝑟

⃦⃦
𝑝

}︀ 1
2 . (4)

Applying (3), (4), and the arithmetic-geometric mean inequality, we get

𝑔 (𝑠1, 𝑡1) =
⃦⃦
|𝑥1−𝑡1𝑧𝑦1+𝑠1|𝑟

⃦⃦
2

⃦⃦
|𝑥1+𝑡1𝑧𝑦1−𝑠1 |𝑟

⃦⃦
2
6

6 {𝑔 (𝑠1 + 𝑠2, 𝑡1 + 𝑡2) 𝑔 (𝑠1 − 𝑠2, 𝑡1 − 𝑡2)}
1
2 6

6
1

2
[𝑔 (𝑠1 + 𝑠2, 𝑡1 + 𝑡2) + 𝑔 (𝑠1 − 𝑠2, 𝑡1 − 𝑡2)] .

The proof is completed. �

Using this observation, we give the following corollary.

Corollary. Let 𝑥, 𝑦 ∈ 𝑆(ℳ) and 𝑧 ∈ ℳ. Then, for every 𝑟 > 0,⃦⃦
|𝑥

1
2 𝑧𝑦

1
2 |

𝑟⃦⃦2
𝑝
6
⃦⃦
|𝑥𝑡𝑧𝑦1−𝑠|𝑟

⃦⃦
𝑝

⃦⃦
|𝑥1−𝑡𝑧𝑦𝑠|𝑟

⃦⃦
𝑝
6

6 max
{︀⃦⃦

|𝑥𝑧|𝑟
⃦⃦
𝑝

⃦⃦
|𝑧𝑦|𝑟

⃦⃦
𝑝
,
⃦⃦
|𝑥𝑧𝑦|𝑟

⃦⃦
𝑝

⃦⃦
|𝑧|𝑟
⃦⃦
𝑝

}︀
where 0 6 𝑠, 𝑡 6 1.

Proof. If we replace 𝑠, 𝑡, 𝑥, 𝑦 by 2𝑠 − 1, 2𝑡 − 1, 𝑥
1
2 , 𝑦

1
2 , respectively, in

Theorem 2, we see that the function 𝑔 (𝑠, 𝑡) =
⃦⃦
|𝑥𝑡𝑧𝑦1−𝑠|𝑟

⃦⃦
𝑝

⃦⃦
|𝑥1−𝑡𝑧𝑦𝑠|𝑟

⃦⃦
𝑝

is jointly convex on [0, 1]× [0, 1] and attains its minimum at
(︀
1
2
, 1
2

)︀
. Hence,⃦⃦

|𝑥
1
2 𝑧𝑦

1
2 |

𝑟⃦⃦2
𝑝
6
⃦⃦
|𝑥𝑡𝑧𝑦1−𝑠|𝑟

⃦⃦
𝑝

⃦⃦
|𝑥1−𝑡𝑧𝑦𝑠𝑡|𝑟

⃦⃦
𝑝
.

In addition, since the function 𝑔 is continuous and convex on
[0, 1] × [0, 1], it follows that 𝑔 attains its maximum at the vertices of the
square. Moreover, due to the symmetry, there are two possibilities for the
maximum. �
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The Corollary can be regarded as an extension of [10, Corollary 3.4].
In the following result, we present a 𝜏 -measurable version of the main

result in [1]. We emphasize that the method of proof is completely different
from the present proof in [6, Theorem 3.6].

Theorem 3. Let 𝑥, 𝑦 be two 𝜏 -measurable positive operators. Then

𝜏(𝑥𝑦)2 6 𝜏(𝜈 𝑥2 + (1 − 𝜈)𝑦2) 𝜏((1 − 𝜈)𝑥2 + 𝜈 𝑦2), (5)

for 0 6 𝜈 6 1.

Proof. Note that the function 𝑓(𝜈) = 𝜏 (𝑥𝜈𝑦1−𝜈) is log-convex. Conse-
quently, the function

𝑔(𝜈) = 𝑓(𝜈)𝑓(1 − 𝜈)

is log-convex. Since 𝑔 is symmetric with respect to 𝜈 = 1
2
, it follows that

𝑓(1/2) 6 𝑓(𝜈). This means

𝜏
(︁
𝑥

1
2𝑦

1
2

)︁
6 𝜏

(︀
𝑥𝜈𝑦1−𝜈

)︀
𝜏
(︀
𝑥1−𝜈𝑦𝜈

)︀
, −∞ < 𝜈 < ∞.

Now, using Theorem 4, for 0 6 𝜈 6 1, we infer

𝜏
(︁
𝑥

1
2𝑦

1
2

)︁
6 𝜏(𝜈 𝑥 + (1 − 𝜈)𝑦) 𝜏((1 − 𝜈)𝑥 + 𝜈 𝑦).

Replacing 𝑥 and 𝑦 by their squares, we get the desired inequality. �

Note that inequality (5) interpolates between the arithmetic-geometric
mean inequality and Cauchy-Schwarz inequality for 𝜏 -measurable opera-
tors. That is, for 𝜈 = 0 we obtain the Cauchy-Schwarz type inequality

𝜏(𝑥𝑦)2 6 𝜏(𝑥2)𝜏(𝑦2),

while we obtain the arithmetic-geometric mean inequality

𝜏(𝑥𝑦) 6
1

2
𝜏(𝑥2 + 𝑦2)

for 𝜈 = 1
2
.

Recently, Shao in [?, Theorem 3.1] obtained a refinement of the Young
inequality

𝜏
(︀
𝑥𝜈𝑦1−𝜈

)︀
+ 𝑟0

(︁
𝜏(𝑥)

1
2 − 𝜏(𝑦)

1
2

)︁2
6 𝜏 (𝜈𝑥 + (1 − 𝜈) 𝑦) (6)

where 𝑥, 𝑦 ∈ 𝐿1 (ℳ) are positive operators, and 𝑟0 = min {𝜈, 1 − 𝜈} with
𝜈 ∈ (0, 1). We close this paper by improving (6).

Theorem 4. Let 𝑥, 𝑦 ∈ 𝐿1 (ℳ) be positive operators and 𝜈 ∈ (0, 1).
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1) If 0 < 𝜈 6 1
2
, then

𝑟0

(︁
(𝜏 (𝑥𝑦))

1
4 − (𝜏 (𝑥))

1
2

)︁2
+ 𝜈
(︁

(𝜏 (𝑥))
1
2 − (𝜏 (𝑦))

1
2

)︁2
+ 𝜏

(︀
𝑥1−𝜈𝑦𝜈

)︀
6

6 𝜏 ((1 − 𝜈)𝑥 + 𝜈𝑦) .
(7)

2) If 1
2
< 𝜈 < 1, then

𝑟0

(︁
(𝜏 (𝑥𝑦))

1
4 − (𝜏 (𝑥))

1
2

)︁2
+ (1 − 𝜈)

(︁
(𝜏 (𝑥))

1
2 − (𝜏 (𝑦))

1
2

)︁2
+

+ 𝜏
(︀
𝑥1−𝜈𝑦𝜈

)︀
6 𝜏 ((1 − 𝜈)𝑥 + 𝜈𝑦) .

(8)

Proof. We prove only (7) as (8) goes similarly. By [11, Lemma 1], we
have

(1 − 𝜈)𝜇𝑡 (𝑥) + 𝜈𝜇𝑡 (𝑦) >

> 𝑟0

(︁
𝜇𝑡(𝑥𝑦)

1
4 − 𝜇𝑡(𝑥)

1
2

)︁2
+ 𝜈
(︁
𝜇𝑡(𝑥)

1
2 − 𝜇𝑡(𝑦)

1
2

)︁2
+ 𝜇𝑡(𝑥)1−𝜈𝜇𝑡(𝑦)𝜈 ,

where 𝑟 = min {𝜈, 1 − 𝜈} and 𝑟0 = min {2𝑟, 1 − 2𝑟}.
Hence

𝜏((1 − 𝜈)𝑥 + 𝜈𝑦) = (1 − 𝜈)𝜏(𝑥) + 𝜈𝜏(𝑦) =

=

∞∫︁
0

[︁
(1 − 𝜈)𝜇𝑡 (𝑥) + 𝜈𝜇𝑡 (𝑦)

]︁
𝑑𝑡 >

> 𝑟0

(︁ ∞∫︁
0

[︁
𝜇𝑡(𝑥𝑦)

1
2 + 𝜇𝑡(𝑥) − 2(𝜏(𝑥𝑦))

1
4 (𝜏(𝑥))

1
2

]︁
𝑑𝑡
)︁

+

+ 𝜈
(︁ ∞∫︁

0

[︁
𝜇𝑡(𝑥) + 𝜇𝑡(𝑦) − 2 (𝜏(𝑥))

1
2 (𝜏(𝑦))

1
2

]︁
𝑑𝑡
)︁

+

∞∫︁
0

𝜇𝑡(𝑥)1−𝜈𝜇𝑡(𝑦)𝜈𝑑𝑡 >

> 𝑟0

(︃
𝜏(𝑥) +

∞∫︁
0

𝜇𝑡

(︀
(𝑥𝑦)

1
2
)︀
𝑑𝑡−

− 2
(︁ ∞∫︁

0

(︁
(𝜏(𝑥𝑦))

1
4
)︁2
𝑑𝑡
)︁ 1

2(︁ ∞∫︁
0

(︁
(𝜏(𝑥))

1
2

)︁2
𝑑𝑡
)︁ 1

2
)︃

+
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+ 𝜈

(︃
𝜏(𝑥) + 𝜏(𝑦) − 2

(︁ ∞∫︁
0

(︁(︀
𝜏(𝑥)

)︀ 1
2
)︁ 1

2

𝑑𝑡
)︁2(︁ ∞∫︁

0

(︁(︀
𝜏(𝑦)

)︀ 1
2
)︁2
𝑑𝑡
)︁ 1

2
)︃

+

+

∞∫︁
0

𝜇𝑡

(︀
𝑥1−𝜈𝑦𝜈

)︀
𝑑𝑡 =

= 𝑟0

(︁
(𝜏(𝑥𝑦))

1
4 − (𝜏(𝑥))2

)︁2
+ 𝜈
(︁

(𝜏(𝑥))
1
2 − (𝜏(𝑦))

1
2

)︁2
+ 𝜏

(︀
𝑥1−𝜈𝑦𝜈

)︀
. (9)

The proof is completed. �
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